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Ferrite-free circulators that are passive and readily integratable on a chip are highly sought-after in quantum
technologies based on superconducting circuits. In our previous work, we implemented such a circulator
using a three-Josephson-junction loop that exhibited unambiguous nonreciprocity and signal circulation, but
required junction energies to be within 1% of design values. This tolerance is tighter than standard junction
fabrication methods provide, so we propose and demonstrate a design improvement that relaxes the required
junction fabrication precision, allowing for higher device performance and fabrication yield. Specifically, we
introduce large direct capacitive couplings between the waveguides, which based on the modeling we describe
here, requires less stringent junction fabrication tolerance. We implement the design, and measure enhanced
“circulation fidelity” above 97%, with optimized on-resonance insertion loss of 0.2 dB, isolation of 18 dB, and
power reflectance of −15 dB, in good agreement with model calculations.
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I. INTRODUCTION

Circulators are a paradigmatic example of nonreciprocal
devices with a wide use in telecommunication and microwave
electronics [1–3]. They are also indispensable for cryogenic
microwave measurements where they are used to route weak
microwave signals while protecting the system of interest
from thermal noise caused by higher temperature stages [4,5].
However, conventional ferrite circulators are bulky and not
compatible with microfabrication nor with superconducting
circuits, and thus unsuitable for very-large-scale supercon-
ducting microwave networks. Given the drive to scale up
superconducting quantum computers, designs for integrated
microwave circulators on a chip are becoming critical [6,7].

Many approaches to integrating circulators with other
solid-state quantum circuits involve the application of strong
magnetic fields, either real or synthesized with time-
dependent control fields [4,8–25]. However, these approaches
may also be incompatible with microfabricated superconduct-
ing systems, or add AC-control complexity.

In contrast, our recent results demonstrated the realiza-
tion of an on-chip superconducting circulator with only
passive (i.e., DC) control [26,27], based on a three-Josephson-
junction loop [28,29]. While nonreciprocity and microwave
circulation were evident [27], the device performance was
limited by asymmetry in Josephson junction energies. In par-
ticular, the device exhibited a ‘circulation fidelity’ of ∼80%
(i.e., the fidelity of the measured device scattering matrix rela-
tive to that of an ideal circulator) corresponding to an insertion
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loss of 2 dB, when post-selected on a specific quasiparticle
configuration sector.

In this paper, we report the implementation of an improved
design for a three-junction circulator device, which has been
analysed in Refs. [26–30]. As in earlier work, the core of
the device comprises three superconducting islands, indicated
by different colors in Fig. 1(a) that are connected to each
other via Josephson junctions, and are capacitively coupled
to external waveguides. The key advance reported here is the
inclusion of shunt capacitors that directly couple the waveg-
uides [23,24,31], indicated as CX in Fig. 1(a). This introduces
an additional microwave scattering pathway, giving rise to
multipath interference, analogous to Fano scattering [32,33].

Our theoretical simulations of the proposed design predict
that high circulation fidelity, above 97% (corresponding to
an insertion loss of 0.2 dB), can be reached even when the
spread in the Josephson energies is ∼3%, which is achiev-
able with standard electron beam lithography [34,35]. We
confirm our theoretical predictions with experimental mea-
surements, demonstrating significantly enhanced circulation
performance.

As with previously reported devices, our experimental sys-
tem still suffers from significant quasiparticle hopping, so
we use postselection to characterize and optimize the device
performance within a single quasiparticle sector. Relative to
Fedorov et al. [27], in Sec. IV D, we report a tenfold improve-
ment in device performance, with measured insertion loss of
IL = 0.2 dB, isolation of IS = 18 dB, and power reflectance
of R = −15 dB at resonance. Section IV C provides a rough
upper bound on internal device losses of <0.4 dB.

II. BACKGROUND

The electronic design of the capcitively shunted circulator
is shown in Fig. 1(a). Figure 1(b) implements this device,
with the capacitive shunts included in the hexagonal structure
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FIG. 1. (a) Lumped-element circuit model of the capacitively shunted circulator. The device consists of three Josephson junctions arranged
in a loop that creates three superconducting islands (indicated by blue, green, and red colors). The islands are capacitively coupled to external
waveguides via CC , and the waveguides are also directly coupled to one-another by capacitive shunts CX . (b) Optical microscope image of
a fabricated device, where the centered triangle represents the loop formed by three Josephson junctions and the outer ring represents the
inter-waveguide capacitances.

linking the waveguides, which couple to off-chip signal
sources and analysers. The experimental setup is described in
detail in Sec. IV.

To measure the scattering response of the system, we
drive it with input voltage signals V in

i and measure the out-
put voltage signals V out

j scattered by the device to determine
the scattering matrix amplitudes S ji = V out

j /V in
i with i, j ∈

{1, 2, 3}. We use an external DC flux bias threaded through
the junction loop and DC charge biases applied to the super-
conducting islands [�x and Vg,(1,2,3) in Fig. 1(a)] to control the
operation of the device.

Given the device’s scattering matrix S, we quantify its cir-
culation performance by defining the average clockwise and
anticlockwise circulation fidelities, and the average reflection
respectively as

F� = (|S13| + |S32| + |S21|)/3, (1a)

F� = (|S12| + |S23| + |S31|)/3, (1b)

R = (|S11| + |S22| + |S33|)/3. (1c)

An ideal clockwise circulator will have F� = 1 and F� =
R = 0 [27].

Our earliest experimental implementation of the three-
junction-loop circulator (without shunt capacitors) was
reported in Navarathna et al. [26], where we observed qual-
itative nonreciprocal behavior, i.e., Si j �= S ji for i �= j, albeit
with a low circulation fidelity ∼50%. Based on detailed
modeling, we attributed this low circulation performance to
electrical asymmetry in the Josephson junctions, which had
a large relative spread in Josephson energies δEJ ∼ 8.5%,
where δEJ ≡ (max j[EJ, j] − min j[EJ, j])/ĒJ, j .

This stems from the fact that a large value of δEJ deter-
mines the frequency splitting between the nearly degenerate
first and second excited states of the loop. The interference
of scattering pathways mediated by these states is responsible
for signal circulation in the device [30], so that when this split-
ting is much larger than the waveguide coupling strength, an

external drive cannot simultaneously couple strongly to both
of the excited states, thus limiting the nonreciprocal interfer-
ence.

Furthermore, the device reported in Ref. [26] was sensitive
to charge fluctuations. In particular, quasiparticle tunneling
between the superconducting islands created four quasiparti-
cle sectors, each with a distinct scattering response [30]. The
average quasiparticle lifetime of the device in Ref. [26] was
found to be τ (qp) ∼ 200 µs.

The second iteration of the three-junction-loop circulator
reported in Fedorov et al. [27] (also without shunt capaci-
tors) featured a more geometrically symmetric design with
a smaller spread in Josephson energies δEJ ∼ 2.2%. Addi-
tional design optimization ensured that the capacitance matrix
of the system was electrically symmetric. With these im-
provements, the device showed significant nonreciprocity and
reached circulation fidelity ∼80% (postselected over quasi-
particle sectors), for both clockwise and counterclockwise
circulation. The average quasiparticle lifetime was also im-
proved to τ (qp) ∼ 4 ms, due to enhanced infrared shielding
and a change in electronic parameters to reduce the charge-
parity-switching rates.

To attain higher circulation performance in the three-
junction system investigated in Ref. [27], modeling predicted
that we need δEJ � 1% [30], which is more constrained than
standard junction fabrication precision allows for. Instead, this
level of precision can only be reliably assured with post-
fabrication treatments such as laser annealing [36].

In the following sections, we demonstrate an alternative
approach to improving the circulation performance, based
on Fano-like interference arising from the inclusion of shunt
capacitors. The inspiration for this approach follows earlier
work which considered shunt capacitances (either stray or
engineered) as important elements of circulators [23,24,31].
We first develop a detailed theoretical model of the system,
and use this to show that including relatively large waveguide
shunt capacitors in the circulator design relaxes the required
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junction fabrication precision, so that circulation becomes
more robust against variations in Josephson junction energies.
We then implement the device design, shown in Fig. 1(b),
to demonstrate the experimental performance of the system,
confirming good agreement between theory and experiment,
as well as high quality circulation, after accounting for quasi-
particle noise.

III. MODELING AND ANALYSIS

In this section, we develop a theoretical input-output
model, which we use to show that introducing direct capaci-
tive couplings between the waveguides, as shown in Fig. 1(a),
enhances the circulation fidelity close to the ideal, even when
asymmetry in Josephson energies is relatively large.

A. SLH master equation

We derive a master equation for a three-junction loop
capacitively coupled to input-output waveguides, including
direct waveguide shunt capacitors mutually coupling the
waveguides. We begin by first describing the bare Hamilto-
nian of the junction loop [28–30]

Ĥloop = EC�

((
n̂′

1 − 1
2 (n0 + ng,1 − ng,3)

)2

+ (
n̂′

2 + 1
2 (n0 + ng,2 − ng,3)

)2 − n̂′
1n̂′

2

)
− EJ,1 cos

(
φ̂′

1 − 1
3φx

) − EJ,2 cos
(
φ̂′

2 − 1
3φx

)
− EJ,3 cos

(
φ̂′

1 + φ̂′
2 + 1

3φx
)
, (2)

which depends on a single charging energy EC�
(under the

assumption that the system capacitances are symmetric), three
Josephson energies EJ, j , three charge biases ng, j , and a flux
bias φx. In Eq. (2), the charge operators n̂′

1 and n̂′
2, the con-

versed total charge n0, and the phase (difference) operators
φ̂′

1 and φ̂′
2 are related to the original charge and phase op-

erators of the superconducting islands as follows, n̂′
1 = n̂1,

n̂′
2 = −n̂2, n0 = n̂1 + n̂2 + n̂3, φ̂′

1 = φ̂1 − φ̂3, and φ̂′
2 = φ̂3 −

φ̂2. The form of the kinetic (charging) energy in Eq. (2)
implies that the loop Hamiltonian Ĥloop actually depends on
the relative bias charges between the islands, ng,1 − ng,3 and
ng,2 − ng,3. Therefore, tuning two charge biases only, e.g.,
ng,1 and ng,2, as well as the flux bias φx suffices to control
the total operation of the circulator device. In terms of its
eigenbasis {|k〉; k = 0, 1, 2, . . . }, Ĥloop is expressed as Ĥloop =∑

k�1 h̄ωk|k〉〈k|, where ωk is the loop transition frequency
from the ground state |0〉 to the excited state |k〉 (k � 1).

We consider injecting single-mode weak coherent fields
with coherent amplitudes 〈âin〉 = (α1, α2, α3)ᵀ at a drive
frequency ωd to the three waveguide ports. Following the
“Scattering-Lindblad-Hamiltonian” (SLH) formalism [37],
we model the coherent input fields, the coupled waveguides,
and the junction loop as three cascaded systems with their
SLH triples respectively given by

Gd = (13×3, L̂d, 0), (3)

Gwg = (A, 0, 0), (4)

Gloop = (13×3, L̂loop, Ĥloop), (5)

where L̂d = (α1Î, α2Î, α3Î)ᵀ denotes the coupling opera-
tors associated with the input drive fields and L̂loop =
(
√

	q̂1,−,
√

	q̂2,−,
√

	q̂3,−)ᵀ denotes the coupling operators
associated with the junction loop. Here 	 is the coupling
strength between the junction loop and the waveguides and
q̂ j,− = ∑

k<
〈k|q̂ j |
〉|k〉〈
| are the upper triangularized parts
(in the junction loop eigenbasis) of the operators q̂ j , where
q̂1 = n̂′

1, q̂2 = −n̂′
2, and q̂3 = −n̂′

1 + n̂′
2.

Gd and Gloop represent three-port systems, while Gwg rep-
resents a six-port scattering system, with three ‘exterior” and
three “interior” ports; its 6 × 6 scattering matrix A is derived
in Appendix A. As analysed in Appendix B, the “interior”
ports of Gwg are connected to the ports of Gloop in a feedback
configuration. We therefore apply both the SLH series and
feedback rules [37] to cascade the total drive-waveguide-loop
SLH triple

Gtot = Gd�(Gwg ←↩ Gloop), (6)

which collectively describes a three-port device. Here we
have introduced a new SLH composition notation, A ←↩ B to
indicate that systems A (outer) and B (inner) are coupled in a
feedback loop. Equation (6) is the basis for the SLH modeling,
and further details are provided in Appendix B, and illustrated
in Fig. 7(c).

Given Gtot, the Linblad master equation for the density
operator ρ of the loop system in a frame rotating at the drive
frequency ωd is given by

ρ̇ = −i[Ĥ ′
tot, ρ] +

3∑
j=1

D
[
âout

j

]
ρ, (7)

where D[ô]ρ = 1
2 (2ôρô† − ρô†ô − ô†ôρ) and

Ĥ ′
tot = Ĥ ′

loop + Ĥs + Ĥd, (8)

âout = L̂w←↩l + Sw←↩lL̂d. (9)

Here Ĥ ′
loop = ∑

k�1(ωk − ωd )|k〉〈k|, Ĥs and Ĥd represent the
frequency shifts and the driving fields to the junction loop
system, âout = (âout

1 , âout
2 , âout

3 )ᵀ denotes the output fields, and
L̂w←↩l and Sw←↩l are the coupling operators and the scatter-
ing matrix of the feedback-reduced cascaded system Gwg ←↩

Gloop. Explicit expressions of the operators in Eqs. (8) and
(9) are given in Appendix B. Since V in

j = Kα j and V out
j =

K〈âout
j 〉, where K is a conversion factor and 〈Ô〉 = Tr(Ôρ),

the scattering matrix S with its elements Sji = V out
j /V in

i =
〈âout

j 〉/αi can be computed numerically from Eqs. (7)
and (9).

B. Reduced sensitivity to junction asymmetry

The inclusion of the waveguide shunt capacitors modifies
the scattering mechanism in the proposed circulator. In par-
ticular, in Appendix C, we adiabatically eliminate the loop
degrees of freedom to approximate the system scattering ma-
trix, at low drive powers, as S = (1 + Rloop) · Sw←↩l, where
Rloop represents the response of the junction loop to the exter-
nal drives. This shows that scattering of the whole capacitively
shunted-waveguide and junction-loop system is mediated via
two pathways, namely, a direct pathway represented by the
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FIG. 2. Optimized circulation fidelity, F�, as a function of
the Josephson-energy spread δEJ for increasing values of the in-
terwaveguide capacitances, CX = {0, 75, 150} fF. The fidelity is
computed from the scattering matrix S computed with the master
equation in Eq. (7). The junction loop parameters are EC�

/h =
3.09 GHz and EJ,2 = 15.03 GHz, and we allow variations in EJ,1/3

as EJ,1 = EJ,2(1 − δEJ/2), and EJ,3 = EJ,2(1 + δEJ/2). The black
circle marks the point where δEJ = 3%, CX = 75 fF, yielding an
optimized fidelity F� � 97%, which is consistent with the measured
circulation fidelity in Fig. 5.

waveguide scattering Sw←↩l and the loop-mediated scattering
represented by Rloop. This gives rise to the Fano-like multipath
interference effect with asymmetric line shapes in the trans-
mission and reflection spectra [32,33].

In what follows, we provide numerical evidence that the
waveguide shunt capacitors reduce the sensitivity of the
circulation fidelity to variations in the Josephson junctions
fabricated in the loop. To this end, we numerically solve the
master equation in Eq. (7), compute the output fields, and
determine the scattering matrix S.

For simulation purposes, we take EC�
/h = 3.09 GHz,

EJ,2/h ≡ EJ/h = 15.03 GHz to match experimental param-
eters discussed in Sec. IV, following, and we allow EJ,1/3

to vary as EJ,1 = EJ (1 − δEJ/2), and EJ,3 = EJ (1 + δEJ/2),
where δEJ is the fractional spread in junction energies.
For 0 � δEJ � 5%, we numerically optimize the flux and
charge biases, and the drive frequency to find the optimal
clockwise circulation fidelity at each δEJ . This “maxi-
mally asymmetric” choice of junction energies for EJ,1/3

relative to the mean value EJ represents the worst-case-
scenario circulation fidelity [30], so provides an estimate
of the worst-case effect of asymmetry on the circulation
performance.

The simulation results are shown in Fig. 2, where we
plot the optimized circulation fidelity, F�, as a function
of the Josephson-energy spread δEJ for three values of the
inter-waveguide capacitances CX ∈ {0, 75, 150} fF. We ob-
serve that for small junction spread, the fidelity is high, i.e.,
F� ≈ 1 for δEJ � 1%, regardless of the value of CX . For
larger asymmetry, the fidelity improves with increasing CX .
In particular, the curve for CX = 75 fF, which corresponds
to our experimental value, shows high circulation perfor-
mance up to δEJ ∼ 3%. These simulations indicate that large
interwaveguide capacitances substantially enhance the robust-
ness of the circulation fidelity against Josephson-junction
asymmetry.

IV. EXPERIMENTAL RESULTS

A. Device fabrication and measurement

The device shown in Fig. 1(b) was composed of four layers
of aluminium deposited on a high resistivity silicon wafer with
different thicknesses to reduce quasiparticle tunneling by gap
engineering [38]. The first layer of 100 nm formed the ca-
pacitors and the basic structure of the junction loop. Standard
double-angle evaporation was then used to deposit two layers
of aluminium, of 20 nm and 60 nm respectively, with a single
oxidation step between the two aluminium deposition stages
to form three Josephson junctions. A final “patch” layer was
deposited to ensure electrical continuity within each island.
After evaporation, the chip was diced and bonded on a holder
suitable for cryogenic measurements in a dilution refrigerator
operating at a base temperature of 10 mK.

The device was characterized using a fast, room-
temperature microwave switch to sequentially direct the
external drive to each of the three input ports for 100 µs, and
measuring the response at the three output ports with a vector
network analyser (VNA), as shown in Fig. 3, which yields
a column of the scattering matrix. To extract the full 3 × 3
scattering matrix, we switch between the inputs, for a total
cycle time of τs = 300 µs.

B. Spectral response

We first measured the spectral response of the system as a
function of the magnetic flux in the junction loop provided by
a small external coil mounted on the bottom of the sample
holder. In Fig. 4, the measured spectrum, which features a
characteristic Y-shape [26,27,29,30], shows good agreement
with the theoretical model, and the fitting provides an estimate
for the electronic parameters of the device.

Specifically, the model fitting returns an on-site charging
energy EC�

/h = (2e)2/(hC� ) = 3.09 GHz , which corre-
sponds to a total island capacitance of C� = Cg + CC +
3CJ = 37.5 fF, where Cg, CC , and CJ are the ground,
waveguide-loop coupling, and junction capacitances respec-
tively. This is close to the design value of C� = 40 fF, from
designed capacitance values Cg = 2.3 fF, CC = 27.5 fF, and
CJ = 3.5 fF. The fitted values for the Josephson energies
are EJ,(1,2,3)/h = {14.73, 15.15, 15.22} GHz with a spread
δEJ = 3.2%. These values are reasonably consistent with the
measured room-temperature junction resistances RJ,(1,2,3) =
{6.86, 7, 7.02} k [39], noting that junction resistances may
drift slightly, relative to one-another, over several days.

C. Scattering analysis

We next measured the full 3 × 3 complex-valued scattering
matrix S.

The raw data obtained at the VNA include the response
of the scattering matrix S of the capacitively shunted on-chip
circulator, along with the attenuation, amplification, and loss
inside the cabling in the dilution refrigerator. To isolate the
device scattering matrix, S, we use a two-step calibration
procedure, which we describe briefly here. A more detailed
description is provided in Appendix E.

In the first, coarse calibration step, we use three radial
microwave switches at the mixing chamber stage inside the
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FIG. 3. Circuit diagram of the experimental setup inside the di-
lution refrigerator. The ports of the device are connected to radial
microwave switches to allow for bypassing the device and calibrating
the input and output lines. The inputs V in

j are sent through attenuators
to the device. DC voltages Vg, j are added to the RF input lines via bias
tees at room temperature. Each of the outputs V out

j from the device
goes through an IR-filter, a circulator, two isolators, a band pass filter,
a HEMT amplifier, and room temperature amplifiers.

dilution refrigerator (see Fig. 3), which allow us to bypass
the device and measure direct transmission through all the
possible combinations of the input and output lines. Assum-
ing that the lines were matched to 50  and there were no
reflections at the switches, we calibrated the transfer functions
of the cables and amplifiers up to the magnetic shield of
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FIG. 4. (a) Spectral response for voltage scattering from port 1
to port 2 while sweeping over the flux coil voltage. The raw volt-
age output at each frequency is scaled so that the far-off-resonant
background data (i.e., where the flux coil voltage is <0.4 V) has
zero mean and unit variance; the gray-scale thus represents the
output signal-to-noise ratio of |S21|. (b) Fitted model spectral lines
superimposed on the measured spectrum, including four distinct
quasiparticle sectors; the model spectrum obscure the experimental
features across the flux and frequency scan, indicating high quality
agreement between theory and experiment. The horizontal features
in the data are attributed to weak resonances from reflections in
the cabling. The fitting process also converts the dimensional flux
coil voltage into a dimensionless flux bias φx = 2π�x/�0. Different
colors correspond to transition frequencies from the ground state
to the first excited state (blue), second (orange), third (green), and
fourth (red). The fourfold multiplet within the fitted spectrum is due
to four quasiparticle sectors.

the device [27], yielding an input attenuation matrix A and
output amplification matrix B, which are described in detail
in Appendix E.

In the second, fine calibration step, we fitted the coarsely
calibrated data to a model which accounts for additional losses
within the magnetic shield induced predominantly by inline
infra-red (IR) filters shown in Fig. 3. These filters are in-
herently outside of the coarse calibration step. This process
yielded both the device scattering matrix, S, that represents the
device response, as well as an additional attenuation matrix,
C, quantifying the IR-filter absorption (see Appendix E for
details). As an independent validation of this fine calibration,
the fitted IR filter attenuation matrix C corresponds to a single-
pass attenuation of 1.4 dB, which is close to the expected
value of 1 dB at 7 GHZ, inferred from the manufacturer’s
data sheet. The difference of 0.4 dB between these figures is a
rough upper bound for the internal device losses.

The sampling time for each scattering matrix measure-
ment was τs = 300 µs. As in our previous work [26,27],
we observed the characteristic jumps between discrete out-
put voltage states which are classified and attributed to four
different quasiparticle sectors with a K-means classifier. The
results of the quasiparticle analysis and classification re-
ported here exactly replicate the process we developed and
described in Ref. [27]. The typical characteristic dwell times
for the four quasiparticle sectors were measured as τ

(qp)
1,2,3,4 =

{3.48, 3.61, 4.23, 3.14} ms, which is comparable to those in
our previous device [27]. This classification then allowed us
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FIG. 5. (a) Spectra of optimized clockwise-circulating S-matrix
elements. We note the small oscillations with period ∼200 MHz
are likely due to weak reflections in the cabling, described in Ap-
pendix F. (b) Clockwise and counterclockwise fidelities for this set
of S-matrix data. (c) Clockwise and counterclockwise fidelities of
the S-matrix data optimally biased for counterclockwise circulation,
showing that circulation direction in the device can be changed
electronically.

to compute the circulation fidelity in each of the four quasi-
particle sectors. We then tuned the charge and flux biases to
maximize the measured fidelity for one of the quasiparticle
sectors. Fixing these biases at a working point with a high
circulation fidelity, we measured the scattering matrix S while
scanning over the drive frequency.

The extracted scattering matrix S of the device in the op-
timized sector is shown in Fig. 5(a) (lighter-colored), where
we see strong nonreciprocity with |S12| � |S21|, |S23| � |S32|,
and |S31| � |S13| around 7.25 GHz. In addition, we observe
asymmetric line shapes, which are indicative of multipath
Fano-like interference, as well as noticeable background os-
cillations in some of the scattering matrix elements, which
we attribute to weak etalon resonances arising from back-
reflection in the cabling (see Appendix F for more details).

We also show in Fig. 5(a) the results of model simulations
(darker-colored), where we used the same device parameters
obtained from the spectral fit in Fig. 4 to compute the theoreti-
cal scattering matrix. The scattering matrix fit yields a value of
the inter-waveguide capacitance CX = 76 fF, which is reason-
ably close to the design value from finite-element electrostatic
simulations (84 fF). The fit also returns the waveguide-loop
coupling strength of 270 MHz, which is roughly double the
value in Fedorov et al. [27] due to a larger design ratio
CC/C� [30].

In Fig. 5(b), we show the clockwise and counterclockwise
circulation fidelities, F� and F� defined in Sec. 1, of the
measured scattering spectrum in Fig. 5(a) (lighter-colored),
along with the theoretical fidelities (darker-colored). The peak
clockwise circulation fidelity measured in Fig. 5(b) is F� =
0.97 with a correspondingly small counterclockwise circu-
lation fidelity of F� = 0.12, showing significant clockwise
signal circulation. This is consistent with the theoretical sim-
ulations in Fig. 2, where we predict that at a Josephson-energy
spread δEJ = 3.2% circulation fidelity F > 0.96 is achiev-
able for a waveguide shunt capacitance of CX ∼ 75 fF.

The direction of signal circulation in our device can be
dynamically switched with the external voltage control biases.
Figure 5(c) shows the fidelities F� and F� versus the drive
frequency at a voltage-bias tuned for counterclockwise cir-
culation; the results look very similar to those in Fig. 5(b),
except their roles are exchanged. The peak counterclockwise
circulation fidelity measured in Fig. 5(c) is F� = 0.98, and
F� = 0.05 is correspondingly small.

For completeness, we present the scattering matrices for
the other quasiparticle sectors in Appendix D. As in Ref. [27],
the clockwise circulation performance in the other, unopti-
mized quasiparticle sectors is significantly worse than the
sector reported in Fig. 5(a).

D. Circulation performance and power dependence

We analyze the device performance as a clockwise
circulator by defining the average insertion loss IL, the av-
erage isolation IS, and the average power reflectance R
respectively as

IL = F2
�, IS = F2

�, R = R2. (10)

These quantities are computed from the scattering data in
Fig. 5(a) and are shown in Fig. 6(a), where we find that at
the resonance frequency 7.25 GHz, IL = 0.2 dB, IS = 18 dB,
and R = −15 dB. In addition, Fig. 6(a) shows IL < 1 dB over
a bandwidth of 90 MHz, while IS > 14 dB over a bandwidth
of 85 MHz. The circulator device studied here thus exhibits a
tenfold improvement in the insertion loss relative to the earlier
device reported in [27] (for which IL = 2 dB, IS = 14 dB, and
R = −11 dB at resonance). Based on the model predictions
shown in Fig. 2, we attribute this to the inclusion of the shunt
capacitors, which reduces the required junction fabrication
precision.

Finally, to complete the characterization of the device per-
formance we measured the saturation power. In Fig. 6(b),
we show the dependence of the measured counterclockwise
fidelity on the input signal power (at an off-resonance drive
frequency 7.46 GHz), as well as including numerical simu-
lations. The 3 dB compression point is P3dB ≈ −126 dBm,
which is the same as in our previous circulator device [27].

Microwave circulation in the device arises from quantum
interference between the ground and excited states of the
junction loop. The junction-loop energy spectrum is strongly
anharmonic, and so we expect the device saturation power to
correspond to the arrival of one drive photon per excited-state
lifetime, τe = (	‖〈e|n̂a|g〉|2)−1. Using our fitted device pa-
rameters, we find 	 ≈ 270 MHz and |〈e|n̂a|g〉|2 ≈ 0.3, which
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FIG. 6. (a) Clockwise circulation performance for the scattering
data in Fig. 5(a), including the average insertion loss IL = F2

�,
the average isolation IS = F2

�, and the average power reflectance
R = R2. The range of each curve indicated by a shaded region is
computed from the smoothed maxima and minima over the terms in
the corresponding definition in Sec. 1. (b) Counterclockwise fidelity
F� at an off-resonant drive frequency 7.46 GHz as a function of the
input power obtained from both theory and experiment, showing the
saturation power of about P3dB ≈ −126 dBm.

implies a saturation power Psat ≈ h f /τe = −124 dBm, con-
sistent with the experimentally measured value for P3dB above.

V. DISCUSSION AND CONCLUSIONS

In this work, we analysed an improved design for
an on-chip superconducting circulator based on a three-
Josephson-junction loop. The key advance over our earlier
results [26–29] was the addition of shunt capacitors between
the input-output waveguides to induce Fano-like interference
between the scattering pathways. We showed theoretically and
experimentally that circulation in the capacitively shunted,
three-junction loop is substantially less sensitive to Josephson
junction asymmetry and exhibits notable improvement in the
circulation performance.

This simple design modification increased the tolerable
junction asymmetry to δEJ � 3%, removing the need for ad-
ditional fabrication post-processing to fine-tune the Josephson
junctions towards higher symmetry. The approach may also
be applicable to other multicomponent interference devices in
reducing the sensitivity to typical imprecision in component
fabrication.

The device insertion loss, isolation, and return loss, which
are postselected on the optimized quasiparticle sector, are

comparable to the performance of commercial ferrite circu-
lators. The measured bandwidth, though not as large as in
commercial devices, is already sufficient for some practical
applications, for example, single qubit readout [40]. However,
the saturation power and the nonequilibrium quasiparticles,
which cause random switching into and out of the high-
performance sector, remain barriers to making the device
practically useful.

ACKNOWLEDGMENTS

This work was funded through a commercial research con-
tract with Analog Quantum Circuits (AQC) Pty. Ltd. T.M.S.
and A.K. each declare a financial interest in AQC. The authors
acknowledge assistance from the Centre for Microscopy and
Microanalysis at the University of Queensland, and the Aus-
tralian National Fabrication Facility, ANFF-Q.

APPENDIX A: SCATTERING BETWEEN CAPACITIVELY
COUPLED WAVEGUIDES

We decompose the circuit model in Fig. 1(a) into a
system of capacitively coupled waveguides and the three-
junction loop. The waveguide system shown Fig. 7(a) has
three “exterior” input/output ports denoted by ain/out =
(ain/out

1 , ain/out
2 , ain/out

2 )ᵀ that couple to external fields, and
three “interior” input/output ports denoted by bin/out =
(bin/out

1 , bin/out
2 , bin/out

2 )ᵀ that couple to the junction loop. The
exterior ports couple to each other via the shunt waveguide
capacitors CX, j ≡ CX and couple to the interior ports via cou-
pling capacitors C̃C, j ≡ C̃C . Later calculations will take the
limit C̃C → ∞ to account for the actually galvanic connection
between the exterior and interior ports.

In the following, we derive the 6 × 6 scattering matrix A
for the system of waveguides in Fig. 7(a). We assume that
they are capacitively connected to each other at the end points
x = 0. Following the theory of lossless semi-infinite waveg-
uides in Ref. [41], the voltage and current at the end point
x = 0 of the waveguide a j (or b j), denoted respectively as
Vaj/b j and Ia j/b j , are given by

Vaj/b j = V out
a j/b j

+ V in
a j/b j

, (A1)

Ia j/b j =
V out

a j/b j
− V in

a j/b j

Zwg
, (A2)

where V out
a j/b j

and V in
a j/b j

are the output and input voltages, and
Zwg is the waveguide impedance.

We apply Kirchhoff’s current law at the coupling points
x = 0 of the waveguides a j and b j and find that

Ia j + Vbj − Vaj

ZC̃j

+
∑
j′ �= j

Vaj′ − Vaj

ZCj, j′
= 0, (A3)

Ib j + Vaj − Vbj

ZC̃j

= 0, (A4)
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FIG. 7. We describe the (a) capacitively coupled waveguides.
Formally, we take C̃C → ∞, to compute the transfer matrix for
ain → bout. (b) The 6 × 6 scattering matrix A from Eq. (A9), relat-
ing the triplets of input and output modes of the capacitive shunts,
where ain/out = (a1

in/out, a2
in/out, a3

in/out ) are the “exterior” inputs and
outputs to/from the waveguides, and bin/out are the ‘interior’ input
and output modes to/from the junction loop. The junction loop (c) is
described by (d) a 3 × 3 junction loop scattering matrix B relating
the loop input modes, cin, to the loop output modes, cout , as well
as the internal Hamiltonian evolution of the loop degrees of freedom.
The scattering matrix for the (e) waveguide-loop system from Fig. 1
is described by the SLH formalism in which A and B are coupled in
a feedback loop, shown in (f), with the internal modes constrained so
that bout = cin and bin = cout [37]. The heavier lines indicate triplets
of modes. Not shown here is the scattering system of the external
coherent drives that couple to the exterior ports of the waveguides.

where ZCj, j′ = 1/iωdCX and ZC̃j
= 1/iωdC̃C . Using Eqs. (A1)

and (A2), we rewrite Eqs. (A3) and (A4) in terms of V out
a j/b j

and

V in
a j/b j

V out
a j

− V in
a j

Zwg
+

V out
b j

+ V in
b j

− V out
a j

− V in
a j

ZC̃j

+
∑
j′ �= j

V out
a j′

+ V in
a j′

− V out
a j

− V in
a j

ZCj, j′
= 0, (A5)

V out
b j

− V in
b j

Zwg
+

V out
a j

+ V in
a j

− V out
b j

− V in
b j

ZC̃j

= 0. (A6)

These equations can be concisely represented in matrix form

[1 + iωdZwgC]

[
V out

a

V out
b

]
= [

1 − iωdZwgC
][V in

a

V in
b

]
, (A7)

where V in/out
a/b = (V in/out

a1/b1
,V in/out

a2/b2
,V in/out

a3/b3
), and the full 6 × 6

capacitance matrix,

C =
[
CX − C� CC

CC −CC

]
, (A8)

is defined in terms of the 3 × 3 partial capacitance matrices
C� = (C̃C + 2CX )1, CC = C̃C1, and

CX =
⎡
⎣ 0 CX CX

CX 0 CX

CX CX 0

⎤
⎦.

We solve Eq. (A7) to obtain the shunt capacitor scattering
matrix,

A = [1 + iωdZwgC]−1.[1 − iωdZwgC], (A9)

≡
[

A11 A12

A21 A22

]
,

which implicitly defines the 3 × 3 submatrices Ai j . This scat-
tering matrix is represented graphically in Fig. 7(b). We take
the limit C̃C → ∞ and define z = ωdZwgCX , so that

A11 = A22 = z

2i + 3z

⎡
⎣−2 1 1

1 −2 1
1 1 −2

⎤
⎦,

A12 = A21 = z

2i + 3z

⎡
⎢⎣1 + 2i

z 1 1
1 1 + 2i

z 1
1 1 1 + 2i

z

⎤
⎥⎦.

APPENDIX B: SLH MASTER EQUATION

We use the SLH formalism [37] to model the input-output
network in our device. It consists of the external coherent
drives, the coupled waveguides, and the junction loop. The
drives are modeled as a three-port component following the
source model; its SLH triple is given by

Gd = (13×3, L̂d, 0), (B1)

where L̂d = (α1Î, α2Î, α3Î)ᵀ with α j the drive amplitudes.
The coupled waveguides are a six-port component without
any coupling operators nor system Hamiltonian with its SLH
triple of the form

Gwg = (A, 0, 0), (B2)

where A is given in Eq. (A9). The junction loop depicted in
Figs. 7(c) and 7(d) is a three-port component represented by
an SLH triple

Gloop = (13×3, L̂loop, Ĥloop), (B3)
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where L̂loop = (
√

	q̂1,−,
√

	q̂2,−,
√

	q̂3,−)ᵀ and Ĥloop is
given in the main text.

The total network is cascaded as

Gtot = Gd�Gw←↩l, (B4)

where Gw←↩l = Gwg ←↩ Gloop describes the feedback loop
concatenation between the interior ports of Gwg and the ports
of Gloop, as described in Figs. 7(e) and 7(f). We compute
Gw←↩l by first cascading Gw�l = Gwg�(G3 � Gloop), where
G3 = (1, 0, 0) and find that

Gw�l =
(

A,

[
0

L̂loop

]
, Ĥloop

)
. (B5)

Gw�l has six ports: its “upper” ports denoted as 1 do not
involve any coupling operators and its “lower” ports denoted
as 2 correspond to L̂loop and are looped back to themselves.
We then use the feedback rule to eliminate these internal
degrees of freedom. The reduced three-port waveguide-loop
SLH triple Gw←↩l = [Gw�l]2←↩2 is given by

Sw←↩l = A11 + A12(1 − A22)−1A21, (B6a)

L̂w←↩l = A12(1 − A22)−1 ˆLloop, (B6b)

Ĥw←↩l = Ĥloop − i

2
(L̂

†
loopA22(1 − A22)−1L̂loop − H.c.).

(B6c)

Finally, the total SLH triple Gtot in Eq. (B4) is

Stot = Sw←↩l, (B7a)

L̂tot = L̂w←↩l + Sw←↩lL̂d, (B7b)

Ĥtot = Ĥw←↩l − i

2
(L̂

†
w←↩lSw←↩lL̂d − H.c.). (B7c)

We decompose Ĥtot as Ĥtot = Ĥloop + Ĥs + Ĥd, where

Ĥs = − i

2
(L̂

†
loopA22(1 − A22)−1L̂loop − H.c.), (B8a)

Ĥd = − i

2
(L̂

†
w←↩lSw←↩lL̂d − H.c.), (B8b)

which respectively describe the frequency shifts and the driv-
ing to Ĥloop. Given these, we obtain the master equation for
the junction loop’s density operator (in a rotating frame at the

drive frequency ωd)

ρ̇ = −i[Ĥ ′
tot, ρ] +

3∑
j=1

D[L̂tot, j]ρ. (B9)

Equation (B7b) in fact is nothing but the input-output relation,
where L̂tot ≡ âout, L̂w←↩l, and Sw←↩lL̂d represent the output
fields, the system’s response, and the input fields, respec-
tively. This reproduces the master equation Eq. (7) in the
main text. We note that when CX = 0, one finds Ĥs = 0 and
Sw←↩l = 1, which reduces Eq. (B9) or (7) to the SLH master
equation used in Refs. [26,27,29,30].

APPENDIX C: ADIABATIC ELIMINATION

We consider a semianalytical derivation for the scattering
matrix S via adiabatic elimination of the SLH triple [37],
which provides us useful insights into the operation of the pro-
posed circulator. In particular, we assume that the drive fields
are weak so that the junction-loop system is mostly populated
in its ground state [29]. This allows us to separate the Hilbert
space of the loop into a fast subspace F = {|k〉, k � 1} that
contains its excited states and a slow subspace S = {|0〉} that
contains only its ground state. We then eliminate the dynamics
of the fast subspace while considering only that of the slow
subspace (for more details, see Appendix B in Ref. [30]). By
doing so, we find that the scattering matrix S within the slow
subspace is given by

S = (1 + Rloop).Sw←↩l, (C1)

where Rloop represents the response of the junction loop to the
external coherent drives. We note that a similar expression to
Eq. (C1) was derived in Ref. [42] for a resonator coupled to
multiple ports in the presence of a direct scattering channel
between the ports. The matrix elements of Rloop are [30]

(Rloop)i j = −
∑
k>0

〈0|L̂w←↩l,i|k〉〈k|L̂w←↩l, j |0〉
i�ωk + 	k/2

, (C2)

where �ωk = ωk − ωd and 	k = 〈k|L̂†
loopAsL̂loop|k〉, with

As = A22(1 − A22)−1. Here 	k represents the waveguide-
induced decay rate as well as the frequency shift of the excited
state |k〉. We numerically confirm that the S-matrices com-
puted via the full SLH master equation (7) and via adiabatic
elimination Eq. (C1) agree very well with each other.

FIG. 8. Scattering matrices of the other three quasiparticle sectors, obtained from the same data analysis that produced the scattering matrix
in Fig. 5(a) with high clockwise circulation. The (clockwise) circulation performance in each of these sectors is substantially worse than in the
optimized sector.
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APPENDIX D: SCATTERING MATRICES OF OTHER
QUASIPARTICLE SECTORS

In Fig. 8, we show the measured scattering matrices for the
other quasiparticle sectors obtained from the same data analy-
sis that yielded the scattering matrix reported in Fig. 5(a). The
clockwise circulation performance is evidently poor for these,
compared with the best sector in Fig. 5(a).

APPENDIX E: CALIBRATION
OF THE SCATTERING MATRIX

Here we provide more detail on the two-step calibration
process we used to measure the device scattering matrix S
from the raw scattering matrix data, M. The calibration as-
sumes that M is determined by attenuation on the three input
lines, A, amplification on the three output lines, B, the “bare”
device scattering matrix S and high-pass IR-filters on each
port of the device C, which contribute about 1 dB of atten-
uation per pass. The attenuation and amplification matrices
A, B, and C are assumed to be diagonal in the port labels (i.e.,
no cable cross-talk). Formally, we assume that the measured
scattering matrix is given by

M = B · C · S · C · A. (E1)

The cabling layout is shown schematically in Fig. 9. Using
a bypass switch installed inside the fridge, we are able to
directly calibrate A and B, to provide a “coarse” calibration.
The high-pass IR filter is necessarily installed after the bypass
switch, and so it cannot be directly calibrated. Instead, we
use fitting to provide a “fine” calibration to simultaneously
determine C and S.

In the first, coarse calibration step, the bypass switches
are used to directly connect the input and output lines, with
which we extract the input and output attenuation matrices
A = diag(a1, a2, a3) and B = diag(b1, b2, b3) of the cables
and the amplifiers between the fridge exterior and the mag-
netic shielding inside the fridge. This requires nine different
switch settings to access the different combinations of aib j .
One example of the bypass switch setting is shown in Fig. 9,
where we measure input line i = 1 (red), and output line j = 3
(blue), giving us a1b3. Typically there is about 135 dB of
attenuation in the input lines, and 87 dB of amplification in
the output lines.

Given raw 3 × 3 device scattering matrix data, M, at
some frequency, and a complete set of the bypass switch
measurement, we compute the coarsely calibrated scattering
matrix S̃ = B−1 · M · A−1. Example data for S̃ are shown in
Fig. 10(a). The coarse calibration assumes only that A and
B are diagonal. We find that S̃ is not unitary, since it still
includes residual attenuation from the in-line IR filters and
cabling inside the shields.

To account for the IR-filter attenuation, we perform a sec-
ond, fine calibration, where we assume that S is very close
to being a 3 × 3 unitary matrix, parameterized as U3. This
assumption reflects our belief, based on our modeling, that
the superconducting device has very low internal losses; we
check this assumption against the expected IR-filter attenu-
ation, described below. We perform least-squares fitting over

FIG. 9. The schematic wiring diagram of the input and output
lines to the device, shown in a bypass configuration. Bypass switches
are used to directly connect the input and output lines, in different
combinations, bypassing the device. Shown here, input line i = 1
(red) is connected to output line j = 3 (blue). The various switch
configurations yield the transfer product aib j for the input and out-
put lines, which can be measured as a function of frequency. This
provides the coarse in-situ calibration described in Appendix E.

the parameterized U3 and C = diag(c1, c2, c3) to minimize the
residuals of |U3 − C−1 · S̃ · C−1|. The fitting process simulta-
neously yields in-situ IR-filter attenuation parameters c j and
a “pure” unitary device scattering matrix U3. Finally, we use
C as the fine calibration factor required to compute the “bare”
scattering matrix of the device, S = C−1 · S̃ · C−1.
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FIG. 10. (a) Coarsely calibrated scattering matrix S̃ = B−1 · M ·
A−1 that corrects the raw scattering matrix M with the calibrated
transfer functions A (attenuation) and B (amplification) of the ca-
bles and amplifiers outside of the magnetic shield. A and B are
determined using bypass switches. (b) The fitted loss matrix C =
diag(c1, c2, c3) that represents the additional line losses within the
magnetic shield, caused mainly by the in-line IR filters. The fitted
values are not strongly dependent on the frequency. The extracted
IR-filter attenuation of approximately 0.85 (1.4 dB) is consistent with
the estimated value 1 dB (c j ≈ 10−(1 dB)/20 ≈ 0.89) from the manu-
facturer’s specification sheet, shown by the dashed line. (c) The finely
calibrated scattering matrix S = C−1 · S̃ · C−1 (solid blue) obtained
by correcting the coarsely calibrated data with the fitted IR-filter
attenuation. We see that S is very close to the nearest 3 × 3 unitary
approximation U3 for the device scattering matrix (dashed red). The
blue curves showing S in this panel are the same as in Fig. 5(a).

Figure 10(b) shows the values of c j extracted from S̃. We
see that the c j ≈ 0.85 (i.e., attenuation of 1.4 dB) do not
depend strongly on the drive frequency over the band shown.
This corresponds closely to the expected ∼1 dB attenuation
(i.e., 10−1/20 = 0.89 in amplitude) shown as dashed lines in
Fig. 10(b), inferred from the IR-filter manufacturer’s data
sheet [43]. The 0.4 dB difference between the fitted absorption
and the IR-filter specification provides a rough upper bound
on the internal losses in the device. Given variations in each
IR-filter, the true internal losses of the circulator may be
substantially smaller than 0.4 dB.

FIG. 11. Comparison of the on-resonant scattering matrix data
(solid blue) in Fig. 5(a) with the off-resonant background response
(dashed brown), showing very similar oscillations away from the
resonant frequency 7.25 GHz. Also shown is the computed shunt-
capacitor scattering amplitudes (dot-dashed green) from Eq. (B7a),
assuming CX = 75.7 fF. We attribute the period ∼200 MHz to weak
reflections in cabling, over a length of about 0.5 m.

The bare device scattering matrix, S = C−1 · S̃ · C−1, is
shown in Fig. 10(c) (blue), compared with the pure uni-
tary matrix U3 extracted from fitting (dashed red). We see
that S and U3 are in close agreement, indicating that the
coarsely calibrated data are consistent with the assumption
that it is generated by a unitary scattering device with IR-filter
contributing attenuation of c j ≈ 1 dB per pass. That is, we
confirm that S̃ ≈ C · U3 · C to a good approximation.

In addition to the in situ, model-free calibration based on
the data analysis described here, the physics-based SLH mod-
eling shown in Fig. 5(a) also agrees well with the calibrated
scattering matrix S. We note that the cabling resonances that
result in small oscillations in the scattering data (see Fig. 11)
are reciprocal and so cannot affect the nonreciprocal scattering
of the device, including the measure of circulation fidelity.

APPENDIX F: BACKGROUND OSCILLATIONS

The S-matrix elements shown in Figs. 5(a) and 8 have no-
ticeable oscillatory responses with peak-to-trough amplitude
of about 0.2, and a characteristic period of about 200 MHz.
We attribute these to weak, resonant reflections in the ca-
bling, over a length of around L ∼ 0.5 m, which could arise
from weak reflections (with reflectivities at the level of a
few percent) at co-axial connectors or other weak scattering
sites. These form low-Q etalons with a free spectral range
FSR = c/(2L) ∼ 200 to 300 MHz, as seen in Fig. 11. Given
the small reflectivities of a few percent involved in producing
these etalons, they will be dominated by formed between
pairs of scatterers (rather than multiple scattering processes).
When the 3-junction device is circulating on resonance, ad-
ditional multireflection interference processes could open up.
However given the hypothesized few-percent reflectivities of
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the weak scattering points, any additional circulator-induced
etalons will be higher order, and therefore of lower amplitude.

Figure 11 reproduces the resonant circulation data (solid
blue) in Fig. 5(a), as well as similar scattering data (dashed
brown) taken with the flux-bias selected to fully detune the
device from the frequency band shown. The on-resonance and
detuned data sets were taken approximately 10 days apart,
and have clear qualitative correlations in their FSRs away
from resonance, but with quantitative differences which may
arise from slow drifts in, e.g., the weak-reflection strength
over the time between the measurements. In addition, the pure
theoretical scattering matrix amplitudes for a shunt capaci-
tor array, computed with Eq. (B7a), are shown (dot-dashed
green), which broadly match the off-resonance scattering am-

plitudes, apart from the small oscillations attributed to the
cable back-reflections.

We note two additional observations that suggest the
etalons are partially associated to scattering from the shunt ca-
pacitors. Firstly, the background oscillations are not strongly
evident in the independent calibration of the A and B matri-
ces, which are measured by bypassing the device, including
the shunt capacitors. A consequence of this is that the coarse
calibration step described in Appendix E does not remove
the background oscillations. Secondly, our earlier work [27]
based on an unshunted device had much less pronounced
background oscillations from etalons. Together, these ob-
servations suggest that the etalons are related to the shunt
capacitors.
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