
PHYSICAL REVIEW RESEARCH 7, 013064 (2025)

Quantum many-body scars with unconventional superconducting pairing symmetries
via multibody interactions
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We present a systematic framework to construct model Hamiltonians that have unconventional supercon-
ducting pairing states as exact energy eigenstates, by incorporating multibody interactions (i.e., interactions
among more than two particles). The multibody interactions are introduced in a form of the local density-density
coupling in such a way that any pair configuration in real space has a constant interaction energy by canceling the
two-body and multibody interactions. Our approach is applicable to both spinless and spinful models in any spa-
tial dimensions and on any bipartite lattices, facilitating an exhaustive extension of Yang’s s-wave η-pairing state
to various other unconventional pairing symmetries (p-wave, d-wave, f -wave, etc.). Particularly, the constructed
eigenstates have off-site pairs with finite center-of-mass momentum, which leads to superconducting states with
either even-parity and spin-triplet or odd-parity and spin-singlet symmetry. We verify that the two-dimensional
spinful Hubbard model on a square lattice with the multibody interactions has the spin-triplet d-wave pairing
state as an energy eigenstate, which can be regarded as a quantum many-body scar state as evidenced from the
numerical analysis of the pair correlation function, entanglement entropy, and level statistics. We also discuss
other examples, including spin-triplet f -wave pairing states on a honeycomb lattice and spin-singlet p-wave
pairing states in a one-dimensional chain. These findings open up the possibility of realizing nonequilibrium
unconventional superconductivity in a long-lived manner protected against thermalization.
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I. INTRODUCTION

Out-of-equilibrium superconductivity offers a potential to
realize exotic quantum many-body states that are otherwise
challenging to observe in thermal equilibrium. Notable candi-
dates for those states include photoinduced superconducting-
like states that have been experimentally observed even
above the equilibrium transition temperature [1–5] (see also
[6,7]). Another example is the Floquet engineering [8–10]
(i.e., quantum states induced by a time-periodic drive),
which has endowed superconductors with topological prop-
erties [11–16]. A variety of transient drives have also been
employed to induce superconductivity with unconventional
pairing states—such as bulk odd-frequency pairings [17,18]
and finite-momentum pairing states [19,20]—which are chal-
lenging to be realized in equilibrium.

Although numerous intriguing experimental and theoreti-
cal progress has been made, there still remains a problem of
how such a nonthermal state can be made robust against ther-
malization. To generate nonequilibrium states, one necessarily
injects a finite amount of energy into the system, which typi-
cally leads to thermalization at elevated temperatures, thereby
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suppressing (or even erasing) superconducting correlations. In
order to overcome this difficulty, it is crucial to seek for a cer-
tain mechanism that protects nonequilibrium superconducting
states from thermalization even in the presence of many-body
interactions.

As a promising mechanism to maintain superconducting
correlations for a sufficiently long time at highly excited
states, there have been proposed quantum many-body scar
(QMBS) states [21–23], which are exceptional energy eigen-
states that do not have thermal properties in a nonintegrable
system. According to the eigenstate thermalization hypothesis
(ETH) [24–27], all excited energy eigenstates in a nonin-
tegrable model are expected to be indistinguishable from
thermal states as long as one refers to few-body observ-
ables. QMBS states are considered to be an exception to the
ETH, as characterized by long-lived nonthermal dynamics in
nonintegrable systems [28–48]. Despite being exact energy
eigenstates in a static Hamiltonian, QMBS states differ from
equilibrium states: In equilibrium, if one takes the micro-
canonical ensemble, most of the eigenstates in the energy
shell are thermal (according to the ETH). Even if the QMBS
states are included in the shell, they are overwhelmed by
those thermal states. Several methods have been proposed to
construct a model Hamiltonian that accommodates a target
state as a QMBS state, such as the (restricted) spectrum-
generating algebra [30], the embedding formalism [22], and
the symmetry-based formalism [49].

A primary example of a nonthermal energy eigenstate
in a nonintegrable system that supports superconducting
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correlations is the so-called η-pairing state, which is an exact
energy eigenstate of the Hubbard model on a d-dimensional
square lattice, as shown by C. N. Yang [50]. Yang’s η-pairing
state corresponds to a condensate of doublons carrying finite
center-of-mass momentum, and exhibits long-range supercon-
ducting correlations with the s-wave and spin-singlet pairing
symmetry. If one classifies the Hilbert space in terms of
symmetry sectors, the η-pairing state is the only eigenstate
in the corresponding sector, characterized by the so-called
η-SU(2) symmetry [51,52]. In this respect, several propos-
als have been made to modify the Hamiltonian to break the
η-SU(2) symmetry, thereby transforming the Yang’s η-pairing
state into a QMBS state [49,53–59]. Similar η-pairing states
have recently been proposed to be realized by photoirradi-
ation [19], and have attracted interest as a mechanism to
induce superconductivity by light. Once the system is excited
to the η-pairing states, the system in principle stays there
forever (since they are the exact eigenstates). Moreover, in
nonequilibrium situations one might expect to see rich su-
perconducting states with unconventional pairing symmetries
that are not typically found in equilibrium.

In this paper, we generalize Yang’s η-pairing state to those
with various unconventional pairing symmetries (p-wave,
d-wave, f -wave, etc.), and establish a systematic framework
to construct model Hamiltonians that have the unconventional
pairing states as QMBS states. Given the known instabil-
ity of Yang’s η-pairing state to perturbations, such as due
to the long-range Coulomb interaction and the coupling to
electromagnetic fields [60,61], it will be important to explore
possible pairing states with different symmetries, which may
offer an opportunity to stabilize those states against pertur-
bations. Recent studies have extended Yang’s η-pairing state
to encompass spinless fermions [62–64] and multicomponent
systems [58,65–68].

If one naively extends the η-pairing states to those
with other pairing symmetries, e.g., for spinless (or spin-
triplet) nearest-neighbor pairing states in one dimension [see
Fig. 1(a)], one can still see that they are eigenstates of the
kinetic term in a Hubbard model (see below for more details),
in much the same way as in the case of Yang’s η-pairing state
[50]. The real challenge is in the interaction term: When two
off-site pairs come close to each other, they feel an additional
energy cost due to the two-body interaction. This prevents
the unconventional pairing states from being eigenstates of
the interaction term (and hence the total Hamiltonian) in the
Hubbard model.

To overcome this difficulty, we engineer multibody inter-
actions (i.e., interactions among more than two particles) to
cancel the energy increment of pairs due to the two-body in-
teraction. For example, in a one-dimensional spinless fermion
model we can introduce a three-body interaction to cancel
the nearest-neighbor two-body interaction acting on the pairs
[Fig. 1(b)]. The cancellation works for arbitrary pair config-
urations, no matter how many pairs are distributed on the
lattice. In this way, the spinless pairing state can be made an
exact eigenstate of the one-dimensional Hubbard model with
the three-body interaction. Previously, it has been proposed
that the spinless pairing state becomes an exact eigenstate
in a model with the three-body interaction and/or a density-
dependent hopping [54,62–64], and a related model has been

FIG. 1. [(a) and (b)] Examples of spatial configurations of the
spinless nearest-neighbor pairing state in a one-dimensional lattice.
(a) When two pairs (blue clouds) are separated to each other, the
two-body interaction V only acts within each pair. (b) When two
pairs come next to each other, there is an additional energy increment
V , which can be canceled by the three-body interaction W (if one
chooses V + 2W = 0). (c) Schematic picture of unconventional su-
perconducting pairs of spinful fermions with d-wave (left panel) and
f -wave (right) pairing symmetries (indicated by blue and red clouds)
on the square and honeycomb lattices, respectively. Two pairs feel an
energy cost U due to the two-body interaction when they overlap
with each other.

studied in the context of disordered quantum many-body
scarred spin systems [62].

The advantage of our approach is that it can be systemat-
ically generalized to other pairing symmetries including spin
degrees of freedom in higher dimensions [see Fig. 1(c)]. To
this end, we introduce an extended number operator [niσ in
Eq. (25)] that signals whether spin-σ particles exist or not on
lattice sites next to i site. Using this operator, we can systemat-
ically cancel the energy increment induced by the formation of
doublons when off-site pairs overlap with each other, and ob-
tain a model Hamiltonian with multibody interactions that has
unconventional pairing states as exact eigenstates. We note
that the derived interaction is strictly local, and takes a form of
the density-density coupling between M particles (M � Mmax

with Mmax being finite and system-size independent).
Let us remark that the obtained eigenstates have off-

site pairs with finite center-of-mass momentum. When two
fermions in a pair are exchanged with each other, there arises
an additional minus sign coming from the sublattice degrees
of freedom (on top of the orbital and spin degrees of freedom).
This leads to an unusual combination of the even-parity and
spin-triplet (or odd-parity and spin-singlet) pairing symme-
try. A similar situation happens in the case of odd-frequency
superconductors [69] and pair density wave (PDW) [70–73].
The generalized η-pairing states will open up a way to real-
ize a family of unconventional superconducting nonthermal
states, which are difficult to be accessed in equilibrium condi-
tions.

We apply our construction to the spinful Hubbard model
with multibody interactions on the two-dimensional square
lattice, and show that the model has an exact eigenstate
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with the spin-triplet d-wave pairing symmetry [the left panel
of Fig. 1(c)]. We numerically evidence that the model is
nonintegrable from the analysis of energy level statistics. We
also find that the d-wave pairing state shows the subvol-
ume law of entanglement entropy and the off-diagonal long-
range order of superconductivity, which indicates that the
d-wave pairing state is indeed a QMBS state. Other examples
are also discussed, including spin-triplet f -wave pairing states
on a honeycomb lattice [the right panel of Fig. 1(c)] and
spin-singlet p-wave pairing states in a one dimensional chain.

The rest of this paper is organized as follows. In Sec. II,
we introduce a generalized η-pairing operator that creates
off-site pairs with finite center-of-mass momentum, and clas-
sify its symmetry in terms of the parity, spin exchange, and
sublattice exchange. In Sec. III, we demonstrate the idea of
canceling two-body interactions with multibody ones to make
the off-site pairing states exact eigenstates of a Hamiltonian.
We will mainly focus on the case of the spin-triplet d-wave
pairing symmetry on the two-dimensional square lattice as an
example for explanation. We show that the unconventional
pairing states become energy eigenstates of the multibody
interacting model. We numerically confirm that the unconven-
tional pairing states are quantum many-body scar states based
on the analysis of the pair correlation function, entanglement
entropy (Sec. IV), and the level-spacing statistics (Sec. V). We
will discuss generalizations to other pairing symmetries and
other lattice structures, as well as extensions of the scarred
models and the degeneracy structure of those pairing states, in
Sec. VI. Section VII contains a summary of the paper and an
outlook for possible experimental realizations.

Throughout the paper, we set the Dirac constant h̄ = 1 and
the lattice constant a = 1.

II. SYMMETRY CLASSIFICATION

We first classify symmetries of pairing states with pairs
having finite momentum, which will be the target of our study.
As we mentioned in the introduction, finite-momentum pairs
can exhibit unusual symmetries such as the spin-triplet and
parity-odd symmetry.

We focus on off-site pairing states with staggered oscil-
lating phases on a bipartite lattice, which can be viewed as
an extension of Yang’s on-site η-pairing state to those with
unconventional pairing symmetries. Let us define an off-site
η-pairing operator as

η+
α,σ1σ2

=
∑

i

f (ri )c
†
ri,σ1

c†
ri+α,σ2

, (1)

f (ri ) =
{

1 (ri ∈ A),
−1 (ri ∈ B), (2)

where c†
ri,σ

(cri,σ ) is the creation (annihilation) operator for
fermions at site ri with internal degrees of freedom (e.g.,
spin) denoted by σ , and α is the relative displacement vector
between fermions in a pair. We partition the bipartite lattice
into two sublattices labeled by A and B, and f (ri ) represents
an alternating phase between sites belonging to either the
sublattice A or B, as denoted by ri ∈ A or B. The generalized
η-pairing states discussed in this paper are defined by apply-
ing these η-pairing operators to the vacuum state |0〉. The
η-pairing operators are a straightforward generalization of

Yang’s η-pairing operator η+ = ∑
j exp(iπ · r j ) c†

r j↑c†
r j↓ [50]

on a d-dimensional square lattice, which creates a doublon
with the center-of-mass momentum π = (π, π, · · · ), corre-
sponding to η+

α,σ1σ2
with α = (0, 0, · · · ), σ1 = ↑, and σ2 = ↓.

Any pairing state must be antisymmetric against the
fermion exchange due to fermion’s anticommutation relation.
For on-site pairs, for example, the antisymmetry requires a
combination of the spin-singlet and parity-even symmetry.
Yang’s η-pairing state belongs to this class, being classified
to the s-wave (parity even) and spin-singlet state. For off-site
pairs spanned over different sublattices, on the other hand,
there appears an additional minus sign under the fermion ex-
change, which comes from the alternating phase between dif-
ferent sublattices in Eq. (1). Exchanging the fermion operators
within Eq. (1) and relabeling the dammy position variables
ri + α as the new ones r′

i, we obtain the following relation:

η+
α,σ1σ2

=
{−η+

−α,σ2σ1
[ f (ri − α) = + f (ri )],

+η+
−α,σ2σ1

[ f (ri − α) = − f (ri )].

(3a)

(3b)

Here, Eq. (3a) corresponds to the case where paired
fermions are sitting on the same sublattices, while Eq. (3b)
corresponds to the case where paired fermions are on the
difference sublattices. In the latter, the pair wavefunction
changes its sign when the sublattices are exchanged (A ↔ B)
due to the staggered phases (i.e., the pairs have finite momen-
tum).

Based on this observation, we introduce a sublattice sym-
metry operation Λ defined by

Λ−1criσΛ =
{

criσ (ri ∈ A),

−criσ (ri ∈ B).

(4a)

(4b)

Using the eigenvalues (±1) of this sublattice symmetry,
one can classify the symmetry of the η-pairing operators as
follows:

Λ−1η+
α,σ1σ2

Λ =
{+η+

α,σ1σ2
[ f (ri − α) = + f (ri )],

−η+
α,σ1σ2

[ f (ri − α) = − f (ri )].

(5a)

(5b)

As in Eqs. (3), the same-sublattice pairing operator has the
+1 eigenvalue [Eq. (5a)], and the different-sublattice pairing
operator has the −1 eigenvalue [Eq. (5b)].

Furthermore, by combining the site-centered inversion
symmetry P expressed as

P−1η+
α,σ1σ2

P = η+
−α,σ1σ2

, (6)

and the spin permutation symmetry S represented by

S−1η+
α,σ1σ2

S = η+
α,σ2σ1

, (7)

one can symmetrize the extended η-pairing operators (1) via
appropriate linear combinations, thereby fully specifying their
symmetries under the restriction of PSΛ = −1 as imposed
from the fermion anticommutation relation.

The symmetry classification of the on-site and off-site
η-pairing states is summarized in Table I for various pairing
symmetries discussed in this paper. For example, in a one-
dimensional spinless fermion system, the nearest-neighbor
η-pairing states, corresponding to the case of α = ±1 with
no internal degrees of freedom, are characterized by the
s-wave (P = +1), spin-triplet (S = +1), and sublattice-odd
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TABLE I. Symmetry classification of conventional and unconventional η-pairing states on a bipartite lattice, which are characterized by
inversion [P = ±1, Eq. (6)], spin exchange [S = ±1, Eq. (7)], and sublattice exchange [Λ = ±1, Eq. (5)] symmetry. The product PSΛ must
satisfy PSΛ = −1. The sublattice symmetry Λ distinguishes pairs on the same sublattice (Λ = +1) from those on the different sublattices
(Λ = −1). In the case of the odd sublattice symmetry (Λ = −1), such as for nearest-neighbor (NN) pairings, a combination of the even-
parity (P = +1) and spin-triplet (S = +1), or odd-parity (P = −1) and spin-singlet (S = −1) symmetry is allowed. In the case of the even
sublattice symmetry (Λ = +1), such as for on-site and next-nearest-neighbor (NNN) pairings, a combination of the even-parity (P = +1) and
spin-singlet (S = −1), or odd-parity (P = −1) and spin-triplet (S = +1) symmetry is allowed. * indicates that the mirror transformation is
considered instead of the parity transformation.

Type of pairs Lattice structure Orbital Parity (P) Spin (S) Sublattice (Λ) Remarks

On-site pairs 1D chain, square, cubic s wave Even Singlet Even Sec. VI C, Yang’s η-pairing state [50]
NN pairs 1D chain s wave Even Triplet Odd Secs. III A, VI D, Refs. [62–64]

p wave Odd Singlet Odd Sec. VI A
Square s wave Even Triplet Odd Sec. VI A

px, py wave Odd Singlet Odd Secs. VI A, VI D
dx2−y2 wave Even Triplet Odd Secs. III B–V

NNN pairs Square dxy wave Even Singlet Even Sec. VI A
Honeycomb f wave Odd∗ Triplet Even Sec. VI B, ∗Mirror symmetry

(Λ = −1) pairing symmetry. This is in contrast to the spin-
less p-wave topological superconductivity in the Kitaev chain
[74], which is even in the sublattice symmetry. These un-
conventional pairing symmetries originate from the staggered
phase oscillation of the nonlocal pairing between different
sublattices.

We remark the case where the site-centered parity sym-
metry is absent. A representative example is the honeycomb
lattice, where the site-symmetry group (i.e., the point group
that fixes one lattice site) is C3v [75], which does not include
the parity symmetry. In those cases, one can consider the
mirror symmetry instead of the parity symmetry (Table I).
Actually, the irreducible representation corresponding to the
f -wave symmetry belongs to A2, which is odd under the
mirror symmetry, being distinguished from other irreducible
representations.

III. SUPERCONDUCTING ENERGY EIGENSTATES WITH
UNCONVENTIONAL PAIRING SYMMETRIES

In the previous section, we have established the symmetry
classification of the off-site pairing states with finite center-of-
mass momentum. Here we present a systematic construction
of model Hamiltonians that have unconventional off-site pair-
ing states as exact eigenstates.

In Sec. III A, we take a glance at the simplest case of
the spinless (or spin-triplet) s-wave pairing state in a one-
dimensional system, which contains the essence of our idea
utilizing multibody interactions to construct the model Hamil-
tonians. We then discuss how the model construction can be
generalized to other pairing symmetries. Here, we focus on
a two-dimensional spinful model with multibody interactions
on the square lattice. In Sec. III B, we will consider nearest-
neighbor fermion pairs and introduce the d-wave spin-triplet
η-pairing operator. In Sec. III C, we see that the uncon-
ventional pairing states are not eigenstates of the two-body
interacting model. In Sec. III D, we introduce an extended
number operator, which measures whether neighboring sites
are occupied by particles. Using this operator, we can exactly
and systematically cancel the energy increment between off-
site pairs coming from the two-body interaction. We show

that the spin-triplet d-wave pairing state becomes an exact
eigenstate of the multibody interacting model.

A. Spinless s-wave pairing state in a one-dimensional system

Let us consider a one-dimensional spinless fermion model.
Based on the analogy of Kitaev’s spinless fermion model
of p-wave topological superconductors [74], one can define
a spinless η-pairing operator and a spinless η-pairing state
[62–64],

η+
sl =

∑
j

(−1) jc†
j c

†
j+1, (8)

∣∣�N
sl

〉 = 1

N N
sl

(η+
sl )N/2|0〉, (9)

respectively. Here, c†
i (ci) is the creation (annihilation) opera-

tor for spinless fermions at site i, N is the number of fermions
(N is assumed to be even), and N N

sl is the normalization
constant (such that 〈�N

sl |�N
sl 〉 = 1). The operator η+

sl creates
a nearest-neighbor pair with the center-of-mass momentum
π . In contrast to Kitaev’s p-wave superconductors, the pair
created by η+

sl has even parity (P−1η+
slP = η+

sl ), so it should
be classified to the s-wave pairing symmetry. The spinless
fermions can be regarded as spinful ones with fully polarized
spins. Hence the created pair has the spin-triplet symme-
try, corresponding to the case of Eq. (3b). The spinless (or
spin-triplet) η-pairing state shows an off-diagonal long-range
order with the s-wave pairing symmetry, which can be exactly
evaluated in Ref. [64]. In Figs. 1(a) and 1(b), we illustrate ex-
amples of spatial configurations (Fock states in the coordinate
basis) of the spinless s-wave η-pairing state for N/2 = 2.

The Hamiltonian of the spinless Hubbard model that we
consider here is given by H = Ht + HV with

Ht = −t
∑

i

(c†
i ci+1 + H.c.), (10)

HV = V
∑

i

nini+1, (11)

where ni = c†
i ci is the number operator. The first term Ht

[Eq. (10)] describes the nearest-neighbor particle hopping,
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and the second one HV [Eq. (11)] represents the
nearest-neighbor two-body interaction with an interaction
strength V . For the kinetic term Ht [Eq. (10)], the spinless
s-wave η-pairing operator [Eq. (8)] satisfies the commutation
relation [Ht , η+

sl ] = 0 for both the periodic and open
boundary conditions. However, the spinless s-wave η-pairing
state is not an eigenstate of the interaction term [Eq. (11)],
since adjacent pairs have an additional energy cost V , as
displayed in Fig. 1(b).

To cancel the energy increment arising from the two-body
interaction, we introduce the three-body interaction,

HW = W
∑

i

nini+1ni+2, (12)

with the interaction strength W . We observe that when two
pairs come next to each other there always appear two com-
binations of neighboring three particles [Fig. 1(b)]. This
motivates us to choose the three-body interaction parameter
W = −V/2, which cancels the energy increase due to the two-
body interaction. The cancellation works for arbitrary number
N/2 of pairs no matter how they distribute on the lattice. It also
works for both the periodic and open boundary conditions.
In the latter case, the interaction terms should be defined
as HV = V

∑L−1
i=1 nini+1 and HW = W

∑L−2
i=1 nini+1ni+2 with

L being the number of lattice sites. Hence, the spinless
s-wave η-pairing state becomes an exact eigenstate of the
Hubbard model with the three-body interaction (with W =
−V/2) under the periodic or open boundary condition,

H = Ht + HV + HW , (13)

H
∣∣�N

sl

〉 = N

2
V

∣∣�N
sl

〉
, (14)

with the eigenenergy NV/2 (coming from the nearest-
neighbor two-body interaction within each pair). Let us
remark that the derived interaction part of the Hamiltonian
takes a form of

HV + HW = V
∑

i

nini+1

(
1 − 1

2
ni+2

)
, (15)

= V

2

∑
i

ni[1 − (1 − ni−1)(1 − ni+1)], (16)

which suggests a hint for generalization to other pairing sym-
metries in higher dimensions.

The interaction term defined in Eq. (15) is a special case of
Eq. (13) in Ref. [62] with parameters chosen as c(1)

j = −V/2

and c(2)
j = c(3)

j = 0, where the authors considered configura-
tions that there is no isolated fermion in the η-pairing state.

B. Off-site η-pairing operators and d-wave pairing states

Having established the spinless s-wave η-pairing state as
an exact eigenstate of the three-body interacting system in the
previous subsection, we discuss how the model construction
can be generalized to other pairing symmetry cases including
spin degrees of freedom in higher dimensions. In the follow-
ing subsections, we consider the system with the periodic
boundary condition.

Let us define an off-site η-pairing creation operator in two
dimensions as

η+
α =

∑
i

eiπ·ri c†
ri,↑c†

ri+α,↓, (17)

where α represents a separation between two particles in a
pair, the site index i runs over the entire lattice sites, π =
(π, π ) is the center-of-mass crystal momentum of pairs, and
cri,σ is the fermion annihilation operator with spin σ (= ↑,↓)
at position ri. This definition is the same as Eq. (26) in
Ref. [50]. When we use the notation of Eq. (1), η+

α in Eq. (17)
can be written as η+

α = η+
α,↑↓.

Here we focus on the case of nearest-neighbor pairs on
the square lattice, in which we can take four independent
η-pairing operators η+

±ex
and η+

±ey
with ex = (1, 0) and ey =

(0, 1) being the unit vectors. Based on the point-group sym-
metry of the square lattice, we classify the η-pairing operators
into those of the irreducible representations. Among them,
the η-pairing operator with the dx2−y2 -wave (d-wave) pairing
symmetry corresponds to

η+
d = η+

+ex
− η+

+ey
+ η+

−ex
− η+

−ey
. (18)

which creates a spin-triplet pair occupying different sublat-
tices, corresponding to the case of Eq. (3b). For other pairing
states (such as those having s-, px-, and py-wave symmetries)
which can also be created by the off-site η-pairing operators,
we refer to Sec. VI A. Using the η-pairing operator η+

d , we can
define the d-wave η-pairing state as∣∣�N

d

〉 = 1

N N
d

(η+
d )N/2|0〉, (19)

where N is the number of fermions (which is even), and N N
d

is the normalization constant (such that 〈�N
d |�N

d 〉 = 1).

C. Hubbard model with the two-body interaction

To seek for a lattice model in which the d-wave η-pairing
state becomes an eigenstate, let us first consider the ordinary
two-dimensional spinful Hubbard model with the two-body
interaction. The Hamiltonian is written as

HH = Hkin + HU , (20)

Hkin = −t
∑
〈i, j〉σ

(c†
iσ c jσ + H.c.), (21)

HU = U
∑

i

ni↑ni↓. (22)

Here, 〈i, j〉 represents the sum over a pair of nearest-neighbor
sites, ciσ is a short-hand notation of cri,σ , and niσ = c†

iσ ciσ is
the number operator. The term Hkin [Eq. (21)] describes the
nearest-neighbor hopping with t being the transfer integral,
and the term HU [Eq. (22)] represents the on-site two-body
interaction with the strength U .

One can quickly see that η-pairing states created by
the off-site η-pair operators η+

α in Eq. (17) are zero-
energy eigenstates of Hkin in Eq. (21) under the periodic
boundary condition: we can rewrite the kinetic term and
the η-pairing operator in the momentum basis as Hkin =∑

kσ ε(k)c†
kσ

ckσ and η+
α = ∑

k exp(−ik · α)c†
π−k,↑c†

k,↓, where
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FIG. 2. Examples of Fock states included in the
d-wave η-pairing state [Eq. (19)] on the square lattice: the
case of (a) two pairs (connected by dashed curves) separated to each
other, (b) two pairs overlapped to each other to form a doublon
(enclosed by a red square), and (c) three pairs having a doublon
surrounded by more than two particles. Red (blue) arrows represent
particles with spin up (down).

ε(k) = −2t (cos kx + cos ky) is the dispersion relation for the
square lattice, ckσ = (LxLy)−1/2 ∑

i criσ exp(−ik · ri ) is the
Fourier transformed form of the annihilation operator with
crystal momentum k, and Lx (Ly) is the system length in the
x (y) direction. One can immediately see that [Hkin, η+

α ] =∑
k exp(−ik · α) [ε(k) + ε(π − k)]c†

π−k,↑c†
k,↓ = 0, since the

dispersion relation satisfies ε(k) + ε(π − k) = 0. Hence, the
d-wave η-pairing state |�N

d 〉 in Eq. (19) is a zero-energy
eigenstate for the kinetic term,

Hkin

∣∣�N
d

〉 = 0, (23)

on the square lattice with the periodic boundary condition. We
note that any pairing states created by η+

α (including s-, px-,
and py-wave pairing symmetries) are also eigenstates of Hkin.

Next, we look at the interaction term HU in Eq. (22), for
which we take the coordinate-space representation in the Fock
basis. Given a set of occupation numbers {νiσ }, where νiσ (=
0, 1) denotes the number of spin-σ particles at site i, a Fock
state is represented by

|{νiσ }〉 =
∏

i

(c†
iσ )νiσ |0〉. (24)

The d-wave η-pairing state is expanded as a linear com-
bination of Fock states in which various oriented pairs are
distributed on the square lattice. Examples of those Fock states
are shown in Fig. 2. When two off-site pairs are present, they
are either un-overlapped or overlapped, as shown in Figs. 2(a)
and 2(b), respectively. In the latter case, a doublon is formed,
generating an energy cost due to the on-site two-body inter-
action. This means that the latter Fock basis [Fig. 2(b)] has
higher interaction energy (with the difference U ) than the
former basis [Fig. 2(a)]. Therefore the d-wave η-pairing state
|�N

d 〉 in Eq. (19) is not an energy eigenstate of HU [Eq. (22)].
When three (or more) pairs exist, more than two particles
can occupy nearest-neighbor sites of a doublon, as shown
in Fig. 2(c). This example indicates that a naive application
of the three-body interaction introduced in Sec. III A is not
sufficient to cancel the energy increment of the d-wave pairs
due to the formation of doublons. The question is how such an
energy change can be canceled for all possible configurations
of off-site pairs.

D. Hubbard model with multibody interactions

Here we show that the unconventional η-pairing states can
become exact energy eigenstates by introducing generalized
multibody interactions to the Hubbard model. As mentioned
before, our motivation is to cancel the energy increment due
to the formation of doublons by using the multibody interac-
tions. Since the number of particles that surround a doublon
may vary depending on the configurations of pairs, but at least
two are present (see Fig. 2), it will be convenient to introduce
an operator that judges whether neighboring sites (next to a
doublon) are occupied by particles or not. This allows us to
efficiently measure how much energy should be subtracted for
each pair configuration to make the unconventional η-pairing
states exact eigenstates.

Such an operator, denoted by niσ , is defined as follows. In
the coordinate basis spanned by Fock states in Eq. (24), the
operator niσ takes a value of 0 or 1 in such a way as

niσ =
{

1 [nnn(i)σ 
= 0]

0 [nnn(i)σ = 0]
, (25)

where nnn(i)σ is the total number of spin-σ particles occupying
the nearest-neighbor sites of site i [denoted by nn(i)]. We
call the operator niσ the neighboring particle existence oper-
ator. In the case of the square lattice, we show the values of
niσ (with σ = ↑) for each configuration of spin-up particles
around site i in Fig. 3. Note that the values of niσ do not
depend on the configuration of particles with the opposite spin
σ. The operator in Eq. (25) tells us the presence (or absence)
of a particle in the vicinity of a target site i, which can be used
to avoid overcounting the number of neighboring particles, as
described below.

The operator niσ in Eq. (25) is explicitly represented as a
combination of multiples of the ordinary number operator niσ .
Let us label the nearest-neighbor sites of site i by i1, i2, . . . , iz,
where z is the coordination number of the site i. Then niσ can
be written as

niσ = 1 −
z∏

m=1

(1 − n̂imσ )

= −
z∑

m=1

(−1)m
∑

j1,··· , jm∈nn(i)

′
n̂ j1σ · · · n̂ jmσ , (26)

where the prime summation means that jl (l = 1, · · · , m)
runs over the nearest-neighbor sites of site i with jl 
= jl ′ (l <

l ′), and different orders of ( j1, j2, · · · , jm) are not double-
counted. In general, niσ contains m-body operators with 1 �
m � z. The representation [Eq. (26)] is applicable to arbitrary
lattice structures. If one performs the particle-hole trans-
formation [c̃ jσ = exp(ir j · π) c†

jσ ], the expression for niσ is

simplified to niσ = 1 − ∏
j∈nn(i) ñ jσ with ñ jσ = c̃†

jσ c̃ jσ .
In order to get an insight of how to cancel the energy

increment of doublons with multibody interactions, we take
two examples of Fock states relevant to the unconventional
η-pairing states: One is the case where two pairs are over-
lapped to each other to form a doublon, as shown in Fig. 4(a).
The other is the case where there is another pair in the vicinity
of the two pairs, as shown in Fig. 4(b). We label the site
occupied by the doublon by i. As shown in Fig. 4(a), there
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FIG. 3. Values of the neighboring particle existence operator niσ in Eq. (25) with σ = ↑ for each configuration of spin-up particles (red
arrows) at the nearest-neighbor sites of site i. When there are no particles around site i, the operator takes a value of 0. Otherwise, if particles
exist around site i, the operator takes a value of 1.

are always two residual particles from the pairs that form the
doublon, so that we can cancel the on-site two-body interac-
tion Uni↑ni↓ by adding the following three-body interaction
between the doublon and a particle,

−U

2

∑
j∈nn(i),σ

ni↑ni↓n jσ , (27)

where j runs over the nearest-neighbor sites of site i.
In Fig. 4(b), however, the three-body interaction given by
Eq. (27) amounts to −3U/2, which does not perfectly can-
cel the on-site two-body interaction U . This is due to the
overcounting of the three-body interaction energy from the
neighboring pairs. To avoid this overcounting, we replace∑

j∈nn(i) n jσ by niσ in Eq. (25) as follows:

−U

2

∑
σ

ni↑ni↓niσ . (28)

The multibody interaction of Eq. (28) contains M-body inter-
actions with 3 � M � z + 2. With this form of the multibody
interaction, it is possible to incorporate only the interaction
between the doublon and a single spin-↑ particle, and the
interaction between the doublon and a single spin-↓ particle.
One can see that the cancellation between the on-site two-
body interaction HU [Eq. (22)] and the multibody interaction
[Eq. (28)] works not only for the cases of Figs. 4(a) and 4(b)

FIG. 4. Interactions between off-site pairs in the
d-wave η-pairing state in a spinful model with spin-↑ (spin-↓)
particles indicated by the red (blue) arrows. (a) When two pairs are
overlapped with each other to form a doublon, the on-site two-body
interaction is canceled by the three-body interaction [Eq. (27)]
acting between the doublon and a single particle. (b) When another
pair comes next to the doublon, the on-site two-body interaction
is not canceled by the three-body interaction [Eq. (27)], but is
canceled by the multibody interaction in the form of Eq. (28). Two
particles forming a doublon are indicated by the red squares, while
the multibody interacting doublon and spin-↑ (spin-↓) particles are
enclosed by the blue (green) boxes.

but also for all the possible configurations of pairs in the
unconventional η-pairing states, which can be easily checked
since the cancellation occurs for each doublon one by one.

Based on the multibody interaction in Eq. (28) introduced
above, we define an extended Hubbard model having the
unconventional η-pairing states as energy eigenstates. The
Hamiltonian of the extended Hubbard model, denoted by
HextH, is given as follows:

HextH = Hkin + Hint, (29)

Hint = U
∑

i

ni↑ni↓

(
1 − 1

2

∑
σ

niσ

)
. (30)

As discussed in the previous paragraph, the interaction en-
ergy is always zero for the unconventional η-pairing states,
due to the cancellation between the two-body interaction
and the multibody interaction [Eq. (28)]. In particular, the
d-wave η-pairing state |�N

d 〉 in Eq. (19) is an exact eigenstate
of HextH with a zero eigenenergy,

HextH

∣∣�N
d

〉 = 0. (31)

We remark that arbitrary η-pairing states created by η+
α

[Eq. (17)] are also eigenstates of HextH (see Sec. VI A). The
same form of the Hamiltonian can be used for other bipartite
lattices in arbitrary dimensions (e.g., the honeycomb lattice,
the diamond lattice, etc.) to include unconventional η-pairing
states as eigenstates. The lattice structure must be bipartite,
since the η-pairing states have staggered phases in real space
in order to be eigenstates of the kinetic term Hkin. Some of the
examples are shown in Sec. VI. So far, we have considered
the case with the periodic boundary condition. For the case of
the open boundary condition, we refer to Sec. VI G.

We comment on the robustness against perturbations on
the parameters of the multibody interactions. When the two
off-site pairs coexist, as shown in Fig. 4(a), the three-body
interaction in Eq. (27) is sufficient to cancel the on-site two-
body interaction U associated with the doublon formation.
However, when an additional pair comes next to this dou-
blon, as shown in Fig. 4(b), higher multibody interactions in
Eq. (28) become active. These higher-order terms are gener-
ally required only when off-site pairs are densely distributed.
In cases with a low pair density, off-site pairs do not frequently
come close to doublons, and higher multibody interactions
become practically irrelevant. Thus we do not have to fine-
tune the parameters of the higher multibody interactions.

Let us mention the relationship between our construc-
tion and previously proposed frameworks of QMBS states.
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FIG. 5. Pair correlation functions in Eq. (32) of the
d-wave η-pairing state on the Lx × Ly lattice with Lx = 4, 6, 8
and Ly = 4. (a) The correlation between x-oriented pairs and (b) the
correlation between x-oriented and y-oriented pairs as a function of
a distance rx between pairs along the x axis.

The obtained Hamiltonian HextH in Eq. (29) satisfies the re-
stricted spectrum-generating algebra [30] in the Hilbert space
spanned by a series of the d-wave η-pairing states {|�N

d 〉 | N =
2, 4, . . . }. However, as shown in Eq. (26), the Hamiltonian
HextH contains terms up to six-body density-density inter-
actions in the case of the square lattice. The conventional
approach of assuming interaction forms and adjusting interac-
tion coefficients to satisfy the restricted spectrum-generating
algebra would be impractical due to the complexity of the
commutation relations with the d-wave η-pairing operator
in Eq. (18). The advantage of our approach is that we can
systematically and directly construct model Hamiltonians
that have off-site pair condensed states with unconventional
pairing symmetry as their eigenstates in systems of higher
dimensions and including spin degrees of freedom.

IV. PHYSICAL PROPERTIES OF THE UNCONVENTIONAL
η-pairing STATES

In this section, we numerically confirm the nonthermal na-
ture of the unconventional η-pairing states by computing two
physical quantities: the superconducting correlation function
and the entanglement entropy. To obtain these quantities, we
numerically calculated the entire exact wavefunction of the
d-wave η-pairing state [Eq. (19)] on a Lx × Ly square lattice
with the periodic boundary condition.

A. Off-diagonal long-range order

We examine the nearest-neighbor pair correlation functions
for the d-wave η-pairing state defined by

Cαβ (r) = 〈
�N

d

∣∣c†
r+eα↓c†

r↑c0↑ceβ↓
∣∣�N

d

〉
, (32)

where the subscripts α and β (= x, y) denote the ori-
entation direction of the pairs, and r corresponds to the
relative displacement between up-spin particles. We consider
a quarter-filled system with the lattice length Ly = 4 and Lx =
4, 6, 8 (N = 4, 6, 8). From the orientation dependence of the
long-range pair correlations, one can discriminate different
pairing symmetries.

Figure 5 shows the calculated pair correlation functions
as a function of the distance along the x axis (i.e., we set
r = rxex), where Figs. 5(a) and 5(b) correspond to the parallel
and orthogonal pair orientations, respectively. We observe the

staggered oscillations for both of the orientations, which do
not quickly decay in a long distance (within the system size).
This is a direct consequence of the fact that the pairs carry a
momentum π (and hence the staggered phase) in the η-pairing
states in Eq. (17). We also see that the results of the pair corre-
lations are well converged with respect to the system size with
the particle density being fixed, implying that the off-diagonal
long-range order is present for the d-wave η-pairing state. If
one compares Fig. 5(a) with Fig. 5(b), one finds that the sign
is reversed with respect to the pair orientation. This reflects
the d-wave pairing symmetry.

B. Entanglement entropy

Next, we verify a nonthermal behavior of the
d-wave η-pairing state through the entanglement entropy.
We consider the same Lx × Ly lattice as in the previous
subsection with the periodic boundary condition. The entire
system (a torus) is divided into subsystems A and B (two
tubes), where A has the size of rx × Ly. The entanglement
entropy for the d-wave η-pairing state in Eq. (19) is defined by
SA(|�N

d 〉) = −TrA[ρA ln ρA], where ρA is the reduced density
matrix for the subsystem A, i.e., ρA = TrB[|�N

d 〉〈�N
d |]. We

compute SA(|�N
d 〉) as a function of the volume fraction

f = VA/V , where V = 2LxLy (VA = 2rxLy) is the product
of the system (subsystem) volume and the spin degrees of
freedom.

The entanglement entropy of typical eigenstates of non-
integrable (chaotic) systems is expected to behave as the
average entanglement entropy of a quantum pure-state ensem-
ble, while that of integrable systems is to behave as that of a
pure Gaussian state ensemble [76]. In nonintegrable systems,
the average entanglement entropy of a uniformly distributed
pure state in a particle number conserving Hilbert space for
a fermionic system is given by 〈SA〉N = ∑min(N,VA )

NA=0 [〈SA〉 +
ψ (dN + 1) − ψ (dAdB + 1)]dAdB/dN , where NA is the parti-
cle number in the subspace A, 〈SA〉 = ψ (dAdB + 1) − ψ (dA +
1) − (dB − 1)/2dA is the Page formula in dA > dB [77], ψ (x)
is the digamma function, and dN = (V

N

)
, dA = (VA

NA

)
, and dB =(V −VA

N−NA

)
are the Hilbert-space dimensions of the entire system,

subspace A, and complementary subspace B, respectively.
Similarly, in integrable systems, the average entanglement
entropy over all pure fermionic Gaussian states in the thermo-
dynamic limit is given by 〈SA〉G,N = V {(n − 1) ln(1 − n) +
n[( f − 1) ln(1 − f ) − f ln f − 1]} [76], where n = N/V is
the up-spin (or down-spin) particle density.

Figure 6 shows the calculated entanglement entropy for
the d-wave η-pairing state indicated by the blue cross points.
We also show the average entanglement entropy 〈SA〉N and
〈SA〉G,N with red dashed and green chained curves, respec-
tively. We observe that the entanglement entropy of the
d-wave η-pairing state increases as the subsystem volume
increases. Particularly, we found that the subsystem size
dependence of the entanglement entropy is in quantitative
agreement with that typically observed in integrable systems,
which is substantially smaller than the typical entanglement
entropy in nonintegrable systems. These numerical results
support the nonthermal property of the d-wave η-pairing
state. In this study, due to the constraint on a computational
cost, we have not examined the volume dependence of the
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FIG. 6. Entanglement entropy for fermionic systems on the Lx ×
Ly lattice as a function of the volume fraction f = VA/V with Lx =
8, Ly = 4, and the particle number N = 6. The blue cross points show
the entanglement entropy of the d-wave η-pairing state. The red
dashed (green chained) curve represents the average entanglement
entropy 〈SA〉G,N (〈SA〉N ) typically obtained for a energy eigenstate in
integrable (nonintegrable) systems.

entanglement entropy in the thermodynamic limit. However,
similarly to the Yang’s η-pairing state [52] and the spinless
η-pairing state [64], we can expect that the entanglement
entropy of the d-wave η-pairing state follows a logarithmic
dependence on the subvolume.

V. NONINTEGRABILITY OF THE MULTIBODY
INTERACTING MODEL

In this section, we numerically confirm the nonintegrabil-
ity of the extended Hubbard model HextH in Eq. (29) from
the energy level statistics. Combining the results with those
of Sec. IV, we can judge whether the d-wave η-pairing
state in the model is identified to be a QMBS state
or not. If the distribution of the difference between the
nearest-neighbor eigenenergies follows the Wigner–Dyson
distribution PWD(s) = (π/2)s exp(−πs2/4) with s being the
level spacing, then the model is suggested to be nonintegrable
and all the other energy eigenstates are thermal as expected
from the argument of the ETH.

We consider the extended Hubbard model in Eq. (29)
on the square lattice under the periodic boundary condition
with Lx = Ly = 4, N = 8, and the total magnetization Sz = 0.
We utilize the Lanczos method to numerically diagonalize
the Hamiltonian. Since the Hamiltonian has several global
symmetries, we select a target subspace using symmetry pro-
jection operators. As internal symmetries, we consider the
time-reversal (T ) and spin-rotation symmetries. It should be
noted that our multibody interacting system does not have
the particle-hole symmetry, unlike the two-body interacting
Hubbard model in Eq. (20). Among the elements of the point
group C4v (which is the symmetry of the square lattice), we
take the reflections Px, Py, and Pd with respect to the x-, y-,
and diagonal axes, respectively. The fixed point of the point
group operations is taken to be a site center, respecting the
staggered phase oscillation of the η-pairing state. Addition-
ally, the system has the translation symmetries X and Y along
the x and y directions, respectively. We focus on the subspaces

FIG. 7. (a) Nearest-neighbor level-spacing distribution P(s) and
(b) higher-order spacing ratio distribution Pk=2(r) (shown by the
histograms) for the extended Hubbard model with the multibody
interactions [Eq. (29)] on the square lattice with the quantum num-
bers (Px,Py,Pd ) = (+1,+1, +1). The parameters are set to be
Lx = Ly = 4, N = 8, and U/t = 2.

in which the d-wave η-pairing state exists, namely with T =
+1, the total spin S = 0, (Px,Py,Pd ) = (+1,+1,+1), and
the total momentum (0,0). The last three are for the cases
where N/2 is even. The d-wave η-pairing state belongs to
the total-spin eigenspace with S = 0, 2, 4 when N = 8. Note
that in a 4 × 4 periodic lattice system, there is an accidental
hidden symmetry, i.e., the four-dimensional hypercubic sym-
metry [78]. If this higher symmetry is not taken into account
to define the target space, the level-spacing distributions may
behave differently from the Wigner-Dyson distribution (even
though the system might be nonintegrable), which will be
discussed later.

Figure 7(a) shows the nearest-neighbor level-spacing dis-
tribution P(s) in the subspace with the quantum numbers
(Px,Py,Pd ) = (+1,+1,+1), where we adopt the unfolding
method with the Gaussian kernel density estimation [79] with
the smoothing parameter σGauss = 0.1. We find that the ob-
tained level-spacing distribution has a shape in between the
Poisson distribution PP(s) = exp(−s) and the Wigner–Dyson
distribution PWD(s). A similar behavior is often observed
when an extra discrete symmetry remains to be considered
in a nonintegrable model. For example, in the two-body inter-
acting Hubbard model of Eq. (20) on the same 4 × 4 periodic
lattice, the level-spacing distribution has been found to be nei-
ther the Poisson nor Wigner–Dyson distribution [78]. As we
remarked before, this is due to the presence of the accidental
hypercubic symmetry for the 4 × 4 lattice geometry, which
has not been taken into account in the level-spacing analysis.
Such an intermediate distribution between the Poisson and
Wigner–Dyson ones has been reproduced by a spectrum of
two independent GOE samples in the random matrix theory
mixed with appropriate weights [78].

To extract the nonintegrability in systems with such a resid-
ual symmetry, we investigate higher-order spectral statistics
[80–82]. We define the distribution Pk (r) of the kth order
spacing ratio with r = (Ei+2k − Ei+k )/(Ei+k − Ei ) (Ei is the
ith energy eigenvalue). Given superposed m independent GOE
samples, it has been numerically shown that Pk (r) = P(r, β ′)
holds with the relationship β ′ = m = k [80], where P(r, β ) =
Cβ

(r+r2 )β

(1+r+r2 )1+3β/2 and Cβ is a normalization constant. In the

present case of m = 2, it is given by C2 = 81
√

3/4π [83]. In
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contrast, for integrable systems, the kth order spacing ratio is
given by the distribution function Pk

P (r) = (2k−1)!
[(k−1)!]2

rk−1

(1+r)2k [80].
Figure 7(b) presents a histogram of the numerically obtained
distribution of the kth order spacing ratio (k = 2) for the
extended Hubbard model (29), under the same conditions as
in Fig. 7(a). The results confirm good agreement with P(r, β ′),
which shows the nonintegrability of the multibody interacting
model of Eq. (29).

Given the above results with the nonthermal properties of
the eigenstate seen in Sec. IV, the d-wave η-pairing state
[Eq. (19)] can be regarded as a QMBS state in the noninte-
grable system [Eq. (29)]. The basic principle that makes the
unconventional η-pairing states QMBSs is to use multibody
interactions to protect the pairs from having the energy in-
crease due to the two-body interaction.

VI. GENERALIZATIONS

In this section, we present several generalizations of
our approach to construct superconducting scar states with
the multibody interactions: generalized off-site η-pairing
states (Sec. VI A), f -wave η-pairing states on the hon-
eycomb lattice (Sec. VI B), Yang’s η-pairing states in a
nearest-neighbor interacting system (Sec. VI C), and spin-
less s-wave η-pairing states in the one-dimensional system
(Sec. VI D). Furthermore, we can also extend the form of
the model Hamiltonian that has the unconventional η-pairing
eigenstates. In Sec. VI E, we show that the d-wave η-pairing
state also becomes an eigenstate in a model with higher multi-
body interaction. In Sec. VI F, we argue that the eigenenergy
of the unconventional η-pairing states can be controlled by
an effective chemical potential in terms of pair numbers. In
Sec. VI G, we discuss the case of the open boundary condition,
for which we determine the condition that the unconventional
η-pairing states remain to be the eigenstates.

A. General pairing symmetry and long-range pairing

The extended Hubbard model with the multibody interac-
tions in Eq. (29) has not only the d-wave η-pairing state but
also several other η-pairing states with different pairing sym-
metries as energy eigenstates, since the energy cancellation
holds for each Fock basis. Let us consider s-, px-, and py-wave
pairing symmetries, for which η-pairing operators are
defined by

η+
s = η+

+ex
+ η+

+ey
+ η+

−ex
+ η+

−ey
, (33)

η+
px

= η+
+ex

− η+
−ex

, (34)

η+
py

= η+
+ey

− η+
−ey

, (35)

respectively. Acting each operator multiple times to the vac-
uum state |0〉 yields the s-, px-, and py-wave η-pairing states,
as in the case of the d-wave symmetry. Since these η-pairing
states are represented by the same set of Fock bases in which
the nearest-neighbor pairs are distributed, they are also energy
eigenstates of HextH with zero eigenenergies, and hence are
QMBS states.

Moreover, one can also combine these η-pairing operators
with different pairing symmetries to define general η-pairing

states,∣∣νsνpx νpyνd
〉 ∝ (η+

s )νs
(
η+

px

)νpx
(
η+

py

)νpy (η+
d )νd |0〉, (36)

where νγ (γ = s, px, py, d) denotes the number of pairs with
the γ -wave pairing symmetry. These η-pairing states are
eigenstates of HextH in Eq. (29), which are ( N/2+3

3 )-fold de-
generate with zero eigenenergy. Note that an arbitrary linear
combination of the general η-pairing states [Eq. (36)] is
also an eigenstate of HextH in Eq. (29) (including, e.g., the
px + ipy-wave state and the s + d-wave state), since they
are all degenerate at zero energy. In order to induce the
d-wave η-pairing state by a certain excitation protocol, it will
be better if the d-wave pairing state is energetically separated
from the other degenerate states. In this paper, we leave it
an open issue how to break the degeneracy, which would be
effectively addressed by numerical methods for systematically
constructing scarred Hamiltonians [84,85].

While we have focused on the two-dimensional square
lattice so far, most of the results can be straightforwardly ex-
tended to other dimensions and other bipartite lattice systems.
The bipartite lattice condition is necessary for the η-pairing
states to be eigenstates of the kinetic term Hkin [Eq. (21)].
We can define the interaction term Hint [Eq. (30)] and the
neighboring particle existence operator niσ in Eqs. (25) and
(26) irrespective of dimensions and lattice structures. There-
fore one can use the Hamiltonian of Eq. (29), for example, on
the one-dimensional chain, honeycomb, body-centered-cubic,
and diamond lattices.

For the one-dimensional chain [86], we can obtain the spin-
singlet p-wave pairing state (η+

px
)N/2|0〉 with η+

px
defined in

Eq. (34), as a QMBS state. The scarred Hamiltonian consists
of interaction terms involving up to a four-body interaction,

Hint =U
∑

i

ni↑ni↓ − U

2

∑
i

ni↑ni↓(ni−1 + ni+1)

+ U

2

∑
i

∑
σ

ni−1,σ ni↑ni↓ni+1,σ , (37)

which is an explicit form of Eq. (30) in the case of the one-
dimensional chain. This state and model would be relevant for
experimental demonstration, for example, with cold atoms in
an optical lattice (see also Sec. VII).

We can also generalize our construction to cases of long-
range pairs. Let α refer to the n-th nearest-neighbor sites
around site i, which is denoted by α ∈ nn(n, i). The long-
range η-pairing states are defined by (η+

α )N/2|0〉 with α ∈
nn(n, i). The case of n = 1 corresponds to the previous re-
sults. On the square lattice, we can take α = ±ex ± ey for
n = 2, and α = ±2ex,±2ey for n = 3. For example, in the
case of n = 2, we have the dxy-wave spin-singlet η-pairing
state (η+

dxy
)N/2|0〉 defined by

η+
dxy

= η+
+ex+ey

− η+
−ex+ey

+ η+
−ex−ey

− η+
+ex−ey

. (38)

To make the long-range η-pairing states exact eigenstates
of the Hamiltonian, one should replace the form of the
multibody interaction in Eq. (28) by −U

∑
σ ni↑ni↓n(n)

iσ /2
with

n(n)
iσ =

{
1 [nnn(n,i)σ 
= 0]

0 [nnn(n,i)σ = 0]
, (39)
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FIG. 8. Generalized η-pairing states on the honeycomb lattice.
(a) Six kinds of next-nearest-neighbor pairs (connected by the dash-
dotted lines) in the η-pairing states. The white (grey) circles represent
A (B) sublattice sites. τγ and Rγ (γ = 1, 2, 3) denote the bond and
lattice vectors, respectively. A pair on the B sublattice (connected by
the blue dash-dotted line) has the opposite sign of the wave function
with respect to those on the A sublattice. (b) Energy cancellation
between the two-body (black lines) and multibody (filled areas)
interactions acting on overlapped pairs.

where nnn(n,i)σ is the number of spin-σ particles on nn(n, i).
Using the ordinary density operator, one can represent n(n)

iσ as
n(n)

iσ = 1 − ∏
j∈nn(n,i)(1 − n̂ jσ ).

In this way, the η-pairing states, which consist of the
long-range pairs and have different types of parity and spin
symmetries, also become energy eigenstates due to the longer-
range multibody interaction. It should be noted that our
method of realizing superconducting scar states using multi-
body interactions is only applicable to pairs of particles
separated by a fixed distance.

B. f -wave η-pairing state on the honeycomb lattice

Let us consider the multibody interacting model defined
by Eq. (29) on the honeycomb lattice, where an η-pairing state
with the f -wave pairing symmetry becomes an eigenstate [see
Fig. 1(c)]. The lattice structure is defined as follows. We label
sublattices by A and B, as shown in Fig. 8(a). Let τγ (γ =
1, 2, 3) be the bond vectors and Rγ the lattice vectors, which
are explicitly given by

τ1 =
(

0

1/
√

3

)
, τ2 =

( −1/2

−1/2
√

3

)
, τ3 =

(
1/2

−1/2
√

3

)
,

(40)

R1 = τ3 − τ2, R2 = τ1 − τ3, R3 = τ2 − τ1. (41)

The Fourier transform of the annihilation operator cl
iσ of

fermions for each sublattice l (= A, B) is given by cl
iσ =

N−1/2
s

∑
k exp(ik · ri ) cl

kσ with Ns being the total number of
unit cells. After the Fourier transformation, the kinetic Hamil-
tonian in Eq. (21) is diagonalized as

Hkin =
∑
kσ

(
cA

kσ

†
, cB

kσ

†
)(

0 g(k)

g∗(k) 0

)(
cA

kσ

cB
kσ

)
, (42)

=
∑
kσ

|g(k)|[c(+)
kσ

†
c(+)

kσ
− c(−)

kσ

†
c(−)

kσ
], (43)

where the hopping amplitude g(k) and the creation opera-
tors of the energy eigenstates labeled by (+) and (−) are
given by

g(k) =
∑

γ=1,2,3

eik·τγ , (44)

(c(+)
kσ

†
, c(−)

kσ

†
) = (

cA
kσ

†
, cB

kσ

†) 1√
2|g(k)|

(
g(k) g(k)

|g(k)| −|g(k)|

)
,

(45)

respectively.
On the honeycomb lattice, the off-site η-pairing operators

can be defined as [see Eq. (1)]

η+
α =

∑
i

f (ri )c
†
ri,↑c†

ri+α,↓. (46)

Here, the direction vector of the pairs is given by α = ±Rγ

(γ = 1, 2, 3), which point to the second nearest-neighbor
sites, namely α ∈ nn(2, i). These six η-pairing operators cre-
ate the next-nearest neighbor pairing states with the staggered
phase factors, as shown in Fig. 8(a). Since the paired fermions
are on the same sublattices [as in the case of Eq. (3a)], these
η-pairing operators show the even sublattice symmetry.

The unconventional η-pairing states on the honeycomb
lattice can be constructed from the η-pairing operators in
Eq. (46). As an example, let us introduce an η-pairing state
with the spin-triplet f -wave pairing symmetry (see Table I) as
follows:

η+
f = η+

+R1
− η+

−R3
+ η+

+R2
− η+

−R1
+ η+

+R3
− η+

−R2
, (47)∣∣�N

f

〉 ∝ (η+
f )N/2|0〉. (48)

The following discussion also holds for other pairing symme-
tries as discussed in Sec. VI A.

The η-pairing operators on the honeycomb lattice commute
with the kinetic Hamiltonian Hkin in Eqs. (42) and (43). In the
momentum representation, the η-pairing operators in Eq. (46)
are expressed as

η+
α =

∑
k

eik·α(cA
k,↑

†
cA
−k,↓

† − cB
k,↑

†
cB
−k,↓

†)
, (49)

=
∑

k

eik·α(c(+)
k,↑

†
c(−)
−k,↓

† + c(−)
k,↑

†
c(+)
−k,↓

†
). (50)

The commutation relation between Hkin [Eq. (42)] and η+
α

[Eq. (49)] are evaluated as

[Hkin, η
+
α ] =

∑
k

eik·α(g∗(k)cB
k↑

†
cA
−k↓

† + g∗(−k)cA
k↑

†
cB
−k↓

†

− g(k)cA
k↑

†
cB
−k↓

† − g(−k)cB
k↑

†
cA
−k↓

†)
. (51)

Given g(k) = g∗(−k), the first and fourth terms and the
second and third terms cancel each other, indicating that
[Hkin, η

+
α ] = 0. This is also confirmed from the commutation

relation between Eqs. (43) and (50) as [Hkin, η
+
α ] = ∑

k

exp(ik · α) (|g(k)| − |g(−k)|)(c(+)
k,↑

†
c(−)
−k,↓

† + c(−)
k,↑

†
c(+)
−k,↓

†
) = 0.

Therefore the f -wave η-pairing state is a zero-energy
eigenstate of the kinetic term in Eq. (21).

013064-11



SHOHEI IMAI AND NAOTO TSUJI PHYSICAL REVIEW RESEARCH 7, 013064 (2025)

By applying the neighboring particle existence opera-
tor niσ (2) defined in Eq. (39) to the case of nn(2, i), the
f -wave η-pairing state also becomes an energy eigenstate
of the Hamiltonian in Eq. (29). The energy increase due to
the two-body interaction U is canceled by the multibody
interactions between a doublon and a next-nearest neigh-
boring particle, as shown in Fig. 8(b). Therefore, using the
multibody interactions, we can realize the η-pairing states
with unconventional pairing symmetries in various lattice
systems.

C. Yang’s s-wave η-pairing state in a nearest-neighbor
interacting system

Yang’s η-pairing state is no longer an energy eigenstate
when one adds nearest-neighbor two-body interactions to the
Hubbard model in Eq. (20) due to the breaking of η-SU(2)
symmetry [51,52]. However, one can make Yang’s η-pairing
state the energy eigenstate in nearest-neighbor interacting
systems by utilizing appropriate multibody interactions like
those discussed above. In Ref. [54], it has been studied how
to make Yang’s η-pairing state a QMBS state, where the
multibody interaction Hamiltonian presented below can be
reproduced. Here, we include this example to show the role
of the multibody interaction discussed above. The following
discussions in this subsection are applicable to systems in
arbitrary dimensions and with both the periodic and open
boundary conditions. Let us consider a d-dimensional pe-
riodic bipartite lattice, in which Yang’s η-pairing state is
defined as

η+ =
∑

i

eiπ·ri c†
i↑c†

i↓, (52)

|�N 〉 = 1

N N
(η+)N/2|0〉, (53)

with the normalization constant N N (such that 〈�N |�N 〉 =
1). Yang’s η-pairing state is a linear combination of Fock
states with various configurations of doublons. It is known
that this η-pairing state is the energy eigenstate of the Hubbard
model in Eq. (20), i.e., HH|�N 〉 = NU/2|�N 〉 [50]. However,
Yang’s η-pairing state is no longer an eigenstate if one in-
cludes a nearest-neighbor interaction defined by

HV = V

2

∑
〈i, j〉

nin j, (54)

with ni = ∑
σ niσ . As shown in Fig. 9(a), two doublons placed

at adjacent sites gain additional energy of 4V . Due to this,
the interaction energy for each Fock state may change de-
pending on the doublon configuration, which prevents Yang’s
η-pairing state from being an eigenstate of the Hubbard model
with the nearest-neighbor interaction of Eq. (54).

If we consider three-body interactions, on the other hand,
we notice that an interaction between a doublon and a nearby
particle can be used to cancel the nearest-neighbor two-body
interaction of Eq. (54), as shown in Fig. 9(b). In Yang’s
η-pairing state, the number of particles occupying each site is
equal to twice the number of doublons at the same site, since

FIG. 9. (a) Interactions between doublons in Yang’s
s-wave η-pairing state in the model with the on-site interaction U
and the nearest-neighbor two-body and three-body interactions in
the form of Eq. (56). (b) Cancellation between the two-body and
three-body interactions. (c) Nearest-neighbor level-spacing
distribution P(s) in the model HH + HmodV with L = 12.
(d) Entanglement entropy spectrum of the energy eigenstates in the
corresponding model with L = 8. The red circle indicates Yang’s
η-pairing state. The parameters are set to be t = 1, U = 2, V = 1,
and N = L.

the particles always exist as doublons. From this fact, one can
see that Yang’s η-pairing state satisfies

(HH + HmodV )|�N 〉 = N

2
U |�N 〉, (55)

HmodV = V

2

∑
〈i, j〉

ni(n j − 2n j↑n j↓). (56)

Therefore, utilizing the multibody interaction, one can make
Yang’s η-pairing state an energy eigenstate even in the pres-
ence of the nearest-neighbor interaction of Eq. (54).

We numerically confirm that Yang’s η-pairing state can be
regarded as a QMBS state in the model with the Hamiltonian
HH + HmodV in Eq. (55). For the half-filled one-dimensional
system with the periodic boundary condition of length L,
we numerically obtain the level-spacing distribution P(s)
[Fig. 9(c)] in the subspace with even parity, even time-reversal
symmetry, and zero total momentum. The level-spacing dis-
tribution agrees well with the Winger–Dyson distribution
PWD(s), implying that the model (HH + HmodV ) is noninte-
grable. We also consider the corresponding model with the
open boundary condition, for which the bipartite entangle-
ment entropy for each energy eigenstate is shown in Fig. 9(d).
We find that Yang’s η-pairing state, indicated by the red cir-
cle, has much smaller entanglement entropy than the other
thermal states (with SA � 3 ln 2). Therefore we conclude that
Yang’s η-pairing state is a nonthermal energy eigenstate (i.e.,
a QMBS state) in the multibody interacting system with the
Hamiltonian HH + HmodV .
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FIG. 10. (a) Nearest-neighbor level-spacing distribution P(s) for
the one-dimensional spinless Hubbard model with the three-body
interaction [Eq. (13)] with L = 20. The blue and red curves corre-
spond to the Poisson and Wigner–Dyson distribution, respectively.
(b) Entanglement entropy spectrum of the energy eigenstates in the
corresponding model with L = 16. The red circle indicates the spin-
less s-wave η-pairing state [Eq. (9)]. The parameters are set to be
t = 1, V = 2, W = −V/2, N = L/2, and σGauss = 0.5.

D. The spinless s-wave η-pairing state
in the one-dimensional system

The spinless s-wave η-pairing state in Eq. (9) discussed in
Sec. III A is one of the simplest examples that show uncon-
ventional pairing symmetries, since the conventional pairings
have the spin-singlet and s-wave symmetry. Let us first check
that the spinless s-wave η-pairing state satisfies the conditions
for a QMBS state in the extended spinless Hubbard model
with the three-body interaction in Eq. (13). Figure 10(a) shows
the level-spacing distribution P(s) of the energy eigenstates on
the half-filled periodic lattice in the subspace with even parity
and total momentum π . We observe good agreement be-
tween P(s) and the Winger–Dyson distribution. Figure 10(b)
shows the bipartite entanglement entropy spectrum in the
open boundary chain at half filling. We find that the spinless
s-wave η-pairing state, indicated by the red circle, has much
smaller entanglement entropy than those of the other eigen-
states that form a convex upward curve. Therefore the spinless
s-wave η-pairing state can be regarded as a QMBS state in the
multibody interacting system.

Next, we clarify the relationship between the spinless
Hamiltonian in Eq. (13) and our construction of scarred spin-
ful Hamiltonians using the operator niσ in Eq. (25) introduced
in Sec. III D. The spinless system can be described by a
spinful model in which all the spins of the particles are po-
larized to the same direction (say, σ ). The spinless η-pairing
operator η+

sl in Eq. (8) corresponds to the general η-pairing
operator in Eq. (1) where two fermions have the same σ -
spin, i.e., η+

sl = η+
+1,σσ . The two-body interaction term HV

in Eq. (11) corresponds to a nearest-neighbor interaction in a
spinful model,

∑
i niσ ni+1,σ . The scarred Hamiltonian includ-

ing the three-body interaction in Eq. (15) can be rewritten as
V

∑
i niσ niσ /2 using the neighboring particle existence oper-

ator niσ in the one-dimensional chain, which is explicitly rep-
resented by niσ = 1 − (1 − ni−1,σ )(1 − ni+1,σ ) = ni−1,σ +
ni+1,σ − ni−1,σ ni+1,σ . The term V

∑
i niσ niσ /2 means that

each fermion pair always has the constant energy V in any
pair configuration, no matter how close the pairs are coming
to each other. We will discuss the spinful version of this term
in more detail in Sec. VI F.

FIG. 11. Energy cancellation between the two-body on-site in-
teraction (red box) and the multibody interaction acting among a
doublon and two neighboring particles (blue box).

E. Higher multibody interactions

To achieve superconducting scar states, it is also possible
to exploit higher multibody interactions (i.e., M-body inter-
actions with larger M). In the case of the d-wave η-pairing
state on the square lattice (discussed in Sec. III), we find
that a doublon created by an overlap between two pairs is
always accompanied by two particles around the doublon. We
can cancel the on-site two-body interaction with a multibody
interaction acting among a doublon and two associated parti-
cles, as shown by the blue box in Fig. 11. Motivated by this
observation, we consider the following interaction term in the
Hamiltonian,

H′
int = U

∑
i

ni↑ni↓[1 − ni↑ni↓], (57)

which contains up to (2z + 2)-body interactions. The
d-wave η-pairing state is also an exact energy eigenstate of
the model with the Hamiltonian Hkin + H′

int. Here we need to
use the neighboring particle existence operator niσ [Eq. (25)]
to correctly cancel the energy increment of overlapped pairs,
as discussed in Sec. III D.

F. Pair number operator

The unconventional η-pairing states studied in this paper
have high eigenenergies as compared to the ground-state en-
ergy. From a practical point of view, it will be convenient if we
could control the eigenenergies of those pairing states. To this
end, we introduce an operator that counts the number of pairs,
extending the concept of the number operator for particles
(N̂ = ∑

iσ niσ ). Since off-site pairs considered in this paper
are composed of two nearest-neighbor particles, one might
think that the following operator could be used:

N̂ ′
p = 1

2

∑
〈i, j〉σ

niσ n jσ, (58)

with σ = ↓ (↑) for σ = ↑ (↓). This operator is a part of the
nearest-neighbor interaction in Eq. (54). However, as dis-
cussed in Sec. III C, the overcounting occurs when pairs are
close to each other. Figure 12(a) shows one example of Fock
states representing the d-wave η-pairing state. Although there
are two pairs, the expectation value of N̂ ′

p is 3. Indeed, the
appropriate operator to count the number of pairs is given by

N̂p = 1

2

∑
iσ

niσ niσ. (59)
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FIG. 12. Number of off-site pairs in examples of Fock states.
(a) Expectation value of N̂ ′

p in Eq. (58) for the case of two neigh-
boring off-site pairs. (b) Expectation value of N̂p in Eq. (59) for the
same state as in (a). (c) The case in which one pair is broken. The
number of particles is given by 〈N̂〉/2 = 2.

Using the neighboring particle existence operator niσ

[Eq. (25)], we can measure the number of pairs correctly, as
shown in Fig. 12(b). The η-pairing states become an eigen-
state of N̂p:

N̂p

∣∣�N
α

〉 = N

2

∣∣�N
α

〉
, (60)

where |�N
α 〉 ∝ (η+

α )N/2|0〉.
The operator N̂p is used to stabilize the unconventional

η-pairing states over unpaired states. Figure 12(c) shows an
example of a Fock state with one broken pair. The expec-
tation value of N̂p for this state is 3/2. If we introduce a
pair chemical potential μp and replace the Hamiltonian HextH

with HextH − μpN̂p, we can decrease the eigenenergy of the
unconventional pairing states than other unpaired eigenstates.
Since the pair chemical potential μp lowers the energy of the
entire subspace where all particles form pairs (not limited to
the unconventional η-pairing states), an important remaining
question is whether superconductivity may emerge in the
ground state within this subspace.

G. Open boundary condition

In the open boundary condition, the off-site η-pairing op-
erator η+

α,σ1σ2
is defined in a similar way as in Eq. (1) but the

summation over the site index i should be taken as long as
both ri and ri + α belong to the lattice with the open boundary
condition. The off-site η-pairing states created by this η+

α,σ1σ2

are generally not eigenstates of the kinetic Hamiltonian in
Eq. (21) with the open boundary condition. To see this, let
us consider an open one-dimensional chain of length L as
an example. The commutation relation between the kinetic
term of the Hamiltonian and the off-site η-pairing operator is
evaluated as [Hkin, η+

α,σ1σ2
] = [Hkin,

∑L−α
i=1 f (i)c†

iσ1
c†

i+α,σ2
] =

f (1)c†
1σ1

c†
α,σ2

+ f (L − α)c†
L−α+1,σ1

c†
Lσ2

, indicating that the
η-pairing states are generally not eigenstates of Hkin due to
the presence of the boundary terms.

In the case of α = 1 (nearest-neighbor pairing) and the
spin-triplet pairing (i.e., η+

1,σσ or η+
1,σ1σ2

+ η+
1,σ2σ1

), however,
the remaining boundary terms are canceled due to the fermion
anticommutation relation. This also applies to the case of
the spinless fermions, discussed in Secs. III A and VI D,
since they can be mapped to the spin-triplet states. In higher-
dimensional systems, a similar argument can be applied by

regarding the vertical hopping relative to the boundary as the
one in the above one-dimensional case.

The interaction term Hint of the Hamiltonian in the open
boundary condition is defined as in Eq. (30) with the neigh-
boring particle existence operator niσ given by Eq. (26), where
the coordination number z changes at the boundary. One can
confirm that the off-site η-pairing states are eigenstates of
the interaction term Hint with the appropriately defined niσ

in the open boundary condition. As a result, the spin-triplet
d-wave η-pairing states given in Eq. (19), for instance, are the
exact energy eigenstates of HextH [Eq. (29)] even in the open
boundary condition.

Other systems with complex boundary conditions will be
the subject of a future work.

VII. SUMMARY AND OUTLOOK

In this paper, we have presented a systematic framework
to construct model Hamiltonians that have superconducting
quantum many-body scar states with unconventional pairing
symmetries, e.g., the s-wave spin-triplet (or spinless), p-wave
spin-singlet, d-wave spin-triplet, and f -wave spin-triplet sym-
metries, by engineering multibody interactions. The key idea
was to cancel the energy increment due to the formation of
doublons by multibody interactions. To this end, we have
introduced the neighboring particle existence operator niσ in
Eq. (25), which judges whether there exist spin-σ particles
on the nearest-neighbor sites of site i. Using this operator,
we have defined the multibody interaction terms in the form
of

∑
σ ni↑ni↓niσ in Eq. (28), which precisely cancel the two-

body interactions acting among off-site pairs (while working
nontrivially on unpaired particles). We have applied our ap-
proach to the two-dimensional extended Hubbard model with
the multibody interactions, and numerically confirmed that
the spin-triplet d-wave η-pairing state is indeed the QMBS
eigenstate. Our construction is flexible enough that it can be
applied to various pairing symmetries and arbitrary bipartite
lattice models, some of which are discussed in the paper (see
Table I). The derived unconventional pairing states are natural
extensions of Yang’s s-wave spin-single η-pairing states, and
will be relevant for applications to nonthermal and long-lived
nonequilibrium superconductivity with unconventional pair-
ing symmetries that might be difficult to achieve in thermal
equilibrium.

There are various future problems. From a practical point
of view, it will be important to find a protocol to reach
the unconventional superconducting QMBS states from ex-
perimentally accessible initial states. For the conventional
s-wave η-pairing states, there have been several proposals
including the periodic drive [87–90], photodoping [19,68,91–
95], dissipation engineering [96–99], and adiabatic driving
[100], some of which could be extended to the unconventional
cases. Another issue is the stability of the unconventional
superconducting scar states against various perturbations
[59,101]. It is necessary to understand how the scar states
can persist (or not) when the parameters of the multibody
interactions deviate from the ones we obtained. Furthermore,
it is known that Yang’s η-pairing state exhibits electromag-
netic instability in the presence of external electromagnetic
fields [60,61]. However, in the case of unconventional
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superconducting scar states, η-pairing states with different
(odd) parity can potentially lead to qualitatively distinct elec-
tromagnetic stability, which warrants further investigation.
Topological aspects of the scar states (such as the px +
ipy-wave η-pairing state discussed in Sec. VI A) will be
another interesting topic, where the question is whether a
bulk-boundary correspondence also holds for quantum many-
body scar states. It will also be interesting to explore the
relation between the present unconventional superconducting
scar states and the fracton physics [35,64,102–104], since our
model exhibits a high degree of degeneracy of the eigenstates
which grow as a function of the system size.

Finally, we briefly comment on possible experimental
realizations of the superconducting QMBS states with un-
conventional pairing symmetries. It is required that the
scarred models have a controllable multibody interaction.
The spinless/spin-polarized s-wave pairing states discussed
in Secs. III A and VI D can be implemented in the one-
dimensional system with the density-density-type three-body
interaction in Eq. (12). The three-body interaction has been re-
alized in a controllable manner in cold polar-molecular gases
trapped in an optical lattice by means of effective interactions
mediated by dipole-dipole interactions [105–110]. Thus the

unconventional superconducting scar state in Eq. (9) in the
system described by Eq. (13) is a primary example of what can
be achieved with the state-of-the-art experimental techniques
for ultracold atomic systems.

Another example is the spin-singlet p-wave pairing state
(η+

px
)N/2|0〉 discussed in Sec. VI A. In a one-dimensional

chain, it becomes a superconducting scar state in the model
with the interaction terms containing up to the four-body inter-
action in Eq. (37). As in the previous case, similar four-body
interactions have been realized in recent experiments on cold
atomic systems [111,112]. So far, the four-body interactions
have been implemented in bosonic systems, but in principle
they could be extended to fermionic systems, allowing one to
explore the rich physics, as seen in odd-frequency supercon-
ductivity [69], through the nonequilibrium dynamics of cold
atoms protected against thermalization.
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