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Proposal for realization and detection of Kitaev quantum spin liquid with Rydberg atoms
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The Kitaev chiral spin liquid has captured widespread interest in recent decades because of its intrinsic
non-Abelian excitations, yet the experimental realization is challenging. Here we propose to realize and detect
Kitaev chiral spin liquid in a deformed honeycomb array of Rydberg atoms. With a laser-assisted dipole-dipole
interaction mechanism which realizes both effective hopping and pairing terms for hard-core bosons, together
with van der Waals interactions, we achieve the pure Kitaev model with high precision. The gapped non-Abelian
spin liquid phase is then obtained under experimental conditions. Moreover, we propose innovative strategies
to probe the chiral Majorana edge modes by light Bragg scattering and by imagining their chiral motion. Our
proposed scheme broadens the range of quantum spin models with exotic topological phases that can be realized
and detected in atomic systems, and makes an important step toward manipulating non-Abelian anyons.
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Introduction. Topological order is a captivating concept in
condensed matter physics that goes beyond Landau paradigm
and can host exotic quasiparticle excitations as anyons [1].
The Kitaev model on the honeycomb lattice with an exactly
solvable ground state is an ideal platform to prepare for
gapped quantum spin liquid (QSL) phases with the Ising-type
non-Abelian topological order [2]. The braiding of the Ising-
type anyonic excitations results in non-Abelian Berry phase
within the space of topologically degenerate states, which
remains robust against local perturbations [3—7]. Furthermore,
the promotion of braiding operations to unitary gates is the key
of the promising fault-tolerant topological quantum computa-
tion [3,8-10]. Significant efforts have been made in solid-state
systems [11-19], but the confirmation of the Kitaev QSL
phases is still ongoing [20-26].

Alternatively, quantum simulation [27-29] may provide a
route to achieve a clean and highly controllable realization of
the Kitaev spin liquid. The dynamical simulation approaches
were recently proposed based on the earlier schemes of Flo-
quet spin liquid [30,31], including a digital simulation through
Rydberg atoms [32] and a dynamical simulation [33] on the
optical lattice. The Rydberg atom platform is particularly
suitable for simulating the spin models [34—41], with Rydberg
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atoms in optical tweezer arrays [42—-46] resembling lattice
spins, and the dipole-dipole and van der Waals (vdW) inter-
actions inherently produce XY and Ising interactions [34,47].
This capability of simulating quantum spin systems has been
verified in numerous experiments, including quantum Ising
model [48-53], XY model [54,55], one-dimensional bosonic
symmetry-protected topological phase [56], and abelian quan-
tum spin liquid [57]. Nevertheless, the simulation of generic
spin interactions could be challenging. To this end, the
laser-assisted dipole-dipole interaction (LADDI) technique in
Rydberg atom array is introduced in our recent works [58—60],
extending Raman-engineered single-particle couplings stud-
ied in optical lattices [61-69]. This technique provides a
flexible tool to precisely control spin-exchange interactions
through lights, equipping us with the capability to realize
more intricate and exotic quantum spin models.

In this Letter, we propose an innovative scheme to precisely
realize and probe the Kitaev spin liquid phase in a deformed
honeycomb array of Rydberg atoms. The Kitaev exchange
interactions are decomposed into the hopping and pairing
terms of the hard-core bosons, which are realized based on
a fundamentally new type of LADDI proposed here. Together
with vdW interaction, we show the Kitaev spin liquid model
can be realized with a high tunability and precision. We fur-
ther propose the feasible schemes to detect the non-Abelian
spin liquid, including the bulk gap and chiral edge state,
through dynamical response and unidirectional transport mea-
surements. Our work opens a promising avenue for exploring
the quantum spin liquids and their potential applications.

Model. The paradigmatic Kitaev model is an ideal platform
to prepare for non-Abelian anyonic excitations. The model
under consideration is defined by a spin-1/2 system on a
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FIG. 1. Sketch of the model and realization. (a) The transformed
lattice configuration of the Kitaev honeycomb model, which is re-
alized by Rydberg atoms trapped in the optical tweezers. The angle
between bonds and bond lengths deviates slightly from the ideal hon-
eycomb lattice. (b) The alternating J,, J, configuration consists of a
uniform hopping term J, _ and a staggered pairing term J__ with the
same absolute value. (c), (d) Illustration of LADDISs. Inset: the two-
photon Raman processes (see details in the Supplemental Material).
(c) The hopping process J_, where Raman potential U, = Q72./§;
compensates the energy offset, with §; representing the detuning of
the two Raman lasers to the intermediate state. (d) The pairing in-
teraction J__, driven by the Raman potential U, = Q3£2,,/6,, causes
the same spin flip process on both sites.

honeycomb array, as depicted in Fig. 1(a), and described by
the Hamiltonian given by

HZ_ZJySfS,V-—ZhyS,y-,)/=x,y,z. (1)
i)y iy

Here (ij), labels y (= x, y, z) type, the summation takes over
all the bonds on the honeycomb lattice, and J, denotes the
Ising coupling strength for spin components sl.y( y of the y-
bond connecting sites r; and r; [Fig. 1(a)]. The ground states
of the exactly solvable model at i, = 0 include three gapped
A phases and one gapless B phase featured by Majorana
fermions in the Z, gauge field [2]. Applying the Zeeman
field breaks time reversal symmetry and drives B phase into
a non-Abelian spin liquid.

Nonetheless, directly simulating these bond-dependent
Ising interactions with the Rydberg atom array is out of
reach, since the intrinsic dipole-dipole and vdW interactions
between Rydberg atoms are of the XXZ type [34,47]. To
facilitate the description of our key idea, we decompose these
Ising interactions into hopping (J4_) and pairing (J__) terms
in the hard-core boson language [70]

D o desist =Y (U _bib;+ 5 _bibj)+He.,
(ij)

D o Juslsh =3 FLobib + 7 _bibj) +He., ()
(if)y

which shall be realized separately. Here the hard-core bosons
are defined as b; = s; with b% = 0, the hopping and pairing
terms along (x,y) bonds are the same (opposite) for x (y)
bonds, namely, JI_ =J*_=J,/4 and J|_=—-J_ =J,/4
[see Fig. 1(b)]. Unlike the hopping term arising from dipole-
dipole interaction, the pairing term is intrinsically not present

for Rydberg atoms. We present here an original scheme to
solve the challenge and realize both the hopping and pairing
terms through a type of LADDI. Together with a well engi-
neered vdW interaction to realize the z-bond interaction, we
achieve the model (1) with high precision.

Experimental scheme. We demonstrate the realization of
controllable hopping and pairing terms in a 2D Rydberg atom
array, composed of 8’Rb atoms trapped in an optical tweezer
array with the deformed honeycomb lattice configuration. For
our purpose, the bond angles of the array are deformed to
110°, and the x, y (z) bond lengths are a (b) [Fig. 1(a)]. A real
in-plane magnetic field is introduced to define the “quantiza-
tion axis” perpendicular to the z bond and at an angle 6 = 20°
to the x, y bond. The spin states are represented by Rydberg
states | {) = [npDs, my = Zyand | 1) = InpPs, m; = 3).

The hopping term J,_, which transforms | |);| 1); into
| )il ), can be constructed through a laser-assisted process,
here i and j label two nearest neighbor sites on the x or y
bonds. As shown in Fig. 1(c), the bare dipole-dipole interac-
tion J;; which couples | |);| 1); = | 1)l |); is suppressed
by a detuning A, = (Ey — E); — (E4 — E});. The detuning
is induced by introducing a site-dependent energy shift to the
spin-up state E4; = Ep + A;. In the presence of Raman po-
tential U, (r)e’®<, this energy offset is compensated, enabling
the laser-assisted exchange process. Therefore, by applying
energy offset A, the exchange couplings are completely con-
trollable by the lasers. From a standard perturbation theory
[71], we obtain

Ue(rj)

e

Jpo = Jar + 0(Uar, Uo)), 3)

The pairing term J__ transforms | 1);| 1); to | {)i |
); and can only be driven by laser assistance. We intro-
duce another laser-assisted process through an intermediate
state |F) = |npF7/2, my =7/2), as illustrated in Fig. 1(d).
The dipole-dipole interaction J4,, which couples | 1);|F);
to | {);| {);, takes effect when the detuning A, = (E, —
E;)i + (Ey — Er); is compensated by the Raman potential
U,(r)e'Er=Er =20 | oiving rise to the process | 1);| 1); —
| MilF); — 1 1)il {);. We then obtain from perturbation the
pairing coefficient

Uy(rj)

p

Jo_ =~ Ja2 + O(Ua2. Up)®), “
the resonant Raman coupling regime [71].

The sign configurations of J7* and J*” along (x, y) bonds
can be feasibly achieved via on-site tuning of the Raman po-
tentials (see details in the Supplemental Material [71]). With
the site-dependent energy shift A; (A}) (see [55] for experi-
mental realization of nonuniform energy shift), which has a
periodicity of every eight sites [Fig. 2(a)], achievable through
local tuning of optical tweezers, we can apply different Ra-
man potential U, ,, to different bonds separately by matching
the Raman potential frequency with the corresponding de-
tuning A, , [Fig. 2(b)]. The phases of the Raman potential
U, are chosen to ensure a uniform sign for U,/A,, resulting

inJy_= Jﬁ;_. Meanwhile, the signs of U, exhibit a distinct
staggered pattern along the row, giving rise to the relation of
J¥_ = —J”_. This yields the Jyy terms of the Kitaev model,

as depicted in Fig. 1(c).
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FIG. 2. Detailed configuration of the experimental proposal.
(a) The on-site energy shifts, the detunings A; and A; at even and odd
rows are set to be different. (b) The coupling at a bond is determined
only by the Raman potential on one side. Raman potentials U, ,(r;)
[U.,,(r1)] have frequencies corresponding to A, , on the (Ik) ({(km))
bond. (c) A unitary transformation that transforms oy, in odd rows
to —oy, ., resulting in J; changing sign but J, , remaining unchanged.
It also changes the sign of A, in odd rows (labeled A3 ). (d) The
Zeeman terms h,, are opposite in even and odd rows, which are
induced independently by microwaves.

The J, term arises from the intrinsic vdW interaction of
Rydberg atoms, characterized by V., « n,n,, where n, de-
notes the occupation number at state |0 =1, | ). From s* =
(ny — ny)/2, we obtain the J; term by

Hinter—row - - Z‘]Z(ni,T - ni,l)(”j,? - nj,l)/4~ (5)
(if)z

Here J, =V, + V4, —V,, — V4. Note that the lattice sites
on even and odd rows have different energy offsets A; and A/,
respectively [Fig. 2(a)]. Thus, the interactions J;_ and J__ at
z bonds are offresonant and negligible. Only the J, coupling
remains along the z bonds.

Our proposal offers high tunability for simulating the Ki-
taev spin liquid, encompassing both Kitaev A and B phases
[2]. The pure bond-dependent Ising couplings can be pre-
cisely achieved and further tuned by Raman potentials U, ,
as confirmed from numerical results [71]. Thus, adjusting U, ,
adiabatically while keeping J, to be constant can drive the
system from the A phase with the parameters J, = J, = 0 to
the B phase with J, = J, = J, as illustrated by the black line
in Fig. 3(a).

The non-Abelian anyons emerge in phase B by applying
Zeeman terms h,,. to open a topological gap. The natu-
rally realized J, is typically ferromagnetic (J, > 0). We can
physically transform it into antiferromagnetic interactions by
properly applying Zeeman terms. First, we map oy,; to —oy,;
in odd rows through a unitary transformation [Fig. 2(c)],
causing J; to change sign while leaving J, , unchanged. This
transformation also flips &, . in odd rows to —h, .. Then, to
maintain an effective uniform Zeeman field, the originally
applied Zeeman components A, should have opposite signs
in even and odd rows, which can be implemented as follows.

The h, term is directly obtained by setting detuning (/)
for the transition induced by Raman potential U, between
[ 1)il {); and | 1);| 1);. A staggered configuration of £, is

(a) J.=1 (c) ., Bphase h=0,gapped .o
oy =0 — I(w)
U, =0 LOf — g 0.16
° U/U, =1 a0.8 0.12’§
Aphase 306 =
B phase D04 0.08 |
0.2 0.04
Jo=1 Jy=1
=0 YU g.=0 %1 o5 10  15°
Wiz

(b) 1> B phase, h=0, gapless (d) 55 A phase, h=0, gapped
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FIG. 3. Phase diagram and detection of the bulk spectra.
(a) Ground state phase diagram of the Kitaev honeycomb model.
The parameters evolve along the black line by tuning the strength of
Raman potential U. (b)—(d) Two-spin response /(w) and underlying
density of states g(w/2). (b)—(c) The Kitaev B phase [2] with the
parameters J, = J, = J,. The gapless B phase acquires a topological
gap for i, . = 0.5MHz. (d) The abelian Kitaev A phase at J, = J, =
J./5.

resulted by tuning opposite detunings in even and odd rows
[Fig. 2(d)]. The A, , terms are induced by microwaves that
drive spin-flip transitions. Similarly, the 4, terms on odd and
even rows can be controlled independently by microwaves
with different frequencies, hence a staggered configuration of
hy can be feasibly achieved by tuning the coupling phases
[Fig. 2(d)]. More details are presented in the Supplemental
Material [71].

Numerics. We take np = 44, np =42, and np =40 to
exemplify the high precision and feasibility of the realization
[71]. On (x, y) bonds we have J, , >~ —4 MHz fora = 4.7 ym.
By choosing the quantization axis and lattice geometry shown
in Fig. 1(a), we find that on the z bond one can set J, ~
4.0 MHz for b = 4.2 wm, while on the x, y bonds it is quite
small |J;| < 0.16 MHz, giving a nearly pure Kitaev model.
Further, we have verified that the longer-range couplings are
all less than 5.2% of the nearest-neighboring terms, hence
being negligible. Finally, numerical study has shown that
applying the Zeeman term leads to a topological gap in the
B phase that Eg,, ~ 0.1J; = 0.4 MHz for A, ,. = 0.5MHz
[72]. Such interactions are sufficiently large for Rydberg atom
lifetime T > 60 us = 240|J, .| ™" at temperature 7 = 77K in
the experiment [36,71,73].

Detection of the bulk spectrum. We now turn to the de-
tection of the bulk spectra of Majorana fermions c¢; [2]. The
gap is detected through a minimal perturbation approach uti-
lizing Cicjj, 10 excite the Majorana fermions, equivalent to

s7s”  in the spin representation. The two-spin perturba-

P2J iy,
tion Hamiltonian givenby AH =3, AJ s7 s is applied
shorter than the typical inverse gap (~2.5 us) in the B phase
with Zeeman field. Experimentally, this is achieved by varying
J,,y through Raman potentials. The response is determined by
retarded function iF (t) = ([AH(t), AH(0)])6(¢), where the
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FIG. 4. Identifying the chiral edge modes. (a), (b) Applying a
perturbation on an x bond (red point) and then measuring the propa-
gation of spin correlation (blue wavy line) on a 40 x 40-site system.
(a) The perturbation is imposed at the edge. Unidirectional propa-
gation is observed. (b) The perturbation is applied in the bulk, and
it rapidly diffuses into the entire system symmetrically. (c), (d) The
dynamical structure factor. (c) The y = 0 edge region shows peaks at
both low and high frequencies at positive transfer momenta. (d) The
bulk region only shows peaks in high frequency but symmetric in
both positive and negative momenta. Inset: Schematic of light Bragg
scattering applied on edge or bulk (red arrow) and energy spectrum
with lower edge state (black line).

average is taken over ground state. The Fourier transformation
[(w) = fooo dte'™ F(t) yields [74]

I() = —47 ) 8(w — 4lsq|)(Im[hgs}]/Isq))*  (6)
q

for o > 0 and I(—w) = —I(w). Here sq = (J; + Jo& 9™ +
Jye'4™) /4 and hy = AJ (€™ + ¢'9™)/4. The dispersion of
the Majorana fermion is 2|sq|, so I (w) reflects density of states
g(w/2). The lower cutoff frequency of /(w) measures the bulk
gap 2A [Figs. 3(b) and 3(d)]. For the topological phase with
Zeeman field, we find again I(w) « g(w/2) with a modified
factor [71], detecting the bulk topological gap, as plotted in
Fig. 3(c).

Detection of chiral edge modes. The gapped Kitaev QSL
hosts chiral Majorana edge modes, which emerge in the
natural boundaries of the Rydberg atom array, and are a di-
rect measurement of this exotic topological order. The high
tunability of the present Rydberg platform enables unique
schemes for the observation. We propose below two inno-
vative detection strategies to identify and characterize the
Majorana chiral edge modes.

The first strategy is to directly image the chiral motion of
the Majorana edge modes. We show that the unidirectional
quasiparticle flow of chiral edge states and the isotropic flow
of the bulk states can be identified by examining merely
the spin correlation dynamics. As illustrated in the inset
of Figs. 4(a) and 4(b), we apply a pulse locally to sud-

denly tune J, — J, +8J; on a specific x bond. The pulse
couples to s} i = —icic;/4 and locally excites a two-
particle wavepacket. We set the pulse strength as §J, = 0.5J;
and the pulse duration as 8¢ = 0.1J'. The pulse consists of
various frequencies, and Majorana fermions can be excited
within a range of energy bands, and then move according to
local band dispersion. Subsequently, we measure the motion
via spin-correlation on the x bond, denoted as (sj‘(t)s’]‘-(t)) (if)es
in two opposite directions indicated by blue arrows in Fig. 4.
When the pulse is applied exclusively to the edge [Fig. 4(a)],
the excited spin correlation evolves unidirectionally along the
edge, implying an inherent consequence of the chiral nature
of edge states, with group velocity given by the edge energy
spectrum. In contrast, if the pulse is applied within the bulk,
the spin correlation rapidly diffuses symmetrically throughout
the entire system in Fig. 4(b). This sharp contrast provides a
clear signature of the chiral Majorana modes in the topological
QSL phase.

The second strategy is that we extend the light Bragg
scattering technique for detecting Dirac fermion edge modes
[75-78] to the present chiral Majorana edge modes in corre-
lated spin liquid phase. Shining two lasers with wave vectors
ki(w;) and ky(w,) on one row of the lattice [see the inset
of Fig. 4(d)] induces a two-photon process characterized by
AH'(q) =3 5. AJ’eiq"sfs’]‘.. Hereq = ki — ky = gé, dueto
momentum conservation along the x direction. We obtain
the dynamical structure factor S(q, w) [71] for the scattering
induced by the shinning lasers. Figures 4(c) and 4(d) depict
the numerical simulation. When the perturbation is applied at
the y = 0 edge, two groups of peaks are observed in Fig. 4(c),
with one group located at lower frequencies, magnified in the
inset, and the other group at higher frequencies. The low-
frequency peaks exhibit the relationship w = +qvy when g >
0, arising from the transition between edge states. In compar-
ison, the high-frequency peaks originate from the transition
from bulk states around the smeared van Hove singularity
at k, = m to edge states, and all show clearly the chirality
of the edge modes. For ¢ < 0, no resonant peak is observed
since such edge states are all occupied [71]. The dynamical
structure factors for shinning the bulk shows only finite fre-
quency and symmetric peaks [Fig. 4(d)], implying that the
bulk is gapped and nonchiral, in stark contrast to Majorana
edge states.

Conclusion and outlook. We have proposed to realize and
detect the Kitaev non-Abelian spin liquid in a deformed
honeycomb array of Rydberg atoms with feasibility. A new
LADDI mechanism is introduced to generate hopping and
pairing terms in the hard-core boson representation, yield-
ing the Kitaev exchange interactions in the x and y bonds.
Together with engineering the van der Waals interactions,
we realized a nearly pure Kitaev model with high precision.
The gapped non-Abelian spin liquid phase with Ising-type
anyons is further realized. Finally, based on measuring spin
observables and the dynamical response, we proposed two
innovative detection schemes to identify the gapless and chiral
Majorana edge modes. This work opens up an avenue for anal-
ogy quantum simulation of exotic topological orders using
Rydberg atoms. In particular, our original scheme for realizing
the highly tunable exchange couplings not only facilitates
the realization of Kitaev spin liquids, but also uncovers a
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new pathway for the quantum simulation of a broad range of
quantum spin models, with which the various exotic strongly
correlated phases can be explored.
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