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Quantum droplets with magnetic vortices in spinor dipolar Bose-Einstein condensates
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Motivated by the recent experimental realization of a Bose-Einstein condensate (BEC) of europium atoms,
we investigate the self-bound droplet state for a dipolar BEC with spin degrees of freedom. Under a sufficiently
weak magnetic field, the droplet has a torus shape with circulating spin vectors, which is referred to as a magnetic
vortex. The ground state transforms from a torus to a cigar shape through bistability with increasing magnetic
field. Dynamical change of the magnetic field causes the torus to rotate due to the Einstein–de Haas effect. The
magnetic vortices form a supersolid in a confined system.
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Introduction. A magnetic flux-closure structure is a stable
configuration of a ferromagnetic material in which magneti-
zation vectors form closed loops to reduce the magnetostatic
energy. This structure can be observed in a ferromagnetic
material with multiple magnetic domains below the Curie
temperature [1]. The magnetic flux-closure structure has also
been realized within nanoscale particles [2–10], in which the
magnetization vectors circulate along a toroidal loop. This
state is referred to as a magnetic vortex. Nanoparticles with
magnetic vortices can be used, e.g., for data storage [11],
cancer therapy [12], and neuromorphic computing [13]. Such
isolated objects with magnetic vortices have so far been re-
stricted to solid materials. Is it possible to produce a liquid
or gas analog of this state of matter, i.e., a self-bound droplet
with a magnetic vortex? Although permanent-magnetic liquid
droplets have been produced recently [14], the magnetic-
vortex structure has not been observed.

Here we propose a self-bound superfluid droplet that con-
tains a magnetic vortex. Self-bound states of Bose-Einstein
condensates (BECs) have attracted much interest recently and
are referred to as quantum droplets [15]. In a quantum droplet,
the attractive mean-field interaction balances the repulsive
beyond-mean-field effect [16], which stabilizes the system
against collapse and expansion in free space. This novel state
of matter was realized in a BEC with a magnetic dipole-
dipole interaction (DDI) [17–21] and a Bose-Bose mixture
[22–24], and various theoretical studies have been performed
on these systems [25–39]. However, in experiments on quan-
tum droplets with DDI to date, the magnetization of the
system has been frozen in the direction of the strong external
magnetic field. If the external magnetic field is sufficiently
suppressed, spin degrees of freedom in a dipolar BEC are
liberated, which allows for a spinor dipolar BEC [40–65].
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In the present study, we will show that there exists a stable
self-bound droplet of a spinor dipolar BEC that contains a
magnetic vortex with a torus-shaped density distribution. This
state is stable under a weak external magnetic field. As the
magnetic field is increased, the ground state changes from
the magnetic-vortex state to the well-known cigar-shaped
droplet, and these two states exhibit bistability. If the external
magnetic field is gradually changed, the total magnetization
of the torus-shaped droplet is also changed, which induces
mechanical rotation of the torus to conserve the total angu-
lar momentum, resembling the Einstein–de Haas effect. The
ground state of the system confined in an elongated trap ex-
hibits periodic alignment of the torus-shaped droplets and can
be regarded as a supersolid.

For concreteness, we consider a BEC of 151Eu atoms,
which was recently realized experimentally [66]. A pecu-
liar feature of 151Eu is its wide range of hyperfine spins
(F = 1, . . . , 6) with small spin-dependent contact interac-
tions, which could be smaller than the DDI. The spin state in
this system is therefore mainly determined by the DDI under
a weak external magnetic field, and DDI-dominant spinor
dipolar phenomena can be investigated. Although the s-wave
scattering length for the F = 6 hyperfine state measured in
Ref. [66] is too large to form a self-bound droplet, the scatter-
ing lengths for the other hyperfine spins F and those for 153Eu
are unknown, and formation of spinor dipolar droplets may be
possible. Furthermore, the contact interactions may be con-
trollable using microwave-induced Feshbach resonance [67].
As we will show, a spinor dipolar droplet with a magnetic
vortex is possible, as long as the DDI is sufficiently larger than
the spin-dependent and spin-independent contact interactions.

Formulation. We consider a BEC of 151Eu atoms with
hyperfine spin F at zero temperature using the beyond-mean-
field approximation [25,26]. The total energy consists of six
terms,

E = Ekin + Es + Eddi + ELHY + EB + Eext. (1)

The kinetic energy is given by

Ekin = h̄2

2M

∑
m

∫
dr|∇ψm(r)|2, (2)
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TABLE I. Magnetic moment μ, in units of the Bohr magneton
μB, and the dipolar lengths add , in units of the Bohr radius aB, for
151Eu with hyperfine spin F .

F 1 2 3 4 5 6

μ/μB 9/2 13/3 19/4 27/5 37/6 7
add/aB 24.72 22.92 27.54 35.60 46.42 59.82

where ψm(r) is the macroscopic wave function for the
magnetic sublevels m = −F,−F + 1, . . . , F , and M is the
mass of an atom. The wave function is normalized as∑

m

∫ |ψm(r)|2dr = N , where N is the total number of atoms.
The spin-independent contact interaction has the form

Es = 2π h̄2as

M

∫
ρ2(r)dr, (3)

where as is the spin-independent s-wave scattering length and
ρ(r) = ∑

m |ψm(r)|2 is the total density.
The DDI energy is given by

Eddi = μ0(gμB)2

8π

∫
drdr′ f (r) · f (r′) − 3[ f (r) · e][ f (r′) · e]

|r − r′|3 ,

(4)

where μ0 is the magnetic permeability of the vacuum, g is
the hyperfine g factor, μB is the Bohr magneton, f (r) =∑

mm′ ψ∗
m(r)(S)mm′ψm′ (r) with S being the spin matrix, and

e = (r − r′)/|r − r′|. The relative strength of the DDI is char-
acterized by εdd = add/as, where add = μ0μ

2M/(12π h̄2) is
the dipolar length. The magnetic moment of an atom with
hyperfine spin F , total electron spin S, and nuclear spin I with
orbital angular momentum L = 0 is given by μ = gμBF , with
the g factor [68]

g = F (F + 1) + S(S + 1) − I (I + 1)

F (F + 1)
. (5)

For the electronic ground state of 151Eu (and also 153Eu), S =
7/2 and I = 5/2. The magnetic moment μ and the dipolar
length add = μ0μ

2M/(12π h̄2) of 151Eu are given in Table I.
The spin distribution is mainly determined by the DDI if add is
sufficiently larger than the spin-dependent scattering lengths
that consist of the differences �a among the scattering lengths
a0,2,...,2F in collisional spin channels. The values of �a are
predicted to be relatively small for europium atoms [66,69,70]
and we ignore the spin-dependent contact interaction. The
effects of the spin-dependent contact interactions will be dis-
cussed later.

As will be confirmed numerically, the spin state is al-
most fully polarized in the droplet. In this case, we do not
need to consider the Lee-Huang-Yang (LHY) corrections for
spinor BECs, and we use the LHY correction for a fully
polarized dipolar BEC, which has the same form as that of
the single-component dipolar BEC [71,72]. Under the lo-
cal density approximation, the LHY correction is written as
[25,26,73–75]

ELHY = 2

5

32

3
√

π

4π h̄2

M
a5/2

s χ (εdd )
∫

ρ5/2(r)dr, (6)

where χ (εdd ) is the real part of
∫ π

0 dθ sin θ [1 + εdd(3 cos2 θ −
1)]5/2/2.

In the presence of an external magnetic field B(r), the
linear Zeeman energy has the form EB = gμB

∫
f (r) · B(r)dr.

The ratio of the quadratic Zeeman energy to the linear Zeeman
energy is estimated to be μB/�hf ∼ 10−4 at most for the
present magnetic field, ∼0.1 mG, and the quadratic Zeeman
energy can be neglected even for the relatively small hyperfine
splitting �hf/h̄ ∼ 100 MHz for a europium atom [77]. The
external potential energy is given by Eext = ∫

ρ(r)Vext (r)dr;
no external potential is applied (Vext = 0) in “Results” sec-
tions except “Supersolid in trapped systems” section.

The Gross-Pitaevskii (GP) equation is obtained as
ih̄∂ψm/∂t = δE/δψ∗

m. The explicit form is given by

ih̄
∂ψm

∂t
= − h̄2

2M
∇2ψm + Vextψm + 4π h̄2as

M
ρψm

+ 32

3
√

π

4π h̄2a5/2
s

M
χ (εdd )ρ3/2ψm

+ gμB(B + Bdd ) ·
∑

m′
(S)mm′ψm′ , (7)

where the magnetic field Bdd produced by the dipole-dipole
interaction (DDI) is defined as

Bdd(r) = gμBμ0

4π

∫
dr′ f (r′) − 3[ f (r′) · e]e

|r − r′|3 . (8)

To obtain the ground state or metastable state, the GP equa-
tion is propagated in imaginary time, in which i on the
left-hand side of the GP equation is replaced with −1. The
GP equation is numerically solved using the pseudospectral
method with typical spatial and time steps dx ∼ 0.01 µm and
dt ∼ 0.1 µs.

Results: Torus-shaped droplets. First, we consider the case
in which the external magnetic field B is zero. Figure 1 shows
a typical ground state, which has a torus shape, in contrast
to the usual cigar-shaped droplet in a strong magnetic field
[17–21]. The magnetization vectors f circulate along the
torus, as shown by the arrows in Fig. 1(a), which is a magnetic
vortex. The magnetic-vortex state with a torus shape is an
energetically favorable state because all the spin vectors are
aligned in a head-to-tail manner, which reduces the DDI en-
ergy. This is also understood from the fact that the flux-closure
structure is stable in magnetic materials. This is an example of
a self-bound droplet of a fluid containing a magnetic vortex; in
previous studies, magnetic-vortex states have been proposed
only for trapped systems [45,47].

In the LHY energy in Eq. (6), we assumed that the spin
state is fully polarized, and here we examine the validity of
this assumption. Figure 1(c) shows the distributions of the
atomic density ρ and magnetization density | f |, which indi-
cate that the spin is almost fully polarized, i.e., | f |/ρ � F =
1, except near the center. This result justifies the use of Eq. (6)
since the LHY correction is important only in the high-density
region to counteract the collapse. The central hole of the torus
is mainly occupied by the m = 0 component since the m �= 0
components have topological defects at the center, as shown
in Fig. 1(b).
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FIG. 1. Self-bound ground state with magnetic vortex for F = 1,
N = 15 000, εdd = 1.2, and B = 0. The origin and z axis are taken as
the center and symmetry axis of the torus, respectively. (a) Isodensity
surface at half of maximum density. The arrows represent the magne-
tization f on the z = 0 plane. (b) Density and phase distributions of
components m = 1, 0, and −1 on the z = 0 plane. (c) Distributions
of ρ and | f | along the x axis.

We study the stability of the torus-shaped droplet against
external disturbances. First, we prepare the torus-shaped
droplet state in the presence of a random potential by the
imaginary-time evolution of the GP equation. The random
potential is produced by placing random numbers on a nu-
merical grid and low-pass-filtering them using a cutoff wave
number of 2π/(0.25 µm). The initial disturbed droplet is
shown in Fig. 2(a) (t = 0 ms). At t = 0, the random potential
is removed and the real-time evolution is started, as shown
in Fig. 2. First, a small number of atoms are emitted from
the droplet, as shown in Fig. 2(b) (t = 0.15 ms), since the
Bogoliubov modes with energies larger than |μ| are unbound
[30], where μ < 0 is the chemical potential of the droplet
state. After that, an axial stretching mode remains (see the
movie in the Supplemental Material [76]), which has a period
of � 1.6 ms. The energy of this mode is smaller than |μ| �
2π h̄/(0.8 ms) and the mode is thus bound to the droplet. In
the numerical simulation, emitted atoms that travel far from
the droplet are removed, so that they do not affect the droplet
again. We have numerically confirmed that the system exhibits
behavior similar to Fig. 2 for different N , εdd, and F . Thus, the
torus-shaped droplet with a magnetic vortex is rather robust
against external disturbances.

Figure 3 shows the parameter dependence of the density
profile. The size of the droplet increases with the number of
atoms, N , while the size of the central hole appears almost un-
changed [left and middle panels of Fig. 3(a)]. For a larger spin
F = 6, on the other hand, the hole of the torus is significantly
enlarged [right panel of Fig. 3(a)]. As shown in Eq. (11), this
is due to the kinetic energy that arises from the spin winding,
which is proportional to F .

FIG. 2. Dynamics of torus-shaped droplet with F = 1, N =
80 000, εdd = 1.2, and B = 0. The initial state is the ground state
with a random potential. (a) Isodensity surface at half of maximum
density. A movie showing the dynamics is provided in the Supple-
mental Material [76]. (b) Density profiles on the z = 0 plane. Note
that the color ranges in the main panels and insets are different. The
density hole at the center of the torus cannot be seen for the narrow
color range in the main panels.

Variational analysis. To analyze the parameter dependence
of the torus-shaped droplet, we perform the variational analy-
sis. We employ the variational wave function as

�v (r) =
√

ρv (r, z)e−iSzφζ(y), (9)

where (r, φ, z) are the cylindrical coordinates, and ζ(y) rep-
resents the spin state fully polarized in the y direction with∑

m |ζ (y)
m |2 = 1. The z axis is taken as the symmetry axis of

FIG. 3. Self-bound ground states for (F, N, εdd ) =
(1, 15 000, 1.2), (1, 80 000, 1.2), and (6, 15 000, 1.3). (a) Density
distributions obtained by GP equation. Cross sections on two
symmetric planes are shown. (b) Density distributions ρ(r, z = 0)
obtained by GP equation (solid lines) and variational method
(dashed lines).
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the torus. The matrix e−iSzφ rotates the spin vector to make
a magnetic vortex. We propose a torus-shaped variational
density as

ρv (r, z) = N

π3/2σ 2λ+2
r σz�(λ + 1)

rλe
− r2

σ2
r

− z2

σ2
z , (10)

where σr > 0, σz > 0, and λ > 0 are variational parameters
and � is the gamma function. Substituting Eqs. (9) and (10)
into the kinetic energy Ekin, we obtain

Ekin = h̄2

2M

∫
dr

[
(∇√

ρv )2 + F

2r2
ρv

]

= Nh̄2

2M

[
1

2σ 2
r

(
2 + F

λ

)
+ 1

2σ 2
z

]
, (11)

where the term proportional to F arises from the winding
of the spin vector. The central hole of the torus increases
with F due to this term, as shown in Fig. 3. For the present
form of the variational wave function, the z component of the
magnetization fz(r) vanishes and the integral part I of the DDI
energy Eddi can be expressed as

I =
∫

drdr′

|r − r′|3 { f (r) · f (r′) − 3[ f (r) · e][ f (r′) · e]}

=
∫

drdr′

|r − r′|3
{

− 1

2
f+(r) f−(r′)(1 − 3e2

z )

− 3

4
[ f+(r) f+(r′)e2

− + f−(r) f−(r′)e2
+]

}

=
∫

dk
(2π )3

{
2π

3
(1 − 3 cos2 α) f̃+(−k) f̃−(k)

+ π sin2 α[e−2iβ f̃+(−k) f̃+(k) + e2iβ f̃−(−k) f̃−(k)]

}
,

(12)

where α and β are the polar and azimuthal angles in the k
space, respectively, f̃±(k) is the Fourier transform of f±(r) =
fx(r) ± i fy(r), and the convolution theorem was used in the
third equality. Noting that f̃±(k) is proportional to ±e±iβ and
f̃±(−k) = − f̃±(k) for the forms of Eqs. (9) and (10), Eq. (12)
can be reduced to

I = −4π

3

∫
dk

(2π )3
| f̃+(k)|2

= −4πF 2

3

∫
drρ2

v (r), (13)

which gives

Eddi = −2π h̄2add

M

∫
drρ2

v (r). (14)

This result indicates that Eddi/Es = −εdd, and therefore εdd >

1 is the necessary condition for the droplet to be bound by the
attractive part of the DDI. Using Eq. (10), the DDI and s-wave
interaction energies are calculated to be

MEddi

Nh̄2 = −εdd
MEs

Nh̄2 = − Nadd�(λ + 1/2)√
2π�(λ + 1)σ 2

r σz

. (15)

The LHY energy in Eq. (6) is obtained as

MELHY

Nh̄2 = 2(5λ+17)/2N3/2a5/2λ�(5λ/2)χ (εdd )

3π7/45(5λ+3)/2�5/2(λ + 1)σ 3
r σ

3/2
z

. (16)

The total variational energy is given by the sum of these
energies.

We minimize the variational energy with respect to the
variational parameters σr , σz, and λ, which is numerically
performed using the Newton-Raphson method. Figure 3(b)
compares the density distributions ρ(r, z = 0) obtained by
the GP equation and by the variational method. The two
distributions agree well with each other. For N = 80 000, the
deviation near the peak becomes significant since the flat-top
tendency of the density distribution is not taken into account
in Eq. (10). The density at r = 0 must vanish for the fully
polarized assumption in Eq. (9), whereas the center is slightly
occupied for the GP results.

Using the variational method, we can estimate the crit-
ical number of atoms below which the minimum or local
minimum of the variational energy disappears, namely, the
stationary state does not exist and the system always expands.
Figure 4(a) shows the critical number of atoms, where the
lines are obtained by the variational method and the plots
by the GP equation. The variational method can predict the
critical number of atoms very well, which facilitates the study
of this system because the numerical cost for the GP sim-
ulation is much higher than that for the variational method,
especially near the critical stability line where convergence of
the imaginary-time evolution is slow.

Figures 4(b)–4(e) show the variational parameters that
minimize the variational energy. The droplet size σr (also σz)
decreases with εdd due to the attractive nature of the DDI, as
shown in Fig. 4(b), while σr increases with N except near the
critical number of atoms, as shown in Fig. 4(c). In Figs. 4(b)
and 4(c), the droplet size steeply increases near the critical
values (left-hand edges of the lines) since the droplet is about
to become unbound. Figure 4(d) shows the aspect ratio A(λ)
for the torus defined by

A(λ) = 〈r〉√
〈r2〉 − 〈r〉2

=
[

(λ + 1)�2(λ + 1)

�2(λ + 3/2)
− 1

]−1/2

,

(17)

where 〈·〉 represents the expectation value with respect to the
variational wave function. The aspect ratio A(λ) in Eq. (17)
is a monotonically increasing function of λ. We find from
Figs. 4(d) and 4(e) that A(λ) is largely dependent on the spin
F . This is due to the term proportional to F/λ in Eq. (11), i.e.,
the kinetic energy arising from the spin winding. The aspect
ratio is not significantly sensitive to εdd or N , as shown in
Figs. 4(d) and 4(e).

To clarify the physical mechanism for the formation of
the torus-shaped droplet, we consider the well-known cigar-
shaped droplet for comparison. We assume that the spin is
fully polarized in the z direction and employ the Gaussian
variational wave function as

ψm=F (r) = N1/2

π3/4drd1/2
z

e
− x2+y2

2d2
r

− z2

2d2
z (18)
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FIG. 4. (a) Lines: Critical number of atoms above which the
torus-shaped droplet is stable, obtained by the variational method.
Below the lines, the atomic cloud always expands. The six lines
represent F = 1, . . . , 6, from left to right. The circles (crosses)
indicate that the stable torus-shaped droplet exists (does not exist) for
F = 1 (blue) and F = 6 (red), obtained by the GP equation. Inset: A
magnification of the main panel. (b)–(e) εdd and N dependence of
variational parameters that minimize variational energy. (b) Depen-
dence of σr on εdd, (c) σr on N , (d) A on εdd, and (e) A on N for F = 1
and 6. N = 50 000 in (b) and (d), and εdd = 1.2 in (c) and (e).

and ψm<F (r) = 0, where dr and dz are the variational param-
eters. Substituting Eq. (18) into the s-wave interaction energy
Es and the DDI energy Eddi, we obtain

Eddi

Es
= −εdd f (dr/dz ), (19)

where

f (κ ) = 1

1 − κ2

(
2κ2 + 1 − 3κ2

√
1 − κ2

tanh−1
√

1 − κ2

)
.

(20)

The function f (κ ) is a monotonically decreasing function
with f (0) = 1. This indicates that a very elongated cigar
shape with dr � dz minimizes the DDI energy; however, a

small dr leads to a kinetic energy cost. Thus, the DDI energy
of the torus-shaped droplet in Eq. (15) that satisfies Eddi/Es =
−εdd is optimal, which cannot be achieved by the cigar-shaped
droplet. The large negative DDI energy of the torus-shaped
droplet is due to the flux-closure structure of the magneti-
zation. This is why the torus-shaped droplet is energetically
favorable compared with the cigar-shaped droplet for zero
magnetic field.

Effect of spin-dependent interaction. We investigate the
effect of the spin-dependent interaction, which is neglected
above. Since the spin state is almost fully polarized in the
torus-shaped droplet, as shown in Fig. 1(c), the most relevant
term in the spin-dependent interaction energy is the f · f term
given by

E f = 2π h̄2a f

MF 2

∫
f (r) · f (r)dr, (21)

where a f = a2F − as with a2F being the scattering length for
a colliding channel with a total spin 2F , and as being the spin-
independent scattering length. Assuming that the spin state is
fully polarized everywhere, the sum of the spin-independent
interaction energy Es and E f has the form

Es + E f � 2π h̄2(as + a f )

M

∫
ρ2(r)dr

= 2π h̄2a2F

M

∫
ρ2(r)dr. (22)

The other spin-dependent energies vanish for the fully polar-
ized spin state. Thus, the effective ratio between the DDI and
contact interaction energies is found to be

εeff
dd = add

as + a f
= add

a2F
. (23)

To confirm Eq. (23), we study the stability of the torus-
shaped droplet by numerically solving the GP equation for
F = 1, where the terms

δE f

δψ∗
m(r)

= 4π h̄2a f

M
f (r) ·

∑
m′

(S)mm′ψm′ (r) (24)

are added to the right-hand side and as in the LHY correction
term is replaced with as + a f [71]. Figure 5 shows the stability
diagram with respect to as and a f . We find that the stability
boundary follows as + a f � constant, which confirms that the
stability of the droplet is determined by εeff

dd in Eq. (23).
If a f is positive and larger than add, the ferromagnetic

spin state no longer minimizes the energy and the polar state
becomes energetically favorable (for F = 1). In this case, the
self-bound state is not formed, even if εeff

dd � 1 is satisfied
(with negative as). For the parameters in Fig. 5, we have nu-
merically confirmed that the torus-shaped droplet exists only
for a f /add � 0.9. In the presence of spin-dependent energies
other than Eq. (21) (for F > 1), the stability condition for the
torus-shaped droplet will be similar, i.e., |asd| � add, where
asd is the corresponding spin-dependent scattering length.
This condition can also be expressed as |�a| � add since the
spin-dependent scattering lengths asd are linear combinations
of differences �a among the scattering lengths for colliding
spin channels a0,2,...,2F . To summarize, the stability condition
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FIG. 5. Stability diagram for the torus-shaped droplet obtained
by imaginary-time evolution of the GP equation including the spin-
dependent interaction term in Eq. (24), where F = 1, N = 15 000,
and B = 0.

of the torus-shaped droplet is a2F � add and |�a| � add in the
presence of the spin-dependent interactions.

Effect of external magnetic field. We examine the effect
of the external magnetic field applied in the z direction. Fig-
ure 6(a) shows a typical ground state for a large magnetic
field Bz, where the droplet has a cigar shape, as observed
experimentally. The spin is almost polarized in the z direction,
whereas it is slightly tilted around both edges of the cigar
shape and exhibits a flowerlike structure [45]. Figure 6(b)
shows the stability diagram with respect to N and Bz. There is
a critical magnetic field, above which the torus-shaped droplet
becomes unstable, whereas the cigar-shaped droplet becomes
unstable below some critical magnetic field. In Fig. 6(b), there
is a bistability region in which both torus-shaped and cigar-
shaped droplets are stationary (both circles and squares are
marked).

Figure 6(c) reveals the bistability with plots of the en-
ergy E and the averaged magnetization in the z direction
Fz = ∫

fzdr/N for both droplets. The bistability ranges from
Bz � 0.03 to � 0.17 mG, and the energies of the two droplets
cross at Bz � 0.14 mG. The direction of the torus-shaped
droplet is fixed by the magnetic field in such a way that the
toroidal plane is parallel to the z direction, as shown in the
inset of Fig. 6(c). In this inset, the right-hand side of the torus
becomes slightly thicker than the left-hand side, which results
in an increase in Fz.

The increase in magnetization Fz with magnetic field Bz

implies the emergence of the Einstein–de Haas effect [78,79];
if Bz is increased adiabatically, the spin angular momentum
Fz will increase, which must be accompanied by a decrease
in the orbital angular momentum Lz = −i

∫ ∑
m drψ∗

m(x∂y −
y∂x )ψ∗

m (in unit of h̄) to conserve the total angular momentum.
Figure 7 demonstrates the dynamics of the Einstein–de Haas
effect, where the initial droplet state is prepared for B = 0
with the symmetry axis in the y direction, and Bz is linearly
increased in the first 10 ms. As expected, the droplet begins
to rotate around the z axis, where the total angular momentum
Fz + Lz is maintained to be zero. We note that such mechanical

FIG. 6. Effects of magnetic field Bz obtained by the GP equa-
tion for F = 1 and εdd = 1.2. (a) Isodensity surface at half of
maximum density of the ground state for N = 50 000 and Bz =
0.2 mG. The panel shows a magnification of the magnetization on the
symmetry (y = 0) plane. (b) Stability diagram. The regions marked
by circles and squares, respectively, indicate that the torus-shaped
and cigar-shaped droplets are stable or metastable. In the region
marked by crosses, the system is unstable against expansion. (c) Bz

dependence of energy E and averaged magnetization Fz of torus-
shaped and cigar-shaped droplets with N = 50 000. Inset: ρ and f
distributions for the torus-shaped droplet for Bz = 0.16 mG, where
the cross section is taken for the symmetry (y = 0) plane.

rotation of the torus is a clearer manifestation of the Einstein–
de Haas effect than that in a trapped system [41,42].

Supersolid in trapped systems. We consider the ground
state of the system confined in an elongated harmonic
potential,

Vext (r) = M

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2), (25)

with (ωx, ωy, ωz ) = 2π × (100, 3000, 3000) Hz. Figure 8
shows the density and spin distributions for the ground state,
in which multiple droplets with magnetic vortices are aligned
along the x axis with alternate circulations of the magnetic
vortices. This state can be regarded as a one-dimensional su-
persolid because the ground state has a (quasi)periodicity that
breaks the (quasi)translation symmetry (in the x direction);
each droplet is connected to adjacent droplets, which enables
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FIG. 7. Einstein–de Haas effect in torus-shaped droplet for F =
1, εdd = 1.2, and N = 50 000. The initial state is the ground state for
B = 0 with its symmetry axis in the y direction. (a) Time evolution of
density distribution on the z = 0 plane (main panels) and isodensity
surface observed from the −y direction (insets), where the magnetic
field is linearly ramped up from Bz = 0 to 0.1 mG in the first 10
ms. See the Supplemental Material [76] for a movie of the dynamics.
(b) Time evolution of orbital angular momentum Lz (solid lines), spin
angular momentum Fz (dotted lines), and total angular momentum
Fz + Lz (dashed lines) for Bz = 0.05 mG [blue (dark gray)] and 0.1
mG [red (light gray)].

superflow between them. We note that the dipolar supersolid
of cigar-shaped droplets [80–82] also requires confinement in
one or two directions, i.e., restricted geometry is required for
the dipolar BEC to split into multiple droplets. If the trap in the
y or z direction in Fig. 8 is removed, the ground state becomes
a large single droplet with a magnetic vortex.

The phase coherence between the droplets is necessary for
the supersolidity. In general, the F = 1 ferromagnetic spin
state can be expressed as [83]

ei(θ−γ )

⎛
⎜⎜⎝

e−iα cos2 β

2√
2 cos β

2 sin β

2

eiα sin2 β

2

⎞
⎟⎟⎠, (26)

0 1.2

x

z

y

(b)

(a)

x
y

1 m

(b)

x
y

N m-3

FIG. 8. Ground state for F = 1, N = 4 × 105, εdd = 1.5, and
Bz = 0 in cigar-shaped harmonic potential given in Eq. (25). (a) Iso-
density surface at half of maximum density. The color on the surface
represents the overall phase. (b) Distributions of density ρ and mag-
netization f on z = 0 plane.

FIG. 9. Out-of-phase Goldstone mode for torus-shaped droplets
in cigar-shaped harmonic potential. The parameters are the same as
those in Fig. 8. (a) Additional potential Vadd in Eq. (27) used to pre-
pare the initial state. The solid line plots the harmonic potential plus
Vadd, and the dashed line plots the harmonic potential. (b) Snapshots
of density distribution on the z = 0 plane at t = 0 and 4 ms. The size
of the panels is 6 × 1 µm. (c) Time evolution of one-dimensional
density distribution ρ(x, y = 0, z = 0, t ), where Vadd is removed at
t = 0. The black line represents the center-of-mass position 〈x〉 at
each time. The white dashed line indicates t = 4 ms. A movie show-
ing the dynamics is provided in the Supplemental Material [76].

where eiθ (1, 0, 0) is rotated by the Euler angles α, β, and γ .
The overall phase θ − γ is therefore obtained by arg[ψ0(r)]
or arg[ψ1(r)ψ−1(r)]/2. The color in Fig. 8(a) represents
the overall phase of the droplets, which is uniform every-
where in the system, showing the phase coherence between
the droplets. We have numerically confirmed that the phase
coherence is robust against noise. To further clarify the super-
solidity, we excite the out-of-phase Goldstone mode [84]. In
addition to the cigar-shaped harmonic potential, we impose a
potential Vadd as

Vadd(r) = −V0

7∑
�=0

(2� + 1)e−[(x+x0−x1�)/σ ]2
, (27)

in the preparation of the initial state, where we take V0 =
1.3h̄ωx, x0 = 2.95 µm, x1 = 0.7 µm, and σ = 0.2 µm. This
additional potential and the ground-state density distribution
are shown in Figs. 9(a) and 9(b), respectively. Due to the
potential Vadd, the droplets have an imbalanced distribution;
droplets on the right-hand side are enlarged, while those on
the left-hand side are shrunk. At t = 0, the potential Vadd is
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removed and the subsequent dynamics is shown in Fig. 9(c).
One can clearly see that the pattern oscillates in the x direction
with a period of �8 ms. The center-of-mass position,

〈x〉 = 1

N

∫
drxρ(r), (28)

is shown as the black line in Fig. 9(c), which is almost at rest.
This counterintuitive dynamics in which the pattern largely
moves while the center-of-mass position remains unchanged
is the manifestation of the out-of-phase Goldstone mode [84],
which is a hallmark of supersolidity, namely, the superflow
compensates for the movement of the pattern to maintain the
center-of-mass position.

Conclusions and discussion. To summarize, we have in-
vestigated a self-bound droplet in a spinor dipolar BEC. For
a large number of atoms, large εdd, and a small magnetic
field, there exists a stable self-bound torus-shaped droplet that
contains a magnetic vortex (Fig. 1), which is stable against
disturbances (Fig. 2). We proposed a variational wave function
for the torus-shaped droplet, which agreed well with the GP
results (Figs. 3 and 4). The torus-shaped droplet is stable
even in the presence of the spin-independent interactions, if
the dipolar length add is sufficiently larger than the relevant

scattering lengths (Fig. 5). For some range of the magnetic
field, the system exhibits bistability between the torus- and
cigar-shaped droplets (Fig. 6). The torus-shaped droplet ex-
hibits the Einstein–de Haas effect as the applied magnetic field
is changed (Fig. 7). Multiple droplets form a supersolid in
an elongated trap (Fig. 8), and the supersolidity was corrob-
orated by the excitation of the out-of-phase Goldstone mode
(Fig. 9).

A torus-shaped droplet may be generated experimentally
by the following procedure. First, the condensate atoms
are prepared in the |F, m = 0〉 hyperfine state in an optical
trap. When the DDI is large, this nonmagnetized state is
dynamically and energetically unstable against spontaneous
magnetization [51]. If the BEC is confined to the expected
droplet size, the spontaneous magnetization will form the
magnetic-vortex state that has the lowest energy [45]. After
some relaxation time, the optical trap is switched off, which
results in a self-bound torus-shaped droplet. When hyperfine
spins with higher energies (F �= 6) are used, the above exper-
imental procedure must be accomplished within the lifetime
due to hyperfine exchanging collisions, which has not been
measured for a europium BEC.

Acknowledgment. This work was supported by JSPS KAK-
ENHI Grant No. JP23K03276.

[1] For example, see C. Kittel, Introduction to Solid State Physics,
8th ed. (Wiley, New Jersey, 2005), Chap. 12.

[2] A. Tonomura, T. Matsuda, J. Endo, T. Arii, and K. Mihama,
Direct observation of fine structure of magnetic domain walls
by electron holography, Phys. Rev. Lett. 44, 1430 (1980).

[3] R. P. Cowburn, D. K. Koltsolv, A. O. Adeyeye, M. E. Welland,
and D. M. Tricker, Single-domain circular nanomagnets, Phys.
Rev. Lett. 83, 1042 (1999).

[4] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono,
Magnetic vortex core observation in circular dots of permalloy,
Science 289, 930 (2000).

[5] J. Rothman, M. Kläui, L. Lopez-Diaz, C. A. F. Vaz, A. Bleloch,
J. A. C. Bland, Z. Cui, and R. Speaks, Observation of a bi-
domain state and nucleation free switching in mesoscopic ring
magnets, Phys. Rev. Lett. 86, 1098 (2001).

[6] S. P. Li, D. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels,
L. D. Buda, and K. Ounadjela, Flux closure structures in cobalt
rings, Phys. Rev. Lett. 86, 1102 (2001).

[7] A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M.
Morgenstern, and R. Wiesendanger, Direct observation of in-
ternal spin structure of magnetic vortex cores, Science 298, 577
(2002).

[8] M. J. Hÿtch, R. E. Dunin-Borkowski, M. R. Scheinfein, J.
Moulin, C. Duhamel, F. Mazaleyrat, and Y. Champion, Vortex
flux channeling in magnetic nanoparticle chains, Phys. Rev.
Lett. 91, 257207 (2003).

[9] C.-J. Jia, L.-D. Sun, F. Luo, X.-D. Han, L. J. Heyderman, Z.-G.
Yan, C.-H. Yan, K. Zheng, Z. Zhang, M. Takano, N. Hayashi,
M. Eltschka, M. Kläui, U. Rüdiger, T. Kasama, L. Cervera-
Gontard, R. E. Dunin-Borkowski, G. Tzvetkov, and J. Raabe,
Large-scale synthesis of single-crystalline iron oxide magnetic
nanorings, J. Am. Chem. Soc. 130, 16968 (2008).

[10] G. R. Lewis, J. C. Loudon, R. Tovey, Y.-H. Chen, A. P.
Roberts, R. J. Harrison, P. A. Midgley, and E. Ringe, Magnetic
vortex states in toroidal iron oxide nanoparticles: Combin-
ing micromagnetics with tomography, Nano Lett. 20, 7405
(2020).

[11] R. P. Cowburn, Magnetic nanodots for device applications,
J. Magn. Magn. Mater. 242-245, 505 (2002).

[12] D.-H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh,
M. S. Lesniak, and V. Novosad, Biofunctionalized magnetic-
vortex microdiscs for targeted cancer-cell destruction, Nat.
Mater. 9, 165 (2010).

[13] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D.
Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima,
H. Kubota, S. Yuasa, M. D. Stiles, and J. Grollier, Neuromor-
phic computing with nanoscale spintronic oscillators, Nature
(London) 547, 428 (2017).

[14] X. Liu, N. Kent, A. Ceballos, R. Streubel, Y. Jiang, Y. Chai,
P. Y. Kim, J. Forth, F. Hellman, S. Shi, D. Wang, B. A. Helms,
P. D. Ashby, P. Fischer, and T. P. Russell, Reconfigurable ferro-
magnetic liquid droplets, Science 365, 264 (2019).

[15] D. S. Petrov, Quantum mechanical stabilization of a collapsing
Bose-Bose mixture, Phys. Rev. Lett. 115, 155302 (2015).

[16] T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and
eigenfunctions of a Bose system of hard spheres and its low-
temperature properties, Phys. Rev. 106, 1135 (1957).

[17] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I.
Ferrier-Barbut, and T. Pfau, Observing the Rosensweig in-
stability of a quantum ferrofluid, Nature (London) 530, 194
(2016).

[18] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T.
Pfau, Self-bound droplets of a dilute magnetic quantum liquid,
Nature (London) 539, 259 (2016).

L042049-8

https://doi.org/10.1103/PhysRevLett.44.1430
https://doi.org/10.1103/PhysRevLett.83.1042
https://doi.org/10.1126/science.289.5481.930
https://doi.org/10.1103/PhysRevLett.86.1098
https://doi.org/10.1103/PhysRevLett.86.1102
https://doi.org/10.1126/science.1075302
https://doi.org/10.1103/PhysRevLett.91.257207
https://doi.org/10.1021/ja805152t
https://doi.org/10.1021/acs.nanolett.0c02795
https://doi.org/10.1016/S0304-8853(01)01086-1
https://doi.org/10.1038/nmat2591
https://doi.org/10.1038/nature23011
https://doi.org/10.1126/science.aaw8719
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1038/nature16485
https://doi.org/10.1038/nature20126


QUANTUM DROPLETS WITH MAGNETIC VORTICES IN … PHYSICAL REVIEW RESEARCH 6, L042049 (2024)

[19] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.
Pfau, Observation of quantum droplets in a strongly dipolar
Bose gas, Phys. Rev. Lett. 116, 215301 (2016).

[20] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L.
Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover
from a dilute Bose-Einstein condensate to a macrodroplet in a
dipolar quantum fluid, Phys. Rev. X 6, 041039 (2016).

[21] I. Ferrier-Barbut, M. Wenzel, F. Böttcher, T. Langen, M. Isoard,
S. Stringari, and T. Pfau, Scissors mode of dipolar quantum
droplets of dysprosium atoms, Phys. Rev. Lett. 120, 160402
(2018).

[22] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P.
Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture
of Bose-Einstein condensates, Science 359, 301 (2018).

[23] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk,
F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M.
Fattori, Self-bound quantum droplets of atomic mixtures in free
space, Phys. Rev. Lett. 120, 235301 (2018).

[24] P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and
L. Tarruell, Bright soliton to quantum droplet transition in a
mixture of Bose-Einstein condensates, Phys. Rev. Lett. 120,
135301 (2018).

[25] F. Wächtler and L. Santos, Quantum filaments in dipo-
lar Bose-Einstein condensates, Phys. Rev. A 93, 061603
(R) (2016).

[26] F. Wächtler and L. Santos, Ground-state properties and elemen-
tary excitations of quantum droplets in dipolar Bose-Einstein
condensates, Phys. Rev. A 94, 043618 (2016).

[27] H. Saito, Path-integral Monte Carlo study on a droplet of a dipo-
lar Bose-Einstein condensate stabilized by quantum fluctuation,
J. Phys. Soc. Jpn. 85, 053001 (2016).

[28] R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie, Ground-
state phase diagram of a dipolar condensate with quantum
fluctuations, Phys. Rev. A 94, 033619 (2016).

[29] A. Macia, J. Sánchez-Baena, J. Boronat, and F. Mazzanti,
Droplets of trapped quantum dipolar bosons, Phys. Rev. Lett.
117, 205301 (2016).

[30] D. Baillie, R. M. Wilson, and P. B. Blakie, Collective excitations
of self-bound droplets of a dipolar quantum fluid, Phys. Rev.
Lett. 119, 255302 (2017).

[31] M. Wenzel, F. Böttcher, T. Langen, I. Ferrier-Barbut, and T.
Pfau, Striped states in a many-body system of tilted dipoles,
Phys. Rev. A 96, 053630 (2017).

[32] A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macrí,
Vortices in self-bound dipolar droplets, Phys. Rev. A 98, 023618
(2018).

[33] F. Böttcher, M. Wenzel, J.-N. Schmidt, M. Guo, T. Langen,
I. Ferrier-Barbut, T. Pfau, R. Bombín, J. Sánchez-Baena, J.
Boronat, and F. Mazzanti, Dilute dipolar quantum droplets be-
yond the extended Gross-Pitaevskii equation, Phys. Rev. Res. 1,
033088 (2019).

[34] R. Ołdziejewski, W. Górecki, K. Pawłowski, and K. Rzążewski,
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