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The equipartition theorem is crucial in classical statistical physics, and recent studies have revealed its quan-
tum counterpart for specific systems. This raises the question: does a quantum counterpart of the equipartition
theorem exist for any given system, and if so, what is its concrete form? In this Letter, we employ the Möbius
inversion approach to address these questions, providing a criterion to determine whether a system adheres to
the quantum counterpart of the equipartition theorem. If it does, the corresponding distribution function can be
readily derived. Furthermore, we construct the fermionic version of the criterion in a manner analogous to the
bosonic case.
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Introduction. The equipartition theorem, a fundamental
law in classical statistical physics, plays a crucial role in
understanding the distribution of energy among the different
degrees of freedom of a system in thermal equilibrium. Pro-
posed in the late nineteenth century, the theorem provides a
statistical basis for predicting the average energy associated
with each degree of freedom in a classical system [1,2]. It
forms a cornerstone in the bridge between the microscopic
world of particles and the macroscopic observables of thermo-
dynamics [3]. The equipartition theorem states that, in thermal
equilibrium, the energy for the each degree of freedom is
simply

Ei(T ) = kBT/2, (1)

where kB is the Boltzmann constant and T the temperature.
This theorem proves invaluable in understanding the behavior
of gases, solids, and other classical systems, forming a foun-
dation for the development of statistical mechanics [4–12].

Formally, by setting β ≡ 1/(kBT ), the inverse temper-
ature, we may recast the classical equipartition theorem
Eq. (1) as

Ei(β ) = Ei[E (ω, β )] :=
∫ ∞

0
dωPi(ω)E (ω, β ), (2)

where Ei, the mean energy contributed by the ith degree of
freedom, is expressed as the expectation (Ei[•]) of the en-
ergy density E (ω, β ) with respect to the distribution Pi(ω).
In the classical scenario, E (ω, β ) = 1/(2β ), which is inde-
pendent of ω. This together with the normalization condition,∫ ∞

0 dωPi(ω) = 1, recovers Eq. (1).
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Recently, many researchers [13–22] have tried to extend
the classical equipartition theorem to the quantum regime
with several models, such as electrical circuits [20], Brownian
oscillators [13,14,23,24], dissipative diamagnetism [14,15],
and considering kinetic energy for a more general setup [25].
The quantum counterpart of the equipartition theorem also
acquires the form of Eq. (2), but now the energy density
E (ω, β ) generally depends on ω. Though the energies of dif-
ferent degrees of freedom i differ from each other, the energy
density E (ω, β ) is universal for all the degrees of freedom,
representing the “equipartition” in the quantum sense [22]. In
these researches, the systems are assumed to be quadratic and
E (ω, β ) is set to be (h̄ω/4) coth(h̄βω/2), which is the energy
of the quantum harmonic oscillator in the equilibrium thermal
state. This E can be reduced to the classical case Eq. (1)
since limh̄→0(h̄ω/4) coth(h̄βω/2) = 1/(2β ), as explained be-
low Eq. (2). The normalized distribution functions Pi(ω) are
also explicitly obtained in these quadratic systems [16,22].
Moreover, for the fermionic system, the quantum counterpart
of the equipartition theorem is also investigated [17]. They
altogether provide novel insights for the accurate and conve-
nient evaluations of thermodynamic quantities [19,22,23].

For more general systems beyond the above-mentioned
quadratic models, does the quantum counterpart of the
equipartition theorem still hold? If so, how does one obtain
the corresponding distribution function Pi(ω)? Answers to
these questions will serve as a promising methodology for
studying the quantum thermodynamics. This Letter aims to
use a universal approach, the Möbius inversion, to answer
these questions. It originates from the number theory [26] and
has been used in various inverse problems in physics [27–29].
Based on the Möbius inversion, we give a criterion to deter-
mine whether the quantum counterpart of the equipartition
theorem holds for a given system. Furthermore, it tells us how
to obtain the distribution P(ω) with this systematic approach.
We refer the readers to the an intuitive figure (see Fig. 1)
to have an overview of the idea presented in this Letter. We
implement the proposed formulas to some typical models,
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FIG. 1. An illustration for the interplay between energy spectrum
E (β ) and distribution function P (ω) with the help of Eqs. (2) and (7).
The normalizability and non-negativity should also be checked for
P (ω).

including the free photon gas [30,31], the harmonic oscilla-
tor [32], the Riemann gas [33,34], and the Ising model [30,35].
It is worth noting that this method applies to both bosonic and
fermionic scenarios.

Quantum counterpart of equipartition theorem for
quadratic systems. As a prelude, we first briefly illustrate the
quantum counterpart of the equipartition theorem with an ex-
ample of a harmonic oscillator [13–16,18–24]. The quantum
counterpart of the equipartition theorem was discussed in the
scenario of open systems, whose simplest quadratic model
reads

HT = HS +
∑

j

[
p̂2

j

2mj
+ 1

2
mjω

2
j

(
x̂ j − c jQ̂

mjω
2
j

)2
]

(3)

with

HS = P̂2

2M
+ 1

2
M�2Q̂2. (4)

This is the Calderia-Leggett model [36] describing a harmonic
oscillator (Q̂, P̂) of mass M coupled to the heat bath ({x̂ j, p̂ j}).
For the system oscillator, the kinetic energy and the potential
energy are Ek(β ) = 〈P̂2〉/(2M ) and Ep(β ) = M�2〈Q̂2〉/2, re-
spectively. The average is defined over the total Gibbs state,
i.e., 〈•〉 := tr[•e−βHT ]/ tr e−βHT . For brevity, we set h̄ = 1
hereafter. It was shown [16,23] that both Ek(β ) and Ep(β ) can
be expressed in the form of Eq. (2) with

E (ω, β ) = ω

4
coth

(
βω

2

)
(5)

and

Pk(ω) = 2Mω

π
Im J (ω), Pp(ω) = 2M�2

πω
Im J (ω). (6)

Here, J (ω) denotes the generalized susceptibility [23]. It
was verified that Pp,k(ω) satisfies the normalized and non-
negative condition [16,23]. In the classical limit h̄ → 0, we
have E (ω, β ) → 1/(2β ), which gives rise to the classical
equipartition theorem Eq. (1). In the weak-coupling limit [23],

c j → 0 for all j in Eq. (3), resulting in Pp,k(ω) → δ(ω − �).
Besides, as explained in Refs. [19,22], the free energy F (β )
is expressed in the same form by simply switching E (ω, β )
into F (ω, β ) = ln[2 sinh(βω/2)]/β, which is the average free
energy of the oscillator in the canonical ensemble. For more
detailed discussions of general quadratic systems, we refer the
readers to Ref. [22].

Möbius inversion approach. To explore the quantum coun-
terpart of equipartition theorem for general systems, it is our
task to find a non-negative and normalizable P (ω) for each
degree of freedom, given the energy spectrum E (β ). For
brevity, we omit the label of degree of freedom hereafter. It
will be shown below that for any given energy spectrum E (β )
from theoretical calculation or experimental measurement, if
the quantum counterpart of the equipartition theorem is valid,
then we have

P (ω) = 2

ω

∞∑
n=1

μ(n)

n
Ě

(
ω

n

)
. (7)

Here, f̌ (ω) := L−1[ f (β )] denotes the inverse Laplace trans-
form of the function f (β ), and μ(n) is the celebrated Möbius
function [26].

Let us look at Eq. (7) from another angle. To ensure the
validity of the equipartition in the system with the spectrum
E (β ), we first obtain P (ω) from the right-hand side of Eq. (7).
It is the next task to check its non-negativity. Furthermore, the
normalizability requires that

∫ ∞
0 dω P (ω) converge to a finite

positive number. This global constant, possibly dependent on
the the size of the system, shall be absorbed into P (ω) [22].
By substituting the normalized P (ω) into Eq. (1), we obtain
the quantum counterpart of the equipartition theorem. On
the other hand, if the obtained P(ω) via Eq. (7) is without
non-negativity and normalizability, we claim that there is no
such quantum counterpart. In this sense, Eq. (7) supplies a
sufficient and necessary condition to ascertain the presence of
the quantum counterpart of the equipartition theorem. If the
equipartition holds, Eqs. (2) and (7) further give a concrete
expression of P (ω).

Now we give a detailed derivation of the Eq. (7). First
notice the following expansion:

E (ω, β ) = ω

4

(
2

∞∑
n=1

e−nβω + 1

)
for ω > 0. (8)

By substituting it into Eq. (1), we obtain

E (β ) =
∞∑

n=1

∫ ∞

0
dω

ω

2
P (ω)e−nβω + 1

4

∫ ∞

0
dω ωP (ω)

(9a)

=
∞∑

n=1

L
[ω

2
P (ω)

]
(nβ ). (9b)

For the second term on the right-hand side of
Eq. (9a), we note that limβ→∞ E (ω, β ) = ω/4 and
E (∞) = ∫ ∞

0 dω ωP (ω)/4 [cf. Eq. (1)]. Therefore, one
may absorb this term into the left-hand side of Eq. (9a) to
redefine the energy spectrum as E (β ) − E (∞) [cf. Eq. (9b)].
To proceed, we consult the modified Möbius inversion
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formula [27]: for two functions f (x) and g(x), we have

f (x) =
∞∑

n=1

g(nx) ⇐⇒ g(x) =
∞∑

n=1

μ(n) f (nx). (10)

By noticing that the right-hand side of Eq. (9b) is just a
function with respect to nβ, the Möbius inversion gives

L
[ω

2
P (ω)

]
(β ) =

∞∑
n=1

μ(n)E (nβ ), (11)

which is equivalent to

P (ω) = 2

ω

∞∑
n=1

μ(n)

n
L−1[E (β )]

(ω

n

)
. (12)

Here, we have used L−1[E (nβ )](ω) = L−1[E (β )](ω/n)/n.
Then we arrive at Eq. (7).

Typical examples. Let us turn to several examples to il-
lustrate the procedure. Generally speaking, the asymptotic
behavior of the energy spectrum at infinite temperature (β =
0) plays a crucial role. Noting that E (ω, β ) ∼ β−1 and P (ω)
is normalized, we thereby conclude from Eq. (1) that E (β ) ∼
β−1 for any degree of freedom and so is the total energy. As
a result, the quantum counterpart of the equipartition theo-
rem does not hold in such as the Ising model [30,35] and
the Riemann gas [33,34], whose energy spectrums converge
to a finite real number when β → 0. The same criterion
also rules out the photon gas governed by the well-known
Stefan-Boltzmann law in two and three dimensions, whose
total energy spectrums asymptotically behave as β−3 and β−4,
respectively.

For generality, we set E tot (β ) = ∫ ∞
0 dk A(k)β−k with

A(k) being an undetermined function. The inverse Laplace
transform of E tot (β ) reads Ě tot (ω) = ∫ ∞

0 dk A(k)�(k)ωk−1.
The distribution function is evaluated to be P (ω) =∫ ∞

0 dk A(k)�(k)ωk−2/ζ (k) [cf. Eq. (7)]. Here, we used the
property of the Möbius function [37],

∑∞
n=1 μ(n)/ns =

1/ζ (s) for Re s > 1, where ζ (s) is the Riemann zeta func-
tion. Therefore, the key point is to examine whether this
distribution function satisfies the non-negativity and normal-
izability, which solely depends on the concrete form of A(k).
As a simple example, we choose A(k) = Cδ(k − k0) with
a constant C ∈ R+. The resulting distribution function is
P (ω) = C�(k0)ωk0−2/ζ (k0), which cannot be normalized for
k0 = 3, 4. This conclusion aligns with our previous analysis
of photon gas.

We should emphasize here that the absence of the quantum
counterpart of the equipartition theorem does not show any
violation to the fundamental principles of quantum mechanics
or statistical physics. One of the prerequisites is the energy
spectrum behaving asymptotically as β−1 at high temperature,
as discussed at the beginning of this paragraph. Therefore, not
all real equilibrium necessarily should adhere to the quantum
counterpart of the equipartition theorem.

Now turn to the linear superposition property. Assume that
we have a set of energy spectrums {Ei(β )}, all of which follow
the quantum counterpart of the equipartition theorem. We de-
note the corresponding distribution function as {Pi(ω)}. Due
to the linear property of the inverse Laplace transform, the en-
ergy spectrum E (β ) = ∑

i αiEi(β ) also satisfies the quantum

counterpart of the equipartition theorem with the distribution
function P (ω) = ∑

i αiPi(ω), as long as all the coefficients
{αi} are non-negative. This distribution function shall be fur-
ther normalized as P (ω) = ∑

i αiPi(ω)/
∑

i αi. The present
results are immediately followed by an example in which the
energy spectrums are set to be {El (β ) = ω0e−lβω0/(eβω0 − 1)}
with ω0 a positive constant and l an integer. In this case, we
have

Ěl (ω) = ω0L−1

[
e−(l+1)βω0

1 − e−βω0

]
= ω0L−1

⎡
⎣ ∞∑

n=l+1

e−nβω0

⎤
⎦

= ω0

∞∑
n=l+1

δ(ω − nω0). (13)

From Eq. (13) and Möbius inversion, we obtain the corre-
sponding distribution function,

Pl (ω) = 2

ω

∞∑
n=l+1

μ(n)

n
ω0

∞∑
m=1

δ(ω/n − mω0)

= 2
∞∑

k=l+1

∑
n|k

μ(n)

k
δ(ω − kω0)

= 2
∞∑

k=l+1

δk,1

k
δ(ω − kω0), (14)

where n|k means the integer n divides k. To obtain the
last equality, we have used the identity

∑
n|k μ(n) = δk,1.

For l � 0, the distribution function (14) directly reduces to
2δ(ω − ω0). For l > 0, we have Pl (ω) = 0. Due to the linear
superposition property, we know that the spectrum

E (β ) =
∑
l�0

αlEl (β ) (15)

adheres to the quantum counterpart of the equipartition theo-
rem with the distribution function

P (ω) = 2
∑
l�0

αlδ(ω − ω0) (16)

up to a normalization. Specifically, if we set αl = 1/4 for l =
−1, 0 and αl = 0 otherwise, Eq. (15) reduces to the spectrum
of the quantum harmonic oscillator system:

E (β ) = 1

4
[E0(β ) + E−1(β )] = ω0

4
coth

βω0

2
(17)

with P (ω) = δ(ω − ω0). This result also aligns with
our expectation, since for the quantum harmonic oscil-
lator we have from Eq. (2) that (ω0/4) coth(βω0/2) =∫ ∞

0 dω E (ω, β )δ(ω − ω0).
Fermionic version. Here, we present the fermionic version

of the quantum counterpart of the equipartition theorem and
its Möbius inverse by analogy. Note that in the bosonic case,
Eq. (2) can be recast as

E (β ) = 1

4

∫ ∞

−∞
dω P (ω)

ω

eβω − 1

= 1

4

∫ ∞

−∞
dω P (ω)ωρB(ω) (18)
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with the even extension P (−ω) = P (ω) for ω � 0. The factor
ρB(ω) := 1/(eβω − 1) is recognized as the expected number
of bosonic particles with the energy ω. In the fermionic case,
we just replace ρB(ω) by ρF(ω) = 1/(eβω + 1) and obtain

[b]EF(β ) = 1

4

∫ ∞

−∞
dωP F(ω)ωρF(ω)

=
∫ ∞

0
dω EF(ω, β )P F(ω). (19)

In the second equality, we have defined EF(ω, β ) :=
−(ω/4) tanh(βω/2) and set P F(−ω) = P F(ω). This result is
equivalent to that in [17].

To utilize the Möbius inversion, we follow a similar pro-
cedure to that in the bosonic case. First, we substitute the
following series expansion,

EF(ω, β ) = −ω

4

[
2

∞∑
n=1

(−1)ne−nβω + 1

]
, (20)

into the fermionic version Eq. (19), obtaining

E (β ) =
∞∑

n=1

∫ ∞

0
dω

ω

2
P (ω)(−1)n−1e−nβω

− 1

4

∫ ∞

0
dω ωP (ω). (21)

Since limβ→∞ EF(ω, β ) = −ω/4, the second term in Eq. (21)
is equal to E (∞), which can also be absorbed into E (β ) to
redefine the energy spectrum. We have the following modified

Möbius inversion formula for alternating series [38]:

g(x) =
∞∑

n=1

(−1)n−1 f (nx)

⇔ f (x) =
∞∑

n=1

μ(n)

[ ∞∑
m=1

2m−1g(2m−1nx)

]
. (22)

Applying Eq. (22) to Eq. (21), we finally arrive at

P (ω) = 2

ω

∞∑
n=1

μ(n)

n

∞∑
m=1

Ě
( ω

2m−1n

)
, (23)

which is the desired fermionic version of the Möbius
inversion.

Summary. In conclusion, we introduced the Möbius in-
version to study the existence of a quantum counterpart
to the equipartition theorem and derived the distribution
function P (ω) for a given system. Our approach has been
applied to various systems, extending the analysis from
bosons to fermions. Future work will explore additional
connections between number theory and statistical physics,
investigate nontrivial energy spectra in open quantum sys-
tems, and examine links between the quantum counterpart of
the equipartition theorem and level statistics or random matrix
theory [33,39,40].
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