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The quantum metric of single-particle wave functions in topological flat bands plays a crucial role in
determining the stability of fractional Chern insulating (FCI) states. Here, we unravel that the quantum metric
causes the many-body Chern number of the FCI states to deviate sharply from the expected value associated
with partial filling of the single-particle topological flat band. Furthermore, the variation of the quantum metric
in momentum space induces band dispersion through interactions, affecting the stability of the FCI states. This
causes a reentrant transition into the Fermi liquid from the FCI phase as the interaction strength increases.
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Introduction. The interplay between strong correlation and
topology underpins many emergent phenomena in condensed
matter systems. A seminal example of this is the discovery of
the fractional quantum Hall effect (FQHE) in electron gases
subjected to a strong perpendicular magnetic field, forming
Landau levels [1–4]. A key feature of the FQHE is the frac-
tionally quantized Hall conductance, which correlates with
the Chern number of the Landau level and the fractional
filling [3,5–8]. The recent discovery of the fractional Chern
insulator (FCI) under zero magnetic field in twisted MoTe2

moiré superlattice [9–12] and pentalayer graphene [13,14]
highlights the profound interplay between strong correlation
and topology in band systems. In twisted MoTe2, the FCI ap-
pears through the partial filling of a topological flat band, with
conductance determined by the single-particle band topol-
ogy [15,16]. In contrast, the emergence of FCI in pentalayer
graphene is unexpected since the stabilization of a Chern band
itself necessitates interaction.

The behavior of electrons in quantum materials is gov-
erned by the energy dispersion and their wave functions in
the Hilbert space. An important characterization of the struc-
ture of the wave function is the quantum geometric tensor
ημν (k) ≡ 〈∂μuk|(1 − |uk〉〈uk|)|∂νuk〉, where |uk〉 is the peri-
odic part of the Bloch wave function [17]. The real part of
ημν is the Fubini-Study quantum metric gμν = Re[ημν], and
the imaginary part is the Berry curvature Fxy = −2Im[ηxy],
which determines the topology of quantum systems. The role
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of topology in quantum systems has been well recognized, as
demonstrated in the integer/FQHE [1,3,18,19], Chern insula-
tors [20], and more recently topological insulators [21] and
semimetals [22]. The quantum metric, which is another im-
portant aspect of a quantum system, has attracted considerable
attention only very recently. Authors of recent studies have
shown that quantum geometry can induce transport phenom-
ena [23–27] and can be crucial for the stability of quantum
states [28,29], including FCI [30–37]. The stabilization of FCI
hinges on several factors, such as band flatness, uniform Berry
curvature distribution across momentum space, and the trace
condition, which connects the real and imaginary parts of
quantum geometry. Theoretically [15,38–44], the approach to
achieve an FCI state starts with a flat Chern band, followed by
optimizing the quantum geometry of the single-particle wave
function [45–55]. Then partially filling the flat topological
band stabilizes the FCI with Hall conductance σxy = Cνe2/h,
where C is the Chern number of the band and ν is the filling
factor. However, the discovery of FCI in pentalayer graphene
challenges this paradigm and calls for a scrutiny of the rela-
tionship between the single-particle band and the many-body
quantum state.

In this letter, we present an example where the many-
body Chern number or Hall conductance deviates from the
expected σxy = Cνe2/h due to the quantum metric. We ex-
amine a model system featuring two distinct single-particle
topological bands with C = ±1. Under strong Coulomb in-
teraction, electrons preferentially populate the band with a
lower quantum metric, despite its higher energy at the single-
particle level. Consequently, the many-body Chern number
diverges from that predicted by the filling of the lower-energy
single-particle band. This demonstrates the important role of
the quantum metric in FCI phenomena: It not only determines
the emergence of the FCI states but also affects the resulting
many-body Chern number. Furthermore, the quantum metric
generates dispersion through interaction and causes reentrant
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FIG. 1. Phase diagram of the interacting quadratic band crossing
point (QBCP) flat bands at α̃ = 2.13 with fixed mz = 1 (band gap
� = 2mz). The symbols are the calculations with Nx = 3, Ny = 5.
The red area denotes the fractional Chern insulating (FCI) with
inverted many-body Chern number, which originated mainly from
the states of the higher single-particle band, while the blue area
represents the ordinary FCI mainly contributed from the states in the
lower single-particle band. The white area is the crossover region
with mixed FCI states from the two bands. Black area represents
the Fermi liquid (FL) phase. Vertical dashed line marks the c0 = 0
chiral limit, while horizontal dotted line marks U → ∞ limit. Dark
(light) red and blue mark the FCI states with the spread in the
FCI ground-state energies larger (smaller) than the many-body gap,
indicating more (less) stable FCI states.

transition from FCI to Fermi liquid (FL). The multiple roles
of the quantum metric give rise to the rich phase diagram,
Fig. 1, when tuning the quantum metric through the model
parameters and interaction strength.

Model. To establish the connection between the quantum
geometry and the many-body quantum state, it is desirable to
have great tunability of the quantum geometry and the band
dispersion. For this purpose, we take topological flat bands
emerging from the quadratic band crossing point (QBCP) with
periodic strain [56] as a model system. The physics unrav-
eled here is more general and is applicable to a broad class
of systems including twisted bilayer graphene and twisted
MoTe2. The QBCP in two dimensions (2D) is described by
the continuum Hamiltonian:

H� (k) = −[
c0k2σ0 − (

k2
x − k2

y

)
σx − 2kxkyσy + mzσz

]
, (1)

where σα are the Pauli matrices and σ0 is the identity ma-
trix. All quantities are made dimensionless through proper
renormalization. As one lattice realization, the QBCP can
emerge as a low-energy theory near the � point in a
kagome lattice. Adding next-nearest-neighbor hopping in
the kagome lattice gives control of the parameter c0, while
an extra phase in the nearest-neighbor hopping gives rise
to mz, which breaks time-reversal symmetry [57]. In the
chiral limit c0 = 0 and mz = 0, {H� (k), σz} = 0, the spec-
trum is particle-hole symmetric. To achieve topological flat
bands, we introduce periodic strain to the QBCP H (r) =
H� (k) + Ax(r)σx + Ay(r)σy. In the chiral basis, kα → −i∂α ,

FIG. 2. Many-body state spectrum of the inverted fractional
Chern insulating (FCI) at c0 = −0.25, mz = 1 with grid size N = 21
(Sec. II in the Supplemental Material [58]) and Q = 7 electrons,
with infinite U (red region in Fig. 1). Left inset: The single-particle
dispersion with the C = −1 (blue) band [A sublattice polarized
(1, 0)T ] lower than the C = 1 (red) band [B sublattice polarized
(0, 1)T ]. Right inset: The particle entanglement spectrum ξ of the
three lowest states with a many-body CMB = 1

3 and the next three
lowest states with many-body CMB = − 1

3 (see Sec. V in the Supple-
mental Material [58] for the many-body Chern number calculation).
Vertical dashed line marks the analytical spectrum gap for the charge
density wave (CDW; Nξ = 105) and the FCI (Nξ = 637; Sec. VI in
the Supplemental Material [58]).

z ≡ x + iy, Ã = Ax − iAy, ∂z = 1
2 (∂x − i∂y), we have

H (r) =
(

4c0∂z∂z̄ − mz 4∂2
z + Ã

4∂2
z̄ + Ã∗ 4c0∂z∂z̄ + mz

)
. (2)

Within the first-harmonic approximation [56], the strain field
has the form Ã(r) = α2

2

∑3
n=1 ωn−1 cos(Gn · r + φ), where

α is the strain strength, ω = e2π i/3, G1 = 4π√
3
(0, 1), G2 =

4π√
3
(−

√
3

2 ,− 1
2 ), G3 = 4π√

3
(
√

3
2 ,− 1

2 ) are reciprocal lattice vec-
tors. In the chiral limit c0 = 0, topological exact flat bands
appear at E = 0 with Chern number C = ±1 and ideal
quantum metric at specific strain strength α̃ = α/|Gm| =
0.79, 2.13, 3.52, . . . . The Chern bands are sublattice polar-
ized, which is defined as the eigenstate of σz. The introduction
of a finite mz breaks time-reversal symmetry, raising the en-
ergy of one Chern band while lowering the other, with the
sign of mz dictating the sign of the Hall conductance in
the noninteracting regime. However, in the regime of strong
interaction, especially for the FCI, the quantum metric can
reverse the sign of the Hall conductance from that expected
in the noninteracting scenario. Beyond the chiral limit, we
can adjust the band dispersion and quantum metric of the two
low-energy topological flat bands by c0, deforming the Berry
curvature and violating the trace condition [45] (see Sec. I in
the Supplemental Material [58]).

To study the interaction effect, we project the density op-
erator onto the two flat bands (red and blue bands in the
inset of Fig. 2) and carry out an exact diagonalization (ED)
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calculation. The interacting Hamiltonian becomes [15,59,60]

Hint =
∑
k,τ

(εk,τ − μ)c†
k,τ

ck,τ + 1

2A

∑
q

ρ(q)V (q)ρ(−q), (3)

where A is the volume (area) of the Brillouin zone (BZ) and
V (q) = 4πU tanh(qd )/(

√
3qa) is the screened Coulomb po-

tential, where d = 2a is the separation between the electrode
and the 2D system, and a is the period of the strain [15].
We label the bands by their Chern numbers τ = ±1. The
projected density operator is

ρ(q) =
∑

k,k′,τ,τ ′
〈ψk,τ |eiq·r|ψk′,τ ′ 〉c†

k,τ ck+q,τ ′

=
∑

k,τ,τ ′
λτ,τ ′,q(k)c†

k,τ ck+q,τ ′ , (4)

where ψk,τ (r) = eik·ruτ,k(r) = 1√
�

∑
G ei(G+k)·ruτ,k(G) is the

Bloch state and λτ,τ ′,q(k) = 〈uτ,k|uτ ′,k+q〉 is the form factor.
We consider the strong interaction limit where U 
 Wτ , �,
where Wτ and � are the bandwidth and band gap between the
τ = ±1 bands. When the interband hybridization is neglected,
i.e., the single-particle state is sublattice-polarized λτ,τ ′,q =
δτ,τ ′λτ,τ,q, the band occupation of electrons is a good quantum
number since [Hint, τz] = 0, where Sz ≡ 〈∑k,τ τz(k, τ )/2〉 is
the band occupation.

In the chiral limit c0 = 0 at the electron filling of ν = 1/m
with m an odd integer, the ground state is FCI due to its ideal
trace condition. Here, we focus on m = 3, and the conclusion
is valid for other values of m. The phase diagram obtained by
ED is shown in Fig. 1, where c0 tunes the quantum metric and
the dispersion of the bands. There are two FCI phases (red and
blue regions) and the FL phase (gray region). There are two
salient features in the phase diagram: (1) In the red regime, the
many-body Chern number of the FCI phase is inverted com-
pared with the filling of the lower single-particle band, while
in the blue regime, the many-body Chern number aligns with
that of the lower single-particle band. (2) When the interaction
U increases, there exists a reentrant transition to the FL from
the FCI phase around c0 = ±0.4. In the following, we show
that these two features originated from the quantum metric of
the single-particle wave function.

In the chiral limit c0 = 0, there are six degenerate ground
states in the ED spectrum, which can be grouped into two
sets of FCI states belonging to different band/sublattice po-
larization. In reality, the system spontaneously selects one
band polarization due to symmetry breaking, like spontaneous
valley polarization in twisted MoTe2 [10,15] and pentalayer
graphene [61]. The FCI nature of the many-body states is
confirmed by their total momentum K = 1, 8, 15 according
to the Haldane rule [62,63] (see Sec. II in the Supplemental
Material [58]), and their fractional nature can be confirmed
by their many-body Chern number and particle entanglement
spectrum gap [42]. From the density distribution 〈nk,τ 〉 =
〈c†

k,τ ck,τ 〉, the six lowest states have a uniform density 1
3 in

each band.
When chiral symmetry is broken (c0 �= 0), the band

occupation is no longer a good quantum number. We con-
sider the weak chiral-symmetry breaking region where the
single-particle wave function is still predominantly sublattice

polarized and the interband hybridization is small with the
help of a sublattice polarization field, mz = 1. In the red region
in Fig. 1, the single-particle band with C = −1 lies below the
band with C = 1. Surprisingly, the ground states are the three
degenerate FCI states with many-body Chern numbers equal
to CMB = 1

3 , which is not expected from the single-particle
band. The lowest FCI states have band occupation Sz ≈ Q/2,
which implies that doped electrons occupy the band with
C = 1, which has a higher single-particle band energy. In the
many-body spectrum, the next three lowest degenerate states
(blue in Fig. 2) are also FCI states with many-body Chern
number CMB = − 1

3 and have band occupation Sz ≈ −Q/2.
These FCI states correspond to the partial filling of the C =
−1 lower single-particle band. Interestingly, the third set of
three states (green circles in Fig. 2) exhibits a particle entan-
glement spectrum gap like that of charge density wave (CDW)
states, and the density-density correlation peaks in momentum
space [47,64]. However, these states never become ground
states in the QBCP flat bands when tuning c0.

Our ED results show that, for a fixed mz, the many-body
Chern number and the sign of the Hall conductance may flip
compared with the single-particle band Chern number as the
system moves away from the ideal quantum geometry c0 = 0.
This inversion of many-body Chern number also occurs for
other fractional fillings, i.e., ν = 2

3 , 2
5 , 2

7 (Sec. IV in the Sup-
plemental Material [58]). To understand this inversion effect,
we employ the Hartree-Fock (HF) mean field approximation
at integer filling ν = 1 without interband hybridization. The
role of the interband hybridization is discussed in Sec. VIII
in the Supplemental Material [58]. The self-consistent HF
approximation gives

Ek,τ = εk,τ − μ + �H (k, τ ) + �F (k, τ ), (5)

where �H (k, τ ),�F (k, τ ) are the Hartree and Fock energies:

�H (k, τ ) = 1

A

∑
q=nG

λτ,q(k)V (q)
∑

k′
λτ ′,−q(k′),

�F (k, τ ) = − 1

A

∑
q,k′=k+q

λτ,q(k)V (q)λτ,−q(k′). (6)

For a fast decay V (q), we approximate V (nG) = V δn0, and
�H (k, τ ) ≈ QV/A. The Hartree term depends only on density
and is independent of the quantum metric of each band.

On the other hand, the Fock contribution can be written as

�F (k, τ ) ≈ −V

A

∑
q,q<qc

|λτ,q(k)|2 f (Ek,τ ), (7)

where we have used λτ,−q(k + q) = λ∗
τ,q(k) and τ = τ ′. It be-

comes clear that the Fock energy is connected to the Hilbert-
Schmidt quantum distance of each band s2

τ (k, k + q) ≡ 1 −
|〈uτ,k|uτ,k+q〉|2 = 1 − |λτ,q(k)|2. For a fast decay V (q), we
can expand sτ for small q, s2

τ (k, k + q) ≈ gτ,μνqμqν . Then the
Fock energy becomes

�F (k, τ ) ≈ O(1) + πVint

A
f (Ek,τ )tr[gτ (k)], (8)

with some constant O(1) and Vint ≡ ∫
dqq3V (q) (see Sec. VII

in the Supplemental Material [58]). Thus, the Fock energy
depends on the quantum metric of the bands. In the chiral
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FIG. 3. Energy difference �E ≡ 〈Eτ − E−τ 〉ν/Q2 vs total trace
of the quantum metric obtained by exact diagonalization (ED). Eτ is
the lowest energy of the states associated with the occupation of the
band τ , 〈· · · 〉ν denotes average over nearly degenerate states, and Q
is the total number of electrons at each filling ν with a fixed system
size N = 21. Circles represent fixed mz but with varying c0, while
triangles represent fixed c0 but with varying mz. The blue curve is
for the ν = 1

3 fractional Chern insulating (FCI) states (averaged over
three nearly degenerate states), while the red curve is for the ν = 1
fully filled Chern insulators.

limit, the trace condition is satisfied tr[g(k, τ )] = |Fx,y(k, τ )|,
and

∫
dk|Fxy(k, τ )| = 1. The total Fock energy is the same

for the τ = ±1 band. However, when the chiral symmetry is
broken, �F (k, τ ) ∝ tr[gτ (k)] splits the τ = ± bands depend-
ing on their quantum metric. The band with a smaller total
trace of the quantum metric becomes lower in energy in the
strong-interacting limit. Note that tr[gτ (k)] is bounded below
by the Berry curvature of the band, so it cannot be zero for a
topological flat band.

We verify the above analysis numerically both for ν = 1
and fractional fillings. Indeed, the energy of the occu-
pied band is proportional to the trace of its quantum
metric, and the energy difference �E ≡ EC=1 − EC=−1 ∝∑

k tr[g(k, 1) − g(k,−1)], as shown in Fig. 3. One may argue
that the HF analysis for a full filling of the band at ν = 1
[Eq. (8)] also applies to FCI because electrons in FCI occupy
all momentum points equally. When c0 < 0 and mz > 0, the
single-particle band with a higher energy carries a smaller
total trace of the quantum metric. As a consequence, the
interaction inverts the band energy when it is occupied, which
results in an inverted many-body Chern number compared
with the expectation of a partial filling of the lower single-
particle band.

The first role of the quantum metric in determining the
stability of FCI is through the trace condition, i.e., the FCI
is favored when tr[g(k)] = Fxy(k). The second role of the
quantum metric is to modify the single-particle band align-
ment and cause the inversion of the many-body Chern number
compared with the single-particle band topology. Since the
contribution of the quantum metric to the interaction energy
is momentum dependent, it also modifies the band disper-
sion �F (k, τ ) ∼ tr[gτ (k)], which affects the stability of the

(a)

(b)

(c)

FIG. 4. Quality of fractional Chern insulating (FCI) states vs
standard deviation of tr[g] obtained by the exact diagonalization
(ED) without interband hybridization. Blue squares are from three
different magic parameters α̃ in the chiral limit c0 = 0. Red and
green data are obtained at the first magic parameter α̃1 = 0.79.
(a) Spread of the ground state energies for the three quasidegenerate
FCI states DFCI ≡ E3 − E1. (b) Many-body gap of the FCI states
�MB ≡ E4 − E1, where En denotes nth many-body energy. (c) The
lower Hartree-Fock (HF) band dispersion at the cut c0 = 0.35 in
Fig. 1, where the reentrant transition to Fermi liquid (FL) occurs. The
dispersion is offset by the average band energy μ ≡ 〈ε〉, and finite U
results are renormalized by U . Here, the system size is Nx = Ny = 6.

FCI. The variation of the quantum metric in the momen-
tum space induces dispersion in the band structure. Here,
we introduce the standard deviation of the quantum metric
std(tr g) ≡

√
〈(tr g)2〉 − 〈tr g〉2 and study its role in the stabil-

ity of FCI. We define two quantities to quantify the quality of
the FCI states: (a) DFCI is the spread of the otherwise de-
generate FCI energy states in the ideal limit; (b) �MB is the
many-body gap of the FCI state. The smaller the DFCI and
the larger the �MB, the more robust the FCI. In Fig. 4, the
quality of the FCI states is shown to be inversely correlated
with the standard deviation of the quantum metric, regardless
of the source of deviation (α̃, c0, or mz). This is consistent with
the expectation that a more dispersive band caused by a large
variation of tr[g(k)] disfavors FCI. As the variation of tr[g(k)]
increases further, the Fock correction to the bands is expected
to destroy the FCI states and stabilize the FL [65].

The quantum metric-induced band dispersion also natu-
rally explains the reentrant FL state in the phase diagram,
Fig. 1. Around c0 = ±0.4, upon increasing U , the system
first transits from FL to FCI and then FL. The first transition
into FCI is natural since FCI requires interaction dominance
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over the kinetic energy of electrons. Our calculations show
that the quantum metric also helps flatten the dispersion at
intermediate U , as shown in Fig. 4(c). The single-particle
band has a strong dispersion around the � point, which is com-
pensated by the Fock energy at an intermediate U . For a large
U , the HF band becomes dispersive again due to the quan-
tum metric, which induces the second transition from FCI
to FL.

In summary, we explore the stability of FCI beyond ideal
quantum geometries, particularly for flat bands in systems
having QBCP under periodic strain. Using ED and HF calcu-
lations, we reveal the significant roles of the quantum metric
in stabilizing the FCI. We find that the quantum metric causes
the many-body Chern number of the FCI to deviate signif-
icantly from the expected value when partially filling the
lower-energy single-particle band. Additionally, the variation
of the quantum metric in momentum space induces band dis-
persion through interaction, which impacts the stability of the
FCI. As one manifestation, we show the reentrance of FL from
the FCI state as the interaction strength increases. Our results
have broad implications. For instance, in single-particle band
configurations with C = 0 and 1, it is possible to have an
interaction-induced transition from CDW to FCI if electrons

prefer to fill the C = 0 or 1 bands depending on the quantum
metric. In this letter, we highlight the role of quantum metric
in stabilizing the FCI in the strongly correlated topological flat
bands and showcase how the resultant FCI deviates from the
expectation of partially filling a single-particle band as also
exemplified in pentalayer graphene.
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