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Interaction-enhanced nesting in spin-fermion and Fermi-Hubbard models
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The spin-fermion (SF) model postulates that the dominant coupling between low-energy fermions in near
critical metals is mediated by collective spin fluctuations (paramagnons) peaked at the Néel wave vector, Qy,
connecting hot spots on opposite sides of the Fermi surface. It has been argued that strong correlations at hot
spots lead to a Fermi surface deformation (FSD) featuring flat regions and increased nesting. This conjecture
was confirmed in the perturbative self-consistent calculations when the paramagnon propagator dependence on
momentum deviation from Qy is given by x ~! o« |Ag|. Using diagrammatic Monte Carlo (diagMC) technique
we show that such a dependence holds only at temperatures orders of magnitude smaller than any other energy
scale in the problem, indicating that a different mechanism may be at play. Instead, we find that a x ~' o |Ag|?
dependence yields a robust finite-7' scenario for achieving FSD. To link phenomenological and microscopic
descriptions, we applied the connected determinant diagMC method to the (+ — ') Hubbard model and found
that at large U/t > 5.5 before the formation of electron and hole pockets (i) the FSD defined as a maximum
of the spectral function is not very pronounced; instead, it is the lines of zeros of the renormalized dispersion
relation that deforms toward nesting, and (ii) the static spin susceptibility is well described by x ~' oc |Ag/|?. Flat

FS regions yield a nontrivial scenario for realizing a non-Fermi liquid state.

DOI: 10.1103/PhysRevResearch.6.L.032058

Introduction. The two-dimensional spin-fermion model
was formulated as an effective theory for near critical met-
als and used to explain the non-Fermi liquid physics and
superconducting instability in doped cuprates [1,2]. In this
semiphenomenological model, the low-energy quasiparticles
interact with collective magnetic fluctuations, or param-
agnons. In some theories of high-7, superconductors the
paramagnons play a role similar to phonons in ordinary met-
als, with the general concept formulated in Refs. [3,4]. The
model has found a wide range of applications in cuprates and
iron-based superconductors including proposals for pairing
mechanisms in the “strange metal” [5].

On approach to the antiferromagnetic instability, the
spectrum of paramagnons softens and strong near-critical
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fluctuations may cause the Fermi surface (FS) to change its
shape near the hot spots—the FS points connected by the Néel
wave vector Qy. In what follows we consider the case with
eight hot spots when Qy = (£, 7 )/a with a = 1 being the
lattice constant. The exchange interaction mediated by the soft
modes changes the dispersion relation and, thus, deforms the
FS in the vicinity of hot spots, making it flatter and closer
to the nesting condition between the opposite FS patches
(for the illustration see Fig. 1 in [6]). This remarkable Fermi
surface deformation (FSD) originates solely from the strong
correlations within the hot spots. However, when it comes to
establishing the quantitative description of the phenomenon,
one finds that the result crucially depends on the wave vector
dependence of the paramagnon propagator y (its frequency
dependence is dominated by Landau damping, o |w|, describ-
ing decay of spin waves into particle-hole excitations [2,7]).
The critical Ornstein-Zernike form, X’l X |Aq|2, with
Aq = q — Qy, leads to the non-Fermi liquid behavior [1,2,7—
11]; the tendency to FSD was established in one-loop
RG [1,2]. (A model with four hot spots, when the FS touches
the antiferromagnetic Brillouin zone boundary (AFBZB) is a
“nonconventional” Fermi liquid state; its self-energy differs
from the standard Fermi liquid expectations but the low-
energy quasiparticles remain well defined [12,13]). It was

Published by the American Physical Society
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FIG. 1. Polarization T1") as a function of |[Aq| (see text) along
the (mw,m) direction at zero Matsubara frequency. Insets show
leading-order diagrams contributing to (a) polarization function and
(b) proper self-energy. All data were obtained for ¢’ /t = —0.1,¢ = 1,
g=1,andn =107° at half-filling; in this case the initial angle 6y is
less than 10°).

suggested in Ref. [14] that in the limit of weak coupling and
small angle between the Qu and FS normal at hot spots, the
effective paramagnon propagator takes the form x ~! ~ |Aq].
In this case, the outcome of the second-order self-consistent
solution is a flow toward flat hot spot domains. However, an
attempt of Ref. [15] to verify predictions of Ref. [14] using
determinant Monte Carlo simulations [9,16] at temperature
T/Er > 0.005 did not find evidence for linear momentum
dependence x ' ~ |Ag| despite observing deviations from
the Ornstein-Zernike ansatz. A more recent hybrid Monte
Carlo simulation for larger system sizes have reached similar
conclusions [17].

It should be noted that since interactions mediated by
critical modes do not displace quasiparticles along the FS,
well nested flat regions effectively act as one-dimensional
subsystems [6]. This is an alternative scenario for realizing
the non-Fermi liquid state that explains several important
properties of the pseudogap regime in cuprates, including
the excitation spectrum and transport phenomena (see, for
instance, [18,19]).

In this Letter, we address the FSD problem within the
spin-fermion and (¢t —¢') Hubbard models. Using diagram-
matic Monte Carlo (diagMC) method we first verify the
self-consistent scenario of Ref. [14] for the SF model and
demonstrate that it holds only at ultralow temperatures. Next,
to connect phenomenological considerations with micro-
scopic physics, we apply the connected determinant diagMC
technique (CDet) to the (+ — ¢") Hubbard model to reveal how
FSD develops in this case and what is the corresponding
momentum dependence of the spin susceptibility.

The diagMC approach combines advantages of quantum
field-theory tools with power of MC sampling of complex
configuration spaces [20,21]. It works directly in the ther-
modynamic limit and does not suffer from the conventional

fermionic sign problem [22], making it suitable for solving
systems with arbitrary dispersion relations and shapes of the
interaction potential [23-25]. The CDet approach [26] per-
forms efficient summation of all diagram topologies “on the
fly” and currently represents one of the most advanced unbi-
ased techniques for the Hubbard model.

Models. In the SF model with hot spots, Landau damping
renders the “bare” quadratic dependence of x on frequency,
irrelevant at low temperature. This allows one to formulate
the model in the Hamiltonian form [1,2]:

T -1
H = Z €kCi o Cka T Z Xo (@)Sq-S—q
k,a q

+g Z CltJrq,aU;,ﬁCk,ﬂSl—tI’ (1)
k.q,a,B,i

where c; o, 18 the fermion creation operator in the state with

momentum k and spin projection «, o’ are Pauli matrices (i =
X, ¥, z), g1is the SF coupling constant, € is the bare electron
dispersion, and S is the collective spin degree of freedom. In
what follows we choose ¢y as the tight-binding dispersion re-
lation on the square lattice with two hopping amplitudes, ¢ and
t' (t =1 in our units), yielding ex = —2¢(cos k, + cosk,) —
4t" cos ky cos ky.

Feynman diagrams for proper self-energy, X(q, w,), and
polarization, I1(q, w,,), where w, and w,, are fermionic and
bosonic Matsubara frequencies, respectively, follow from the
standard rules for the conventional and the skeleton represen-
tations, and have the same structure as for fermions interacting
via
V(@ o) = =2 (©19)) ,
4ylonl + xo (la —Qul)

where o¢ are Pauli matrices acting on the quasiparcle’s spins
and y is the Landau damping constant (in what follows we
take y /t = 1). This form respects the spin SU(2) symmetry
[on the square lattice all four vectors (£, &) are formally
identical to Qy].

The standard Fermi-Hubbard model on a square lattice at
half filling is parametrized by the nearest- and next-nearest-
neighbor hopping amplitudes ¢ and ¢’ and on-site repulsion
U (see, for instance, Ref. [27]). For a description of the
corresponding diagrammatic series and their treatment see
Refs. [26-28].

SF model. We start by verifying the scenario put forward
in Ref. [14], which corresponds to the limit of weak coupling
and small angle 8y between Qu and the FS normal at the
hot spot. Building on the one-loop RG result of Ref. [8] that
dynamical exponent z decreases from z = 2, it was conjec-
tured that the flow is toward x ! = [c(|Aq,| + [Aqy|) + |wl].
Moreover, it was shown that x ~! reproduces itself within the
Dyson-Schwinger equation at the level of two skeleton dia-
grams for the polarization I1, and, thus, represents the proper
effective paramagnon propagator. The linear in momentum
term is generated by the second-order diagram, see 1" in
Fig. 1(a), while higher-order diagrams were argued to be
small. This form of x then leads to the FSD with flat hot
spots because, for renormalized spectrum, 6y tends to zero.
The major drawback of this scenario is the assumption that
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FIG. 2. Deviation of the FS from the AFBZB (dashed line) in
momentum space as a function of angle ¢ for the SF model. The
inset displays one segment of the FS (solid red line) extracted from
Ex = 0 (see text). The dashed diamond curve shows part of the DLS

corresponding to the maxima of |Im21((0) |. All results are obtained for
T/t=0.1,c=1,g/t =04, andn = 1073

the renormalized coupling constant is small, for which there
is no evidence.

Using the diagMC technique for Eqs. (1) and (2) with
Xo_l = c(|]Aq,| + |Aqy|) + 1, where n ~ £~! is the inverse
correlation length, we computed the polarization and the
proper self-energy diagrams shown in both insets of Fig. 1,
and confirmed the prediction of Ref. [14] regarding the forma-
tion of flat regions around the hot spots in the limit of interest.
However, the entire scheme turned out to be extremely fragile
against finite temperature effects.

Figure 1 shows that already at 10~ < T/t < 1073 the mo-
mentum dependence of IV deviates from the linear one. On
the one hand this may explain why Ref. [15] did not observe it.
On the other hand, our results invalidate the FSD scenario pro-
posed in Ref. [14] for T/t > 10~*. This ultralow temperature
scale finds no explanation in any of the microscopic system
parameters or the effective theory of Ref. [14]. Thus, if FSD
is observed in a microscopic model at higher temperature, it
has to be a different effective theory.

If we proceed with computing the self-energy £ [see
Fig. 1(b)] with x, I'= ¢2Aq® + n? and use it to determine the
renormalized dispersion relation, Ex = ¢k + ReEl((O)(iw —
0) — w, counted from the chemical potential p, we obtain
results for the FSD shown in Fig. 2. We plot the distance
Ars between the FS and AFBZB as a function of angle ¢ =
tan’l[(ky —m)/(k, — )] with Apg = 0 corresponding to the
hot spot. Clearly, it is possible to produce flat hot-spot regions
with quadratic momentum dependence of x at temperatures
orders of magnitude higher than the limit established above
for the linear momentum ansatz, including the '/t = —0.3
case when the initial angle 9y is relatively large.

When ReXy and Im¥g have similar magnitudes, zeros of
Ex may not coincide with spectral intensity peaks measured
by ARPES. In this case, one may consider defining FS and
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FIG. 3. Momentum-resolved spectral function proxy (left) and
imaginary part of the self-energy (right) at the lowest Matsubara
frequency of the half-filled two-dimensional Hubbard model with
parameters U/t = 5.75, t'/t = —0.3, and T/t = 1/7. The calcula-
tion was performed on a 60 x 60 lattice up to ninth order in the
interaction strength, and, for visualization purposes, it was assumed
that the self-energy is zero outside a 60 x 60 box around the origin.
We plot here a quarter of the Brillouin zone. The black line is the
noninteracting FS, while the red line is the solution of Ex = 0 (with
full Xy).

the so-called Dzyaloshinskii-Luttinger surface (DLS) [29,30]
from the maxima and minima of spectral intensity, respec-
tively. The purple diamond curve in the inset of Fig. 2 shows
part of DLS extracted from the maxima of |Im)31((0)| at the
smallest Matsubara frequency, which also features a flat hot
spot. Within hot spots |ImX| is large, leading to suppressed
intensity in the nested regions.

It was suggested in Ref. [6] that x ~! oc |Aq|? within the
SF model confines quasiparticles within the flat FS regions,
and, as a result, these parts of FS form a one dimensional
subsystem weakly coupled to the rest of the FS. At sufficiently
low temperature, the state should be viewed as mixture of the
non-Fermi liquid whose physics is dominated by strong one-
dimensional fluctuations and the conventional Fermi liquid.
Eventually, the flat regions are gapped out leaving behind a
state with reduced FS [18,19].

Since the perturbative expansion for = 2Aq? + n?
with vanishing 7 breaks down, one has to assume that all ver-
tex corrections are ultimately reduced to the renormalization
of constants in the effective theory. The best way to verify this
assumption and to establish a link between the microscopic
physics and phenomenological treatments is to perform CDet
simulations of the two-dimensional (¢ — ¢") Hubbard model at
half filling.

Fermi-Hubbard model. The Fermi-Hubbard model on the
square lattice is the most studied prototypical model in the
context of cuprate superconductors. Nevertheless, the possi-
bility of the FSD toward flat hot spots in this model was never
addressed by unbiased first-principles methods. Our approach
is to employ the CDet technique at fixed density [27,31] to
evaluate Feynman diagrams up to high order to accurately
compute the shape of the Fermi surface and spin suscepti-
bility for the (r —¢') Hubbard model at half-filling (for the
series resummation procedure, see the Supplemental Mate-
rial [32]). The choice of half-filling was dictated by our goal
of maximizing antiferromagnetic correlations and avoiding
competing ordering tendencies.

We display in Fig. 3 our results for a representative point
U/t =5.75and T/t = 1/7. Defining the FS as the maximum
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FIG. 4. Inverse static spin susceptibility as a function of |Aq|> =
|q — Qu|? for the (+ —¢') Fermi-Hubbard model at half-filling and
U/t =5.5,6.0,T/t =0.1,¢/t = —0.3. Plots are presented for (red
diamonds) (0, 0) — (7r, ) direction; (blue circles) (0, 7) — (7, )
direction; and (green triangles) an arbitrary direction to (w, ).
Dashed line is the fit demonstrating a|Ag|?> + b behavior of x ' at
small deviations | Ag| with momentum independent a and b.

of the spectral function proxy at the smallest Matsubara fre-
quency, —ImGy ;«,, we see that it does not deform much. It
is instead the line of zeros of Ex that undergoes significant
deformation toward nesting. However, the imaginary part of
¥ is large all along the AFBZB, and largest at the “antinode”
k = (r, 0) and the symmetry related points, as is clear from
the second panel of Fig. 3. It suppresses the spectral weight
along the AFBZB, indicating that the potential excitations
suggested by the renormalized quasiparticle dispersion (which
neglects ImX) are in fact destroyed by large scattering with
momentum transfer close to Qy. We emphasize that this is
in strong contrast to what is expected from a weak-coupling
antiferromagnetic spin-fluctuation theory, where one would
expect that the maximum of the imaginary part of the self-
energy would lie on a (s, 7)-shifted version of FS. Hence,
this nesting property of the self-energy is a strong-coupling
non-perturbative effect. Correspondingly, it is close to the
antinode that the real part of the self-energy has the strongest
renormalization effect on the dispersion relation (see also the
Supplemental Material [32]). We finally note that the effec-
tive field theory of Ref. [14] is not applicable at considered
temperatures.

The momentum dependence of the spin susceptibility is
presented in Fig. 4. For small |Ag| the response is nearly
isotropic and closely follows the ¢?| Ag|* + & ~2 behavior with
both ¢ and & strongly dependent on U. At U/t = 6.5 the
correlation length is already about five lattice spacing. We
take these results as direct confirmation that diverging spin
correlations with quadratic dependence on Agq are responsible
for the formation of flat hot regions along AFBZB, in the
(t —t’) Fermi-Hubbard model. Once such regions form, they
effectively act as one-dimensional systems with non-Fermi
liquid properties.

Discussion and conclusion. Using diagrammatic Monte
Carlo methods, we have considered different mechanisms and
effective theories for formation of flat hot spots that amplify
the nesting conditions in metals with near-critical antifer-
romagnetic correlations. For the SF model, we confirmed
predictions of the weak-coupling theory with linear in mo-
mentum dependence of the inverse paramagnon propagator
x . However, this linear dependence holds only at unreason-
ably low temperature. The quadratic momentum dependence
of x~! is robust against finite-temperature effects and also
leads to flat Fermi surface domains near the hot spots, but
the corresponding effective field theory should assume that
higher-order vertex corrections are already accounted for in
the from of x©.

High-order connected determinant Monte Carlo simula-
tions of the (t — ¢’) Fermi-Hubbard model at half-filling reveal
that the Fermi surface based on spectral intensity maxima
does not undergo dramatic deformation toward flat AFBZB.
It is instead the lines of zero of the renormalized quasiparticle
dispersion that deforms toward nesting. This can be explained
by a nesting property of the self-energy, which becomes large
along the AFBZB, a typical strong coupling effect. In the
same parameter regime, x has a sharp peak at the Néel wave
vector Qy = (&£, £7), and the best description of the de-
pendence of x ~! on momentum for small deviations from Qy
is quadratic.

The key common aspect between the SF and Hubbard
model is that the quasiparticle dispersion is renormalized
toward nesting. In the Hubbard model this, in turn, leads
to enhanced scattering along the AFBZB which destroys
quasiparticle coherence in this “hot” region; this effect being
stronger near the antinodes (presumably due to the proxim-
ity of the van Hove singularity). In the spin-fermion model,
spectral intensity also gets suppressed within flat hot spots.

At zero temperature, we expect from, e.g., mean-field
theory that the half-filled (+ —¢’) Hubbard model at inter-
mediate values of U has a metallic ground state with a FS
reconstructed into hole and electron pockets due to antiferro-
magnetic ordering (at larger U, it becomes a Mott insulator
with a fully gapped FS). Our results show that further under-
standing of how this state is reached as temperature is lowered
and the correlation length grows, and of the corresponding
fermiology at low but finite temperature, should take into ac-
count the quasi-one-dimensional nature of nested hot regions,
as was suggested in [6].
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