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Telling different unravelings apart via nonlinear quantum-trajectory averages
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The Gorini-Kossakowski-Sudarshan-Lindblad master equation (ME) governs the density matrix of open
quantum systems (OQSs). When an OQS is subjected to weak continuous measurement, its state evolves as
a stochastic quantum trajectory, whose statistical average solves the ME. The ensemble of such trajectories is
termed an unraveling of the ME. We propose a method to operationally distinguish unravelings produced by
the same ME in different measurement scenarios, using nonlinear averages of observables over trajectories. We
apply the method to the paradigmatic quantum nonlinear system of resonance fluorescence in a two-level atom.
We compare the Poisson-type unraveling, induced by direct detection of photons scattered from the two-level
emitter, and the Wiener-type unraveling, induced by phase-sensitive detection of the emitted field. We show
that a quantum-trajectory-averaged variance is able to distinguish these measurement scenarios. We evaluate the
performance of the method, which can be readily extended to more complex OQSs, under a range of realistic
experimental conditions.
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Introduction. Quantum systems interacting with Marko-
vian environments are ubiquitous in the physical sciences.
A main tool for studying their dynamics is the determin-
sitic Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) mas-
ter equation (ME) [1,2]. This specifies the time evolution
of the density matrix ρ(t ) as the system experiences both
coherent and incoherent processes, with the latter involving
leakage of state information to the environment [3–6]. De-
spite its generality and wide use, the GKSL ME does not
fully describe the quantum dynamics when the environment
includes measurement devices, which convert a portion of the
leaked information to usable form. The temporal evolution
conditioned on the measurement record m defines a quantum
trajectory, in the ideal case [7] expressed as the pure state
ρm(t ) = |ψm(t )〉 〈ψm(t )|. Averaging ρm(t ) over the measure-
ment record solves the GKSL ME [8]. The identification of
the ρ(t ) with the ensemble average of ρm(t ) is an example
of an unraveling of the ME into a stochastic equation for
the pure state ρm(t ) [9–18]. Evidently, different measurement
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schemes correspond to different unravelings and lead to dif-
ferent ensembles of quantum trajectories. Unravelings thus
complement the picture drawn from their corresponding ME
which speaks of an unconditional evolution.

Quantities that are linear in the density matrix ρ(t ), such
as averages of observables, are fully determined by the GKSL
ME and, therefore, are independent of the choice of the unrav-
eling dictated by a given measurement scheme. In this Letter,
we develop nonlinear measures to differentiate unravelings,
thus opening a way to access the physics beyond the ME.
We demonstrate that evaluating an expectation value of a
physical observable for a specified quantum trajectory ρm(t ),
performing a nonlinear operation on the obtained result, and
averaging the result over the measurement record yields a
quantity that allows for distinguishing different unravelings of
the same GKSL ME. We focus on a paradigmatic open quan-
tum system, the resonance fluorescence of a two-level atom,
and consider unravelings corresponding to direct photode-
tection and to homodyne/heterodyne detection. We remark
that while direct photodetection enjoys an obvious link with
intensity correlations, measuring the spectrum of squeezing
is inherently tied with homodyne detection, which provides a
phase reference to a phase-dependent phenomenon [19].

The unravelings. Electron shelving [20,21] paved the way
to the first observations of quantum jumps [22–24], followed
by several atomic [25–27] and solid-state physics experiments
[28–30]. The theoretical description of these investigations
dates back to early works [31–42] that stimulated the de-
velopment of quantum trajectory theory [10,43–50]. Two
unravelings of the GKSL ME that play a fundamental role in
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FIG. 1. Schematic representation of the two main unraveling
schemes. In this setup, the trapped two-state atom is illuminated in
a Maltese-cross arrangement [51,52] shown in (a). The output radia-
tion escaping a particular lens is directed to either (b) a collection of
avalanche photodetectors (APDs) producing a time series of “click”
events (Poisson-type unraveling) or (c) a mixer with a strong local
oscillator field, to substantiate either a homodyne (ωLO = ωA) or
a heterodyne measurement (|ωLO − ωA| � γ ) scheme (Wiener-type
unraveling).

the understanding of the quantum trajectories are (i) Poisson
unraveling, related to direct photodetection and the so called
quantum Monte Carlo wave function approach [12,53–56];
and (ii) Wiener-type unraveling (the quantum state diffusion
model proposed by Gisin and Percival) [57,58], relating con-
ditional quantum dynamics to a continuous Wiener process
[59]. In the context of atomic physics experiments, the distinct
unravelings correspond to different photodetection schemes
[5], see Fig. 1. The Poisson unraveling is relevant for the di-
rect photodetection experiments, while the continuous Wiener
process arises in homodyne and heterodyne photodection
schemes [10,60].

The disparity between the experimental setups is reflected
in the different nature of quantum trajectories [58]. The
Wiener process yields a continuous evolution of the system
state |ψ (t )〉. In contrast, the acts of direct photodetection at
times t1 < t2 < . . . < tn collapse the conditional wavefunc-
tion. The resulting time evolution of |ψ (t )〉 is discontinuous
and the final state at t > tn depends, in general, on a particular
sequence of emission times |ψ (t )〉 = |ψt1,...,tn (t )〉. By col-
lecting photon counting records, the experimenter effectively
determines the quantum trajectory of the atom. The entangle-
ment between the electromagnetic field and the atom is the
key ingredient that allows for the inference of the atom’s state
based on the photodetection events [58,61]. In particular, Nha
and Carmichael demonstrated that the degree of entanglement
depends on how information in the environment is read [61].

Source master equation and linear averages. Our starting
point is the GKSL ME of resonance fluorescence, governing
the (unconditional) dynamics of the reduced system density
matrix ρ,

dρ

dt
= Lρ = −i

1

2
ωA[σz, ρ] − i�[e−iωAtσ+ + eiωAtσ−, ρ]

+ γ

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (1)

where we have neglected thermal excitation [62]. In the ME
(1), σ+, σ−, σz are the raising, lowering, and inversion op-
erators (represented by Pauli matrices), respectively, for the

two-level atom coherently driven by a resonant laser field of
frequency ωA; �R = 2� is the Rabi frequency at which the
two-state atom periodically oscillates between its ground and
excited states; and γ is the spontaneous emission rate. The
solution of the corresponding optical Bloch equations yields
the following expression for the average inversion when the
atom is initialized in its ground state:

〈σz(t )〉=Sz

[
1+Y 2e−(3γ /4)t

(
cosh δt + (3γ /4)

δ
sinh δt

)]
, (2)

where Y ≡ √
2�R/γ , δ ≡ γ

4

√
1 − 8Y 2, and Sz = −1/(1 +

Y 2) is the steady-state inversion. Hereinafter, we denote by 〈·〉
the quantum mechanical average over an individual realiza-
tion. For strong driving (Y � 1) the average inversion exhibits
damped oscillations at �R, relaxing to 0 + O(γ 2/�2). Equa-
tion (2) is an example of a typical linear average computed
directly from the ME, against which our nonlinear averages
are to be compared. We now describe the nonlinear averages.

Nonlinear averages beyond the density-matrix formalism.
The idea underlying our approach is to perform a nonlinear
operation on a quantum mechanical expectation value evalu-
ated for an individual quantum trajectory prior to averaging of
the result over the ensemble of quantum trajectories denoted
by (◦). A characteristic nonlinear average of our focus is
the quantity Var(σz ) ≡ 〈σz(t )〉2 − [〈σz(t )〉]2, which we here-
inafter call quantum-trajectory-averaged variance (QTAV).

The results depicted in Fig. 2 substantiate the pivotal influ-
ence of the environment when collecting records of a strongly
driven two-state atom and taking a sum over a collection of
them. The two principal unravelings are presented in their
ability to produce an ostensibly disparate Var(σz ), while the
corresponding average inversion remains unchanged. For the
direct photodetection [63–65], corresponding to the Poisson-
type unraveling of the ME, we obtain an exact expression for
Var(σz ) based on the waiting-time distribution [38,66]. For
γ t � 1, the asymptotic expression for the variance, including
first-order terms in γ /� of different frequencies, reads [62]

Var(σz ) = 1

2

{
1 + e−γ t/2 cos(4�t ) + γ

8�
e−γ t/2[4 sin(4�t )

− sin(6�t ) − 3 sin(2�t )] + O(γ 2/�2)

}
. (3)

The first observation to be made from Eq. (3) is that the
amplitude of the dominant term (second term in the sum) to
the QTAV—revealing a frequency doubling with respect to the
inversion—is independent of �. The variance ultimately re-
laxes to 1/2, as we can see in both uppermost panels of frames
(a) and (b). The asymptotic evolution to the steady state is in
very good agreement with the exact Monte Carlo simulations
as well as with the perturbative treatment of the Dyson-series
expansion for the variance [62], and the truncated hierarchy
of moments produced from the adjoint Lindbladian.

The time evolution of the QTAV is significantly altered,
see the middle panels of Fig. 2, when one places a beam
splitter and a local oscillator in the environment, and the fluo-
rescent signal interferes with the latter before photodetection
[Fig. 1(c)], corresponding to the heterodyne detection and ex-
emplifying Wiener-type unraveling. The frequency doubling
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FIG. 2. Linear vs nonlinear quantum-trajectory averages for three principal unravelings. Monte Carlo averages over 104 realizations
of the QTAV Var(σz ) plotted against the dimensionless time γ t for a Poisson-type unraveling (direct photodetection) and two Wiener-type
unravelings (homodyne and heterodyne detection) as indicated in each panel, for (a) Y = 10 and (b) Y = 30, with the two-level atom initialized
in its ground state. The oscillatory dot-dashed curves with alternating sign in all frames depict the average inversion 〈σz(t )〉. In the uppermost
panels of both frames, the pink and blue curves depict Var(σz ) obtained from the perturbative treatment of the Dyson-series expansion to first
order in γ /�, and the moment-based equations, respectively. The latter results are indistinguishable from the Monte Carlo simulations on the
scale of the figure. The dashed curves (in purple) depict the asymptotic expression (3). For heterodyne detection, the QTAV obtained from the
numerical simulations (in blue) is indistinguishable from the moment-based method results (in red). Homodyne detection is performed with
the local-oscillator phase selected along the antisqueezed and squeezed quadratures of the fluorescent field, at θ = 0 and π/2, respectively,
corresponding to the same inversion average (brown curve overlapping with the dot dashed).

is also in evidence, although the contrast in the oscillations
is visibly suppressed. The light scattered by the two-level
emitter is squeezed in the field quadrature that is in phase with
the mean scattered field amplitude ∝ 〈σ−(t )〉 [67,68]. The
bottom panel in each frame shows that the QTAV responds
differently to the detection of the squeezed vs the direction of
the antisqueezed quadrature of the fluorescent field, i.e., along
an axis perpendicular to the equator of the Bloch sphere where
quantum fluctuations are redistributed among the quadratures.

Ensemble moments and adjoint Lindbladian. To provide
some analytical grounding to the behavior of the QTAV,
we will delineate a method akin to the optical Bloch equa-
tions extended to account for the nonlinear averages. The
contributions from the Itô corrections to the ensemble mo-
ments can be found easily in the Heisenberg picture [69].
Under the Poisson unraveling for an observable A [44] (we
denote 〈A(t )〉 by 〈A〉t ),

d〈A〉t = 〈L†[A]〉t dt +
( 〈σ+Aσ−〉t−

〈σ+σ−〉t−
− 〈A〉t−

)
dÑ (t ), (4)

where Ñ is the compensated Poisson process, dÑ = dN −
γ 〈σ+σ−〉t dt , with a future pointing differential of expected
value zero. This means that the ensemble average, here de-
noted by E for readability, is just

dE〈A〉t = E〈L†[A]〉t dt,

which is the Heisenberg unraveling of the ME. It is use-
ful to consider this equation for a Hilbert-Schmidt basis Xi

for the space of observables. Call the quantum expectation

xi = 〈Xi〉. Thus, each observable A has a corresponding vector
a such that 〈A〉 = (a, x). If we use the basis corresponding
to the three Pauli matrices and the identity, all normalized
in the Hilbert-Schmidt norm, then the vector for A = σz is
a = (0, 0, 0,

√
2). Since a is just a constant vector, gener-

ally we have that E〈A〉 = E(a, x) = (a,Ex) and the square
of the quantum expectation becomes 〈A〉2 = ∑

i j aia jxix j so
that E〈A〉2 = ∑

i j aia jExix j , and so to see how the ensemble
average of square of the quantum expectation evolves in time,
it is necessary to know how Exix j evolves. In the Poisson case,
we obtain

dExix j = E(xi〈L†[Xj]〉t dt + 〈L†[Xi]〉t x jdt )

+ E

( 〈σ+Xiσ−〉t

〈σ+σ−〉t
− xi

)( 〈σ+Xjσ−〉t

〈σ+σ−〉t
− x j

)

× 〈σ+σ−〉t dt = E

(
xi(u

j, x) + (ui, x)x j

+ 1

(l, x)
((vi, xi ) − xi(l, x))((v j, x) − x j (l, x))

)
dt,

using the fact that dÑdÑ = dN with the rate of the Poisson
process being γ 〈σ+σ−〉t dt and in the last line using u j as the
vector corresponding to L†[Xj], l as σ+σ−, and v j as σ+Xjσ−.
This is an ordinary differential equation which, however, does
not close since it requires higher order moments such as
Exix jxk . Again, using the Itô product rule we can calculate
the equation for the higher order moments to obtain a system
of ordinary differential equations which still do not close. We
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can repeat this procedure to arbitrarily high order but at some
point we have to truncate. It can be shown that this truncation
is linear in the moments, which allows us to solve the system
using traditional methods of solving linear systems of ODEs.
The Wiener case [44,57,70,71] can be similarly approximately
solved by using the Heisenberg equation [69]

d〈A〉t = 〈L†[A]〉t dt +
(√

γ 〈A(σ− − 〈σ−〉t )〉
dW (t )√

2
+ H.c.

)
,

where W is a complex Wiener process. Solutions to these
kind of truncated systems of equations for the two principal
unravelings are depicted in Fig. 2, in very good agreement
with the Dyson-expansion method and Monte Carlo averages.

Direct photodetection revisited and compromised. Having
laid out an operational approach to distinguish the different
unravelings, let us return to direct photodetection and discuss
the most commonly encountered limitations in an actual ex-
periment, where the density matrix cannot be unraveled into a
pure-state ensemble, in which we would have a conditional
wavefunction obeying a Schrödinger equation with a non-
Hermitian Hamiltonian. This happens for a limited detector
efficiency η < 1 and/or a surrounding bath with appreciable
thermal excitation n [62].

Figure 3 testifies to the rapid degradation of Var(σz ) as
we move away from a pure-state description of the con-
ditional dynamics. The QTAV responds to quantum jumps
taking place in the course of individual realizations. This is
evident from Fig. 3(b) where Var(σz ) remains zero until a
spontaneous-emission event occurs in a pair of realizations.
For an imperfect detector or for a thermally excited bath,
the regression of fluctuations following a jump is damped.
The decay concerns the coherent part of the evolution be-
tween spontaneous emissions, at a rate much faster than γ ,
for typical experimental parameters where η 	 1. The inset
of Fig. 3(a) shows how sample trajectories spiral toward the
center of the Bloch sphere, while individual jumps reset the
evolution to the south pole.

Since the intensity correlation of the scattered light reflects
a nonexclusive probability of photocounting coincidences,
the limited detector efficiency can be counterbalanced by in-
creasing the number of photon “clicks” N in the course of
a long experimental run. Indeed, for the setup pictured in
Fig. 1(a), we have concluded that the signal-to-noise ratio for
g(2)(γ τ � 1) in a window about one inverse of the coherence
time scales with

√
N [62]. This allows the determination of

Var(σz ) from single realizations as low as 10−3, which is the
order of magnitude Monte Carlo simulations indicate for η �
0.05. This order of magnitude can be increased using high
numerical aperture collection systems [51,72] and efficient
single-photon detectors [73].

Conclusions and outlook. In summary, we have expanded
upon the fundamental concept of the variance in quantum
mechanics going beyond the conventional density-matrix for-
mulation. The different environments devised to collect the
output of an open quantum system show up in a markedly
different response of a quantity where nonlinear operations
are performed to individual realizations prior to averaging
over their ensemble. This is in contrast to linear observable
averages where the complementary measurement strategies all

FIG. 3. Experimental limitations and decay of “conditional” co-
herence. (a) Monte Carlo average over 104 realizations of the QTAV
Var(σz ) obtained with Y = 10, plotted against the dimensionless time
γ t for the ideal case n = 0, η = 1 (in green), n = 0, η = 0.5 (in
blue), n = 1, η = 1 (in orange), and n = 1, η = 0.5 (in red). The
dashed curve depicts 〈σz(t )〉 in the ideal case. The inset shows two
sample trajectories in the Bloch sphere obtained with Y = 30 and
for n = 0, η = 1 (i) and n = 1, η = 0.8 (ii). (b) Monte Carlo average
over two realizations for the atomic inversion, 〈σz(t )〉 (in green) and
Var(σz ) (in black) for the values of n, η indicated in each textbox.

abide by the predictions of the GKSL equation, and multitime
correlations—such as the intensity correlation function—are
obtained via the quantum regression formula. Following our
strategy, we need to set the initial point for two copies of the
system (here a ground-state reset for direct photodetection)
and then postselect the trajectories in such a way that the
photocounting record is the same with satisfactory accuracy.
Ergo, one gains, in principle, the ability to characterize the
experiment’s power to collapse the wavefunction and add
information to the memory carried by a state conditioned on
all events that have taken place along a single trajectory. This
ability allows for an experimentally oriented test of the objec-
tive quantum state assumption via an EPR steering inequality;
direct photodetection has been argued to be “more quantum”
than its Wiener-type counterparts [74–76]. While we have
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focused on two primary unravelings, the possibilities are in
fact endless as different output channels open up. For exam-
ple, Barchielli and Gregoratti have used a measurement-based
feedback protocol to assess the non-Markovian evolution of a
coherently driven and continuously monitored two-level atom.
The included delay has experimental consequences, modify-
ing the Mandel Q parameter alongside the spectrum of the
emitted light [77]. In general, non-Markov open systems can-
not be given a trajectory interpretation built around measured
outputs, as measuring non-Markov environments interferes
with the reduced system dynamics. One subclass of trivially
non-Markov open systems has been recently approached us-
ing trajectories [78]. Finally, our conclusions are reflected by
recent investigations of quantum many-body systems studied
in the context of quantum computing and quantum simula-
tion [79–81]. Quantum trajectories arising due to multiple
measurements of the system’s state, when analyzed by rel-
evant (nonlinear) statistical measures such as entanglement
entropy, exhibit phase transitions [82–89] that are not evident
in the average state [90–93] unless specifically tuned feedback
mechanisms are employed [94–101].
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