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We show that dry scalar-order active field theories (AFTs) are universally hyperuniform, i.e., density fluc-
tuations are anomalously suppressed in the long-time limit regardless of the integrability or functional form
of the active contributions up to third order in gradient terms. These AFTs include active model B, active
model B+, and effective Cahn-Hilliard models. Moreover, density variances and spectral densities are virtually
indistinguishable from that of passive phase-separated hyperuniform fields. Higher moments of the density
fluctuations, however, reveal activity-dependent higher-order correlations that are not captured by conventional
two-point measures that characterize hyperuniformity.
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Active systems are driven out of equilibrium by the con-
tinuous consumption and dissipation of energy [1–3]. These
include all biological living matter and a growing number of
synthetic systems realized across various length scales [4–6].
Entropy in active matter is produced locally [7,8], which
results in dynamics and collective behavior that differs signif-
icantly from passive systems, constituting robust frameworks
for self assembly of complex structures or the emergence of
novel material properties [9–11]. In particular, active matter
composed of self-propelled particles can separate into co-
existing density-differentiated phases in the absence of any
microscopic attractive or alignment interactions [12–14]. This
remarkable behavior known as “motility induced phase sepa-
ration” (MIPS) [12], has since become a hallmark of active
phenomena. To understand the underlying mechanisms for
symmetry breaking in MIPS, several continuum models have
been proposed to represent the dynamics in the hydrodynamic
limit of the density field φ(r, t ). These active field theories
(AFTs) [15–18] come in the form of extending a (passive)
field theory for Brownian motion, model-B [19], by intro-
ducing an additional scalar-order active term gXAX[φ] to
the Cahn-Hilliard (CH) equation that models passive phase
separation in the study of binary fluids [20]

∂tφ(r, t ) = D∇2μ[φ] + gXAX[φ], (1)

where the chemical potential μ[φ] = f ′[φ] − γa∇2φ is the
functional derivative of the equilibrium free-energy

F [φ] =
∫

dr
{

f [φ] + γa

2
|∇φ|2

}
(2)
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that is locally bistable for phenomenological reasons [18] and
written in Ginzburg-Landau form: f [φ] = 1

4 (φ2 − 1)2 where
D and γa control diffusivity and width of the segregated
phases at long times, respectively.

The functional form of AX[φ] has previously been pro-
posed by coarse graining the microscopic equations of motion
such as in the effective Cahn-Hilliard model—AECH = ∇ ·
(φ∇φ) [15]. However, this form ofAX[φ] remains integrable
in that the dynamics can still be written in an effective free
energy form through modification of (2). Hence, alternate rep-
resentations for AX[φ] have subsequently arisen from more
field-theoretic approaches that invoke minimal nonintegrable
terms that violate detailed balance, such as active model B
AAMB = ∇2[(∇φ)2] [16], or active model B+ AAMB+ = ∇ ·
[(∇2φ)∇φ] [17]; see Fig. 1. While these variants produce
striking differences in φ(r, t ) at short cluster-sized length
scales–l1(t ), little is known of their spatial structure at larger
scales, where nontrivial long-range correlations may exist in
both AFTs and the underlying atomistic active matter they
represent. Moreover, the degree to which these generic AFTs
describe structural characteristics of agent-based simulations
or experiments that involve nonstandard interactions or envi-
ronments [21–24] is also unknown.

At the same time, recent studies in chiral or circle micro-
swimmers [25–31] indicate that certain active systems possess
a form of hidden long-range order known as hyperuniformity
[32–34] in which density fluctuations are anomalously sup-
pressed even at infinite length scales. Here, the scalar density
field φ(r, t ) in the long-time limit is of interest, i.e., the scaling
regime where φ(r, t ) becomes independent of t except for a
trivial rescaling by l1(t ). In other words, our results hold in
the thermodynamic limit, for arbitrary times in the scaling
regime. We hence drop the time dependence in our notation
hereafter. For scalar fields, hyperuniformity is character-
ized by a vanishing spectral density in the long wavelength
limit, limk→0 ψ̃ (k) = 0, where ψ̃ (k) is the Fourier transform
of the density auto-covariance function ψ (r) = 〈(φ(ri ) −
φ̄)(φ(r j ) − φ̄)〉 where r = r j − ri [34,35], analogous to the
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(a) (b) (c)

FIG. 1. φt=τ (r) of scalar-order AFTs for various active terms: gXAX[φ(r)]. (a) gECH/D = 0.2, (b) gAMB/D = −0.5, and (c) gAMB+/D = 2;
for all samples, L = 1024, D = 0.01, γa = 2, and τ = 103γa/2D.

static structure factor S(k) = 1
N | ∑N

j e−ik·r j |2 defined for point
patterns {r j}. Alternatively, disordered hyperuniformity can
also be defined by the index λ > d in the power-law scal-
ing dependence of the variance limR→∞ σ 2(R) ∼ R−λ for
coarse-grained density φR = 1

Rd

∫
	R

dd rφ(r), where d is the
spatial dimension, R the coarse-graining length scale, and 	R

the corresponding observation window. These results come
especially surprising, given that activity typically induces
phase separation and density inhomogeneities at macroscopic
lengths [12–14], while collective behavior in polar active
matter, such as flocking, leads generically to giant number
fluctuations [36–39]; both of which, conceivably, only serve to
enhance density fluctuations. Recent discoveries of hyperuni-
formity in several hydrodynamic formulations of other active
systems (e.g., [40,41]) add further intrigue to the riddle. These
seemingly paradoxical observations hint at a more fundamen-
tal connection between hyperuniformity and activity.

In this Letter, we establish such a connection by show-
ing that dry scalar-order AFTs are class I hyperuniform (the
strongest class of hyperuniformity). In particular, we show
that ψ̃ (k) ∼ k4 and σ 2(R) ∼ R−(d+1) for AFTs up to ∇3φ

terms in AX (for d = 2), regardless of the integrability or
functional form of the active contribution. This universal sup-
pression of large-scale density fluctuations occurs in spite of
stark differences in structure at shorter, cluster-sized length
scales l1, which are comparable in scale to the hyperuni-
form length ξh that characterizes the onset of fluctuation
suppression. Additionally, while AFTs are indistinguishably
hyperuniform, hidden correlations that lie beyond ξh exist
and are revealed through examining central moments of the
coarse-grained probability density P(φR, R). These features
differentiate AFTs and persist even at R > ξh, and may thus
be used to establish correspondence with fluctuation behav-
ior in atomistic active matter that involve novel interactions,
geometry, or dynamics [21–24].

We begin by solving Eqs. (1) and (2) for the various
AFTs in two dimensions using a finite (central) difference

method with step size of unit time [42]: (i) effective Cahn-
Hilliard modelAECH = ∇ · (φ∇φ), gECH/D = 0.2; (ii) active
model-B AAMB = ∇2[(∇φ)2], gAMB/D = −0.5; and (iii) ac-
tive model-B+ AAMB+ = ∇ · [(∇2φ)∇φ], gAMB+/D = 2.0.
Collectively, these systems represent active contributions up
to third order in gradient terms of φ(r) exhaustively and
include variants that are not physically motivated by micro-
scopic equations of motion [18]. The parameters governing
passive diffusive behavior in (1) are identically fixed for all
models considered (D = 0.01, γa = 2), while the initial field
φ(r, t = 0) deviates locally from zero by random displace-
ments drawn from a uniform distribution bounded by ±10−4.
This choice corresponds to what is known in binary fluids as
the “critical quench” [35] condition. The system is integrated
on a L × L grid for a total time of τ = 103γa/2D, where the
lattice spacing is the unit of length. Note that long-range order
in φ(r, t ) is convergent in t → ∞, even in the absence of fixed
points to the CH dynamics [35]. Examples of φt=τ (r) display-
ing activity-dependent variability in structure are shown in
Fig. 1 for gX values chosen to accentuate structural variabil-
ity. In particular, observe the “bubbly” phase separation [17]
and inversion in relative density of the fully connected phase
forAAMB+.

The spectral density for various AFTs are shown in
Fig. 2(a) to vanish in the limit of k → 0 as power laws ψ̃ (k) ∼
kα . Moreover, ψ̃ (k) for all AFTs considered are within sample
variability, indistinguishable from that of passive model-B
(gX = 0) (black circles) [20] which is known to be class I
hyperuniform (αCH = 4 for d = 2) [35,43]. Least-square free
fits [44] to the data are consistent with αX = 4 and comparable
to αCH for all X. In fact, constrained fits where α = 4 is fixed
yield better fits in some instances from a reduced-χ2 measure
perspective, indicating that class I hyperuniformity (α > 1)
is universal across AFTs (See the SM). Hyperuniformity
is further corroborated in Fig. 2(b), by a presence of re-
gions where the autocovariance in real space is negative [i.e.,
ψ (r) < 0], since

∫
ψ (r)dd r = 0 is a necessary condition for
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(a) (b)

FIG. 2. (a) k2
1 ψ̃ (k) and (b) ψ (r) for [black] passive model-B

(CH), and various AFTs: [blue] gECH/D = 0.2, [red] gAMB/D =
−0.5, and [green] gAMB+/D = 2.0. Colored-symbols in (a) indi-
cate mean values of k2

1 ψ̃ (k) obtained from Ns = 50 realizations of
φt=τ (r). The gray shaded area and error bars represent, respectively,
sample-to-sample variation for model-B and corresponding AFTs,
characterized by the first and third quartiles of sample values of
k2

1 ψ̃ (k). k1 = 2π/l1 characterizes structure at cluster length l1 =
arg minr ψ (r), where peak anticorrelation in ψ (r) occurs in (b). The
black dashed line in (a) represents the fit to ψ̃ (k) ∼ k4 for model-B.

hyperuniformity [35]. Note that l1 ≡ arg minr ψ (r) at which
peak anticorrelation occurs [45] is used to characterize the
cluster length scale and defines the wave number k1 = 2π/l1
used in scaling ψ̃ (k) in Fig. 2(a) [46]. Note that gX considered

in this work span a significant range (gX/D ∼ 10−1 − 100)
where active strengths gX are scale comparable to the passive
contribution D in (2). Hence, these results represent systems
near the soft upper bound for any realistic scenario of AFTs
because the phase separation is driven by the diffusive part,
and g/D 
 1 would result in unphysical dynamics. The pa-
rameters we have considered thus already include the regime
of strong activity. This broad range suggests that emergence
of α = 4 is universal and cannot be understood as a mere
perturbative result to the passive CH model, which would
only be valid in the limit gX/D → 0. The gX dependence for
various AFTs is further detailed in the SM which confirms
that ψ̃ (k) ∼ k4 holds across wide ranges of gX.

Universality is also verified through σ 2(R) of the coarse-
grained density φR shown in Fig. 3(a), which are again
indistinguishable from model-B. While fluctuations are en-
hanced (σ 2 ∼ R0) at shorter lengths, a continuous crossover
occurs at R ∼ ξh to an anomalous hyperuniform scaling
regime (σ 2 ∼ R−λ) that is consistent with class I hyperunifor-
mity (α > 1) and prior numerical results derived from ψ̃ (k)
[46]. Note that ξh for various AFTs are similar in scale, and
are thus represented in Figs. 3(a)–3(c) by a single vertical dot-
dashed line. Moreover, ξh/l1 � 2 for all AFTs considered (See
the SM), and are thus comparable to l1 ∼ γ −1/2

a arising from
short-ranged structural order present in the passive CH model
[20]. This broad range suggests that fluctuation suppression
should readily be observable in agent-based models at length
scales not significantly larger than respective cluster sizes,
which in turn questions the extent to which existing AFTs
correctly describe long-ranged order of the underlying active
systems they purportedly represent, especially for systems
where the cluster length scale remains finite and observable
(i.e., l1 < L). Here, we remark that emergence of hyperunifor-
mity in AFTs is unlike the behavior of hyperuniform complex
systems associated to self-organized or driven critical phe-
nomena [47–53]. In these near-critical systems, short length
scale density fluctuations are anomalously suppressed below a
hyperuniform length ξ ′

h and conversely scale like uncorrelated

(a) (b) (c)

(d)

FIG. 3. (a) Variance σ 2(R), (b) skewness γ 2(R), and (c) kurtosis κ2(R) of P(φR). (a) Universal suppression of density fluctuations
σ 2 ∼ R−3 indicates that AFTs are indistinguishably class I hyperuniform. ξh(vertical dot-dashed lines) characterizes the onset of fluctuation
suppression in σ 2(R) and are scale comparable for all models considered. (b), (c) Deviations in the higher moment from their respective
Gaussian values (γN = 0, κN = 3) at R > ξh indicates the presence of hidden correlations beyond what is revealed by two-point functions.
(d) Convergence of σ (R)P(φR) to the standard Gaussian–N (0, 1) (black dashed line) in the limit of R → ∞ for gAMB+/D = 2. (e) Generalized
AFTs for n = 2 preserve universal hyperuniformity. Statistics are obtained from 105 R × R windows, for each of Ns = 50 realizations.
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fields above ξ ′
h. Hence, these systems become hyperuniform

only at the critical point as ξh grows and diverges on approach
to criticality. This contrasts with hyperuniformity in AFTs
where fluctuations are instead suppressed above ξh, and do
not involve diverging lengths.

Now, despite the convergence of ψ̃ (k) and σ 2(R) that
render AFTs indistinguishable in the long wavelength limit,
hidden higher-order correlations exist that are not captured
by these two-point correlation functions of the coarse-grained
variable φR. These correlations are often revealed by exam-
ining the higher central moments

∫ ∞
−∞ dφRφm

R P(φR) of the
probability density P(φR), where the second moment (m = 2)
or variance σ 2(R) was used previously to establish hyperuni-
formity [53,54]. In Figs. 3(b) and 3(c) we show skewness
γ (R) (for m = 3) and kurtosis κ (R) (for m = 4) for various
AFTs as a function of the coarse-graining length scale R.
At large R, a convergence to their respective Gaussian limits
(γ → 0 and κ → 3), in accordance to the central limit theo-
rem (CLT) is recovered. However, at shorter length scales, γ

and κ exhibit qualitative and graded differences in their behav-
ior that are not present in σ 2(R), and that are direct imprints of
higher-order spatial correlations of the various AFTs [53,54].
For example, the convergence to CLT can be nonmonotonic
in R and sgnγ (R) can take on intermittent positive or negative
values; in contrast, γ (R) ≈ 0 for passive CH [black solid line
in Fig. 3(b)], where P(φR) remains symmetric for all R.

Moreover, these deviations from a Gaussian are sensitive
toAX and persist even at R > ξh in Figs. 3(b) and 3(c), which
indicates that P(φR) at R = ξh remains highly non-Gaussian.
To examine this behavior, we show P(φR) for gAMB+/D = 2.0
in Fig. 3(d) (see the SM for other AX), where a nontrivial
bi-modal to unimodal transition occurs with increasing R,
and a departure of P(φR=l1 ) and P(φR=ξh ) from the standard
normal distribution N (0, 1) is observed, revealing origins for
the negative skewness and the platykurtic kurtosis (i.e., κ < 3)
observed in Figs. 3(b) and 3(c). In fact, we find that while
||γ (ξh)|| < ||γ (l1)|| for allAX[φ], distributions remain signif-
icantly non-Gaussian ||γ (ξh)/γ (102)|| ∼ O(1) [55]. Hence,
while AFTs are indistinguishably hyperuniform, P(φR) at
R = ξh remain distinguishable and non-Gaussian. We stress
that features in P(φR) cannot be associated to a particular
AFT simply by a visual inspection of the spatial structure of
φ(r) in Fig. 1 given the oscillatory and highly complicated
behavior of the higher moments at various R. These features
are representations of extended spatial structure not captured
by pair-wise relations in two-point measures such as ψ̃ (k) and
σ 2(R) and go beyond simply characterizing l1. They are in-
stead, indicative of many-body correlations at varying length
scales [53,54], and thus could further serve to assess the extent
to which various AFTs agree with model-specific atomistic
active matter in simulations or experiments.

Here, we remark that universal class I hyperuniformity
extends even to generalized-AFTs [35] where F [φ] (2) is not
given by Ginzburg-Landau, but instead assumes a generalized
double well, i.e., F (n, [φ]) = ∫

dr{ 1
4n (φ2 − 1)2n + γa

2 |∇φ|2},
where n is a positive integer and F (n, [φ]) reverts to the
conventional AFTs for n = 1; see Fig. 3(e) and the SM.
Moreover, universal class I hyperuniformity is also robust
in the presence of thermal fluctuations, which can be mod-
eled by an additional contribution of Dt f ∇ · η to ∂tφ in (1),

(a)

(e)(d) (f)

(b)

(c)

FIG. 4. (a) σ 2(R) in the presence of thermal noise at temperature
T = Dt2

f /2kb, indicate that passive CH remains class I hyperuniform.
(b) Best fit (black solid line) of σ 2R3 ∼ [1 + (R/ξh )−s]−λ/s to the
data indicate (c) a growing ξh with increasing t f . Universal class I
hyperuniformity in the presence of thermal fluctuations extends to
all variants of activity: (d) ECH, (e) AMB, and (f) AMB+.

where 〈ηiη j〉 = δi jδ(t − t ′) such that the equilibrium temper-
ature is parametrized T = Dt2

f /2kb. Conceivably, the presence
of dissipation could alter fluctuation suppression or com-
pletely destroy long-range order. However, we see in Fig. 4(a)
that hyperuniformity is still preserved for passive model-B.
Thermal fluctuations serve instead to progressively destroy
short-range order (limt f →∞ σ 2(R) → R−2) and increases ξh,
see Figs. 4(b) and 4(c), but still always preserves class I
scaling, i.e., σ 2(R) ∼ R−3, for its long-range behavior. This
robustness of class I hyperuniformity extends to the AFTs
[Figs. 4(d) and 4(f)], and can be understood by considering the
high-T limit of the dynamics (1), limt f →∞ φ(τ ) ∼ ∫ τ

0 dt∇ · η,
for which its Fourier transform yields φ̃(k) ∼ ik

∫
dt η̃(k) ∼ k

since
∫

dt η̃(k) = N (0, 1). Hence, ψ̃ (k) ∼ 〈〈φ̃kφ̃−k〉 ∼ k2 and
class I hyperuniformity is always preserved in AFTs even in
the high-T limit.

In this work, we show that scalar-order AFTs which
describe dry, active phase-separated matter are class I hype-
runiform. Specifically, ψ̃ (k) vanishes in the hydrodynamic
limit as ψ̃ (k) ∼ k4, and density fluctuations are suppressed
σ 2(R) ∼ R−3, regardless of the integrability or form of the
active contributionAX[φ] in (1). This occurs despite (i) strong
variability in short-range structure of φ(r), (ii) holds generally
for a wide range of activity, and (iii) persists even in the
presence of strong thermal dissipation. This ubiquity in long
wavelength fluctuations across all dry, scalar-order AFTs and
their generalizations suggest that hyperuniformity may be a
more generic property of active matter that goes beyond the
context of existing literature on chiral or circle microswim-
mers [26–29,31]. The robustness of hyperuniformity in the
presence of stochastic noise [47,56], external driving [52,57],
or hydrodynamic interactions such as active model H [58], or
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in field theories with spatially dependent diffusion or mobility,
are interesting avenues for future exploration.

Our work also raises the question as to whether generic
models of atomistic active matter such as active Brown-
ian or run-and-tumble particles [2] which AFTs purportedly
model [18] are truly hyperuniform [59], or that perhaps,
while ξh/l1 ∼ O(0) for AFTs, fluctuations in agent-based
models only become anomalously suppressed at much larger
length scales beyond observational limits of current sim-
ulations, as indicated in [25]. Our study thus calls for a
greater understanding of ξh/l1 for various existing contin-
uum and atomistic active models, especially at time scales
where the transition to anomalous fluctuation suppression
remains observable. Lastly, higher-order correlations that lie
beyond what is indicated by two-point functions exist. These

correlations manifest as deviations in the higher central mo-
ments of P(φR), and persist at R for which the AFTs are
already indistinguishably fluctuation suppressed. Our results
thus provide a pathway to identify correspondences between
predictions of particular AFTs and the underlying micro-
scopic models they purportedly represent, or toward inferring
the presence of novel interactions in experiments where the
microscopic behavior is unknown.
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