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No drama in two-dimensional black hole evaporation
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We numerically calculate the spacetime describing the formation and evaporation of a regular black hole in
2D dilaton gravity. The apparent horizons evaporate smoothly in finite time to form a compact trapped region.
We nevertheless see rich dynamics: an antitrapped region forms alongside the black hole and additional compact
trapped and antitrapped regions are formed by backreaction effects as the mass radiates away. The spacetime is
asymptotically flat at future null infinity and is free of singularities and Cauchy horizons. These results suggest
that the evaporation of regular 2D black holes is unitary.
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Little is known about the end state of black hole evapo-
ration, and even the unitarity of the process is still a subject
of debate. A complete rigorous analysis of this issue requires
knowledge of the physics at Planck scales, but as yet there
is no viable theory of quantum gravity. Hawking’s derivation
of black hole radiation was based on quantum field theory
on a fixed classical background. One can, in principle, go
beyond this approximation by studying the backreaction of
the Hawking radiation on the spacetime geometry, but this
too proves difficult in full four-dimensional general relativity
(GR).

Since gaining popularity through the model introduced by
Callan et al. [1], two-dimensional (2D) dilaton gravity has
provided toy models that offer insight into black hole dynam-
ics. For reviews, see Refs. [2,3] and references therein. These
theories provide a more tractable alternative to GR, while
sharing many key features such as black holes and Hawking
radiation. Of particular interest are nonsingular black hole
solutions, since it is anticipated that quantum gravity should
resolve the singularities that are pervasive in GR [4] and
removing the singularity may play an important role in the
black hole information loss problem [5]. However, nonsingu-
lar black hole solutions typically contain a Cauchy horizon
which introduces other pathologies [6]. In the absence of a
full theory of quantum gravity, 2D dilaton gravity therefore
serves as a useful playground for studying quantum effects in
black hole dynamics such as Hawking radiation and singular-
ity resolution, as well as the causal structure of evaporating
regular black hole spacetimes.
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In this Letter, we present a numerical study of the forma-
tion and evaporation of a nonsingular 2D black hole based
on the metric introduced by Bardeen [7] and summarize the
most interesting results about the structure of the resulting
spacetime. An upcoming paper will present a more extensive
analysis of the model as well as details of the numerical
methods.

Our model begins with a generic 2D dilaton gravity action
[2]

S = 1

G

∫ √
|g|[�(r)R + �′′(r)(∇r)2 + �′′(r)]d2x, (1)

where �(r) is a function of a dilaton field r, R is the Ricci
scalar, G is the two-dimensional gravitational constant, and
the prime denotes differentiation with respect to r. This form
for the action is chosen so the metric takes an asymptotically
flat, Schwarzschild-like form, but can be related to an action
with arbitrary kinetic and potential terms through a Weyl
transformation and/or field redefinition [2,8].

There is a unique vacuum solution up to a parameter M,
the ADM mass [9],

ds2 = −
(

1 − 2M

J (r)

)
dt2 +

(
1 − 2M

J (r)

)−1

dr2, (2)

where J (r) = �′(r).
The structure of the vacuum spacetime is specified by

the metric function J (r). To construct a nonsingular black
hole, we require an analytic function J (r) with the following
properties:

(i) The metric reduces to the Schwarzschild metric in
spherically symmetric gravity (SSG) sufficiently far from the
center, i.e., J (r) ∼ r as r → ∞;

(ii) The curvature is finite everywhere, most easily ensured
by requiring that J (r) > 0 and that it diverge at least as fast as
r−2 as r → 0;

(iii) The center of the black hole is replaced by a de Sitter
core with the curvature approaching a constant finite value
near r = 0, which requires J (r) ∼ r−2 as r → 0;
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(iv) There are at most two horizons for any mass, which
requires that J (r) have a single local minimum.

As a specific example, we focus on the Bardeen metric
given by

J = (r2 + l2)3/2

r2
, (3)

where l is a length parameter that determines the scale at
which the spacetime transitions from Schwarzschild to de
Sitter, typically taken to be around the Planck scale. Without
loss of generality, we set l = 1. In analogy to SSG, where the
dilaton field is directly related to the areal radius, we interpret
r as a radial coordinate and accordingly limit the solution to
the region r � 0.

To model a black hole formed by the collapse of an in-
finitely thin shell, two different vacuum metrics, an interior
solution with M = 0 and an exterior solution with M > 0, are
joined along the null shell trajectory v = v0, where we use
conformal null coordinates

ds2 = −e2ρ du dv, (4)

and, in particular, we use coordinates which match the flat
interior solution in Minkowski coordinates along the shell:

e2ρ =
(

1 − 2M

J (r(u, v))

)(
1 − 2M

J (r(u, v0))

)−1

. (5)

The resulting stress-energy tensor is a shock wave,

Tuu = 0, Tvv = Mδ(v − v0), (6)

with Tuv identically 0 in the classical theory.
Hawking radiation is modeled by adding the stress-

energy tensor corresponding to the one-loop conformal (trace)
anomaly in 2D [10],

T ≡ gμνTμν = μR, (7)

where μ = Nh̄/24 is a parameter characterizing the strength
of the quantum effects with N scalar fields.1 Henceforth, we
work in units where G = h̄ = 1.

The dynamic equations of motion for the metric and dilaton
can be written as

JQ ∇2r − 2PM = 0, (8a)

JQR + 2�M = 0, (8b)

where

Q = J − 2μ
J ′

J
, P = J ′ − μ

J ′′

J
, � = J ′′ − 2

(J ′)2

J
(9)

and

M = J

2
[1 − (∇r)2] (10)

is a generalized Misner-Sharp mass function.

1In the large N limit, the expression (7) for the conformal anomaly
is exact.

FIG. 1. Conformal diagram of the classical Bardeen black hole
with mass M = 1.33. Only the solution exterior to the shell, lying
along the bottom left axis, is shown. The thick green lines mark the
apparent horizons and the thin grey lines are curves of constant r.
The hatched light pink region at the upper left edge of the plot is
r < 0 and is not part of the spacetime. The rippled line at the top
shows where the spacetime connects to the next region through the
Cauchy horizon at v = ∞.

In double null coordinates (4), the semiclassical dynamic
equations of motion become

J∂u∂vr + J ′∂ur ∂vr + 1
4 e2ρJ ′ = −2μ∂u∂vρ, (11a)

2J∂u∂vρ + J ′′∂ur ∂vr + 2J ′∂u∂vr + 1
4 e2ρJ ′′ = 0, (11b)

which are solved after transforming to compactified coordi-
nates. The computational grid cannot extend all the way to
past or future null infinity (I±), but is chosen to cover all of
the interesting dynamics. The remaining two equations,

2J∂uρ∂ur − J∂u∂ur = 2μ(∂u∂uρ − ∂uρ∂uρ + tu(u)), (12a)

2J∂vρ∂vr − J∂v∂vr = 2μ(∂v∂vρ − ∂vρ∂vρ + tv (v)), (12b)

are constraints that determine the boundary conditions, which
are taken as the classical solution (5) along the shell and on
the initial u slice, chosen sufficiently far from the black hole
so the classical solution does not give rise to any radiation at
past null infinity. In the coordinates used, these conditions fix
the functions of integration, tu(u) and tv (v), to be 0.

The classical (nonradiating) spacetime is similar to the
Reissner-Nordstrom spacetime, in that it features two null
horizons bounding a trapped region that ends on a Cauchy
horizon, as shown in Fig. 1, beyond which lies an additional
untrapped region. Thus, our coordinates do not cover the
complete classical spacetime but can be analytically continued
past the Cauchy horizon.

When radiation is added, the outer horizon shrinks while
the inner horizon grows, as shown in Fig. 2. The trapped
region between them contracts, closing off smoothly in finite
time. The radius and mass function at the point the horizons
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FIG. 2. Evaporating Bardeen black hole with M = 1.33, μ =
0.5. The antitrapping horizon ∂ur = 0 is shown by the dashed purple
curve.

meet is independent of the initial mass of the collapsing shell,
and depends only on the parameter μ. This can be seen from
Eqs. (8)–(10) by noting that ∇2r = 0 = (∇r)2 when the hori-
zons meet. The former condition requires P(r) = 0, which
implicitly determines r(μ).

A singularity occurs whenever Q(r) = 0, where the order
of the PDEs changes, and generally corresponds to a curvature
singularity. There is always a positive solution to Q(r) = 0 for
singular models, but remarkably this singularity is avoided
for regularized models when μ is below a critical value

FIG. 3. Bardeen black hole, M = 0.77, μ = 5.5. A series of
trapped and antitrapped regions form.

×

FIG. 4. Horizon function ∂vr on selected slices of v. When a
trapped region is present, ∂vr crosses 0 twice, indicating the presence
of two apparent horizons. The black hole disappears when the appar-
ent horizons meet at a single point (v slice marked by an asterisk). At
later v, the horizon function remains positive, signifying that there is
no apparent horizon present.

(which is always positive when J (r) satisfies the conditions
outlined above) because Q(r) = 0 has no real, positive solu-
tions. However, if the radiation strength μ is large compared
to the regularization scale l (μcrit ≈ 6.55 l2 for the Bardeen
model), curvature singularities appear in the radiating solu-
tions even when there is no singularity classically. We thus
consider the singularity as a breakdown of the semiclassical
approximation.

In addition to the trapped region, an antitrapped region,
where both null expansions are positive, also forms when
the shell carries sufficient mass. The critical mass for white
hole formation is similar to that of the black hole, approach-
ing the classical value Mcrit, classical = √

27/16 as μ → 0 and
decreasing with larger radiation strength, becoming 0 at the
critical value for μ. When the strength of the radiation is
increased, the backreaction effects cause a series of trapped
and antitrapped regions to form after the initial black hole
evaporates, as seen in Fig. 3.

The antitrapped region appears to be generic in nonsingular
models. We have seen a similar structure in simulations of
other nonsingular metrics, and evidence of an antitrapped
region was seen in previous work on other regular dilaton
models, though not identified as such.2

In the quasistatic approximation for Hawking radiation,
an extremal black hole does not emit any radiation. Thus,
it may be expected that when the inner and outer horizons
meet, a static extremal horizon may form. Our simulations
suggest that this is not the case. To confirm this, we calculate
the outgoing null expansion ∂vr on a few slices v > vmeet

(see Fig. 4). A minimum of 0 would indicate the presence
of a single apparent horizon and an extremal black hole. We
find that while ∂vr has a small, positive minimum for all v,
convergence tests show that this minimum does not decrease

2See, for example, Fig. 2 in Ref. [11] where the additional contour
for φ̃0 being spacelike implies the presence of an additional horizon.
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with improved resolution or numerical accuracy, confirming
∂vr does not have any zeros and there is no extremal horizon
remaining once the two horizons merge.

Additionally, in contrast to the classical solution, the con-
formal factor e2ρ remains finite as v → ∞, indicating that the
semiclassical spacetime is complete in the sense that v = ∞
corresponds to a point on I+ for all u. Our results therefore
imply the absence of a Cauchy horizon, in contrast to earlier
work which suggested that the endpoint of evaporation for
regular black holes is an extremal configuration [11–13].

Despite resolving the curvature singularity, the consistency
of two horizon regular black hole models is potentially threat-
ened by the prospect of mass inflation associated with Cauchy
horizons [14]. In a simplified version of the problem, when
perturbations are modelled as crossing ingoing and outgoing
thin shells [15,16], the final mass function behaves as

	M ∝ −Min

(∇r)2
, (13)

evaluated at the point the shells cross, where Min is the
mass of the ingoing shell, typically taken to follow an inverse
power law. In the classical solution (∇r)2 vanishes exponen-
tially near the Cauchy horizon at v = ∞, causing the mass
to diverge and nullifying the self-consistency of the model.
When radiation is added, there is no horizon present and (∇r)2

remains finite at large v, so 	M vanishes rather than diverges.
However, as pointed out in Ref. [17], mass inflation may pose
a problem even if no Cauchy horizon is present if the evolution
proceeds adiabatically, as the energy density will build up
before a macroscopic black hole has time to evaporate. We

are unable to address this issue because numerical limitations
do not allow us to study large black holes.

In summary, our numerical simulations show richer dy-
namics for an evaporating black hole than previously seen,
with additional trapped and antitrapped regions formed by
radiation reaction. While we have focused on a specific model,
the work in this paper can easily be generalized thanks to
the choice of parametrization of the action. Preliminary in-
vestigations of other models show a similar structure to the
Bardeen model, suggesting that these features are generic in
nonsingular solutions.

We see no evidence of drama in the form of singulari-
ties or Cauchy horizons, potentially ameliorating the mass
inflation problem generally associated with two-horizon black
holes. As we expect all apparent horizons to vanish in finite
time and there is no mechanism to halt the radiation, all
energy and information should eventually escape to infinity.
These results support the expectation that the evaporation of
regular black holes is a unitary process. However, whether
the information can escape from the black hole within the
Page time [18] remains an open question. Additionally, with
this model we were only able to simulate a small range of
microscopic black holes. At larger masses, the simulation
breaks down and we are not able to resolve the trapped region
closing off.
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