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Phase and contrast moiré signatures in two-dimensional cone beam interferometry
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Neutron interferometry has played a distinctive role in fundamental science and characterization of materials.
Moiré neutron interferometers are candidate next-generation instruments: they offer microscopy-like magnifica-
tion of the signal, enabling direct camera recording of interference patterns across the full neutron wavelength
spectrum. Here we demonstrate the extension of phase-grating moiré interferometry to two-dimensional ge-
ometries. Our fork-dislocation phase gratings reveal phase singularities in the moiré pattern, and we explore
orthogonal moiré patterns with two-dimensional phase gratings. Our measurements of phase topologies and
gravitationally induced phase shifts are in good agreement with theory. These techniques can be implemented in
existing neutron instruments to advance interferometric analyses of emerging materials and precision measure-
ments of fundamental constants.

DOI: 10.1103/PhysRevResearch.6.L032054

Introduction. Perfect-crystal neutron interferometry pos-
sesses a prestigious record of high impact fundamental
science experiments such as the observation of gravitationally
induced quantum interference [1], 4π symmetry of spinor
rotation [2], neutron triply entangled GHZ states and quantum
discord [3,4], matter-wave orbital angular momentum [5,6],
and the probing of dark energy and fifth forces [7,8]. This
is in part because of the unique properties of the neutron
such as its electrical neutrality, relatively large mass, angstrom
sized wavelengths, extremely low polarizability, and the prac-
tical absence of Casimir and van der Waals forces [9–12].
Such properties also make the neutron a convenient and in-
dispensable probe of modern materials as they are capable
of characterizing bulk properties and nanometer-sized spin
textures [13–16].

*Contact author: dusansar@buffalo.edu
†Contact author: dmitry.pushin@uwaterloo.ca

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

A recent focus in neutron interferometry has been in
grating-based setups that are capable of working in the full
spectrum of the neutron beam [17–23], and circumvent the
stringent environmental isolating requirements associated
with perfect-crystal neutron interferometry such as mK
temperature stability and translational stability on the order
of the crystal lattice constant [24,25]. The backbone of
these setups is the near-field phenomena of self-imaging
known as the “Talbot effect” [26]. Further developments
introduced phase-grating moiré interferometers (PGMIs) that
are composed of exclusively phase gratings and manifest
interference patterns that are directly detectable via typical
neutron camera [27–32].

Here we introduce and quantify two-dimensional (2D)
moiré interference. We explore the role of phase singularities
that materials possessing helical structures are expected to
induce in the moiré pattern and we describe the additional
metrics for quantification. Furthermore, we also demonstrate
2D moiré interference with orthogonal directionality. The
addition of an interference pattern serving as in situ reference
enables novel approaches for high-precision measurements
of fundamental forces such as the Newtonian constant of
gravitation.

Results and discussion. We fabricated four types of
phase gratings: 2D phase gratings, and fork-dislocation
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FIG. 1. (a) The two-PGMI setup with fork-dislocation phase gratings. In our experiments we employed and characterized {qG1=0, qG2=4}
and {qG1 = 0, qG2 = 7} configurations. The moiré pattern at the camera manifests a phase singularity with a topological charge of qM = �qG

and with moiré period of pM = LpG/d , where L is the distance from the slit to camera, pG is the period of the phase gratings, and d is the
distance between the two phase gratings. For the given parameters, pM that results in the highest contrast spans a range of to 1.3 mm to 3.6 mm.
(b) An example of the measured intensity profile where the size of the blur (σ ) centered on the phase singularity is determined by the size
of the slit (s). A convenient method of determining the topology in the measured intensity profile is given by qM = NB − NT where NB(NT )
is the number of periods in a segment �B(�T ) below (above) the origin where the connecting vertical lines (red arrows) between the two
segments follow a trajectory of constant intensity [33]. (c) The Fourier transform of the intensity pattern shown in (b) possesses doughnut-
shaped diffraction orders indicative of helical phase structures [34]. (d) The fitted topological charge of the observed moiré interference in our
experiments for the {qG1 = 0, qG2 = 4} and {qG1 = 0, qG2 = 7} configurations. The uncertainties shown are purely from counting statistics.

phase gratings with topological charge of q = 0, 4, 7. Note
that the q = 0 is a typical 1D phase grating. The detailed
nanofabrication procedure and scanning electron microscopy
(SEM) images of all four cases can be found in the Appendix.

The observed interference pattern at the camera is typically
fit to a sinusoid,

I = A + B cos(2πx/ps + φ0), (1)

where ps is the period of the oscillation, φ0 is the phase shift,
and A and B are the mean and the amplitude of the oscillations.
The contrast or fringe visibility of the particular frequency
ks = 2π/ps is given by V (ks) = B/A. Furthermore, the con-
trast could also be computed from the Fourier transform of
the intensity profile H (kx ) where V (ks) = 2|H (ks)/H (0)|.

Fork-dislocation phase gratings. Here we explore the
effect of helical structures that manifest phase singularities in
the moiré pattern by introducing a topological charge onto the
phase gratings themselves. A fork-dislocation phase grating
with period pG, height D, and topological charge qG has the
profile

� = NbcλD

2
sgn[cos (kGx + qGφ)] (2)

where kG = 2π/pG is the grating wave vector, x(φ) is
the Cartesian (azimuthal) coordinate, Nbc is the scattering
length density of the grating material, and λ is the neutron
wavelength. Using the recently introduced k-space model
[35] we can simulate the intensity and contrast behavior using
the phase-grating profile of Eq. (2).

An experimental demonstration was performed with
the two-PGMI configurations of {qG1 = 0, qG2 = 4} and
{qG1 = 0, qG2 = 7}. The first configuration is depicted on
Fig. 1(a). The moiré pattern at the camera possesses a
topological charge of qM = �qG with moiré period of
pM = LpG/d , where L is the distance from the slit to camera,
pG is the period of the phase gratings, and d is the distance
between the two phase gratings. The Fourier transform of
the intensity profile of Fig. 1(b) is shown in Fig. 1(c) where
the doughnut profiles are indicative of helical structures with
phase singularities [34].

Whereas contrast is the figure of merit for a 1D two-PGMI,
an additional metric is needed for identifying and characteriz-
ing phase singularities. In this particular setup the topology in
the moiré pattern can be determined by qM = NB − NT where
NB(NT ) is the number of periods in a segment �B(�T ) below
(above) the origin where the connecting vertical lines between
the two segments follow a trajectory of constant intensity
[33], see Fig. 1(b). Using this method we can calculate the
measured moiré topology using a fit procedure for the two ex-
perimental configurations as shown in Fig. 1(d). This method
becomes increasingly useful as the blur centered on the phase
singularity increases with slit size.

Examples of the measured moiré pattern at the camera are
shown in the first column of Fig. 2 for both {qG1 = 0, qG2 = 4}
and {qG1 = 0, qG2 = 7}. The simulated (measured) contrast
as a function of phase-grating separation and wavelength is
shown in the second (third) column of Fig. 2. The exper-
imentally accessible parameters were not centered around
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FIG. 2. The intensity and contrast behavior of the two-PGMI setup with fork-dislocation phase gratings. (First column) The observed
2D moiré intensity profile at the camera with the center of the fork-dislocation indicated by the red circle. (Second column) The simulated
contrast as a function of wavelength and phase-grating separation distance. Note that the vertical line of zero contrast around d = 25 mm
occurs for the configuration where the moiré period at the camera is equal to the slit size. (Third column) The measured contrast for the
accessible setup parameters. Top (bottom) row shows the setup for the {qG1 = 0, qG2 = 4} ({qG1 = 0, qG2 = 7}) configuration. The 2D moiré
pattern at the camera manifests a phase singularity with topology qM = �qG as described in Fig. 1. The middle column depicts the contrast
behavior for a larger parameter range, and indicates the parameters for the other two columns. The wavelength range for the the 2D moiré
intensity profiles shown in the first column is λ = 8 Å − 9 Å and the phase-grating separation is d = 10 mm (11 mm) for the {qG1 = 0, qG2 = 4}
({qG1 = 0, qG2 = 7}) configuration.

the optimal contrast parameters as the phase gratings were
initially designed for a monochromatic λ = 9 Å neutrons.
Good agreement is found between the predicted and measured
contrast. See the Appendix for supporting data including a
plot of the residuals.

2D phase gratings. Precision measurements of gravity are a
long-standing challenge in metrology, evidenced by the large
relative uncertainty in the CODATA value for the gravita-
tional constant (G), 2.2 × 10−5, compared to the Rydberg
constant at 1.9 × 10−12, and the vacuum electric permittiv-
ity at 1.5 × 10−10 [36]. While the majority of experiments
contributing to the 2018 adjusted CODATA values for G have
achieved a relative precision on the order of 10−5, the relative
disagreement between these values is on the order of 10−3

[37]. Historically, the measured values contributing to the
recommended value of G have been subject to significant
revisions as systematic effects in these experiments are better
understood [38,39]. As 12 of the 16 measured values con-
tributing to the 2018 CODATA revised value for G use some
variation of a torsion balance experiment, new methods of
measuring G with independent systematic effects are critical
to resolving the aforementioned discrepancies.

Here we aim to explore the 2D moiré pattern that possesses
a periodicity along two orthogonal directions, which can make
use of the convenient properties of the neutron to perform a
high precision measurement of G. There are many variations
possible for 2D phase-grating profiles. For our experiments

we chose a profile of

� = NbcλD

2
sgn[cos (kGx) + cos (kGy) − 1], (3)

which is essentially a 2D array of circular holes as shown
in the SEM images in the Appendix. The setup schematic
is depicted on Fig. 3(a). The 2D moiré pattern at the camera
possesses a sinusoidal pattern in both the x and y directions.
Therefore, its Fourier transform shows 2D diffraction orders
as depicted in Fig. 3(b). The 2D moiré pattern can be inte-
grated along either Cartesian direction as shown in Fig. 3(c)
where we consider the y axis to be along Earth’s gravity and
the x axis along the perpendicular direction. The data shown
in Fig. 3(c) is obtained by considering the phase-grating
separation of d = 12.5 mm and λ = 5 Å − 6 Å wavelength
distribution, and the observed intensity profile at the camera
has been rotated by θ = 13.3◦ (corresponding to the maxi-
mum contrast location in a contrast vs θ plot).

The measured contrast as a function of phase-grating sep-
aration (d) for a polychromatic wavelength distribution is
shown on Figs. 4(a), and 4(b) shows wavelength-dependent
contrast for a particular d . See Appendix for the wavelength
distribution profile. Using the k-space model of Ref. [35],
it can be confirmed that even when accounting for gravity,
the difference between the contrasts along the two directions
should have been negligible for the given experimental pa-
rameters. The observed difference is most likely attributed to
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FIG. 3. (a) The two-PGMI setup with two 2D phase gratings. The moiré pattern at the camera manifests a 2D moiré pattern that possesses
an x and y periodicity of pM = LpG/d , where L is the distance from the slit to camera, pG is the period of the phase gratings, and d is the
distance between the two phase gratings. nd d is the distance between the two phase gratings. For the given parameters, pM that results in
the highest contrast spans a range of to 1.3 mm to 3.6 mm. (b) The Fourier transform of the intensity pattern shows 2D diffraction orders.
(c) The observed intensity profile at the camera can be integrated along x or y to independently analyze the contrast along the two orthogonal
directions, thereby providing an in situ reference signal when considering 1D forces and structures. For example, the value of the gravitational
constant (G) can, in principle, be extracted from the phase shift induced by placing a well-characterized test mass alongside the interferometer.

the difference in slit sizes. The 2D slit was composed of a
sequence of two perpendicular 1D slits each made by bringing
two cadmium pieces together with the target gap of 500 µm.
Performing a least squares fit to the two slit sizes we find
good agreement with 642 µm ± 7 µm for the slit along x and
783 µm ± 11 µm for slit along y. These values are well within
the expected experimental uncertainties.

Figure 4(c) shows the wavelength-dependent phase shift
that can be used to quantify the effect of gravity. In a two-
PGMI the main contribution to the gravitationally induced
phase shifts is the neutron fall (�y) between the second phase
grating and the neutron camera,

φg = 2π�y

pM
cos θ + C0 = πg

pM

(
L2mλ

h

)2

cos θ + C0 (4)

where θ is the angle between the vertical moiré vector and
the gravitational force vector, g is the acceleration caused by
Earth’s gravity, m is the mass of the neutron, h is the Plank’s
constant, and C0 is an arbitrary offset.

Using the k-space model described in Ref. [35] we can
simulate the expected contrast given the experimental param-
eters and the addition of the gravitational phase shift term
of Eq. (4). In order to analyze the wavelength dependent
contributions, we consider the integrated intensity data for
each wavelength bin (see Appendix for the wavelength bin
parameters). For the fit of the acceleration caused by Earth’s
gravity, we obtain g = 9.6 m/s2 ± 0.4 m/s2. The low preci-
sion of the measurement, which can be drastically improved,
was a result of the fact that the gratings were fabricated for a
different wavelength spectrum.

With a neutron 2D PGMI, the value of the gravitational
constant (G) can, in principle, be extracted from the phase

(a) (c)(b)

FIG. 4. (a) The measured contrast of the two-PGMI setup with two 2D phase gratings as a function of grating separation distance d and
considering the full polychromatic wavelength distribution (see Appendix). The simulation curves are obtained with the k-space model [35]
for the given experimental parameters and with a least squares fit for the two slit sizes. The best fit is determined for 642 µm ± 7 µm for the
slit along x and 783 µm ± 11 µm for the slit along y, which is well within the expected experimental error. (b) The wavelength-dependent
contrast along the x and y direction for d = 12.5 mm. (c) The wavelength-dependent phase shift along the x and y direction for d = 12.5 mm.
The wavelength distribution around each wavelength interval is shown in the Appendix. We find good agreement with the expected values
when taking into account the gravitational fall from the second phase grating to the camera and the relative rotation of θ = 13.3◦ between the
moiré vector and the Earth’s gravitational vector. The uncertainties shown are purely from counting statistics.
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shift induced by placing a well-characterized test mass along-
side the interferometer. The enabling factor of the 2D PGMI
is the ability to perform a single shot experiment with a
broadband wavelength distribution and an in situ reference
frame, thereby eliminating several sources of systematic
errors.

Conclusions. We have expanded neutron phase-grating
moiré interferometry to 2D and enabled the use of new de-
grees of freedom for material characterization studies and
high-precision measurements of fundamental constants. We
examined the manifestation and characterization of phase
singularities in the moiré pattern by incorporating fork-
dislocation phase gratings. Future studies will look at the
interference between multiple phase singularities and the
effects that would be introduced by samples with phase
singularities such as skyrmions [40,41]. We also character-
ized two-PGMI setups that simultaneously manifest moiré
interference along two orthogonal directions. The orthogo-
nal interference pattern enables the presence of an in situ
reference signal that can greatly reduce systematic errors.
Furthermore, future studies will also examine the use of 2D
phase-linear gratings with three-PGMI where it is possible to
substantially increase the distance between the phase gratings.
Whereas Eq. (4) is considering the neutron gravitation fall
relative to the moiré period pM at the camera, a three-PGMI
has the capability to consider the neutron gravitation fall
relative to the phase-grating period, φg ∝ 2π�y/pG. Given
that pM ≈ 103 pG, this can provide an amplification to phase
sensitivity by several orders of magnitude.

Furthermore, we can note that a typical sample that is
used in neutron grating interferometers is a dilute solution
of hard spheres with radius ≈1µm. The effect of such a
sample on the contrast is a well-behaved and known result

[35,42]. Therefore, the 2D PGMI is well positioned for study-
ing gravitational forces on the micron scale by performing
high-precision measurements that look for deviations from
the mentioned expected contrast behavior. Future work will
consider the details of this proposal.
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Appendix on the experimental methods and supporting data.
All phase gratings were fabricated out of silicon and had a
target period of 3 µm and height of 8.53 µm. The height of
8.53 µm was chosen so that the grating imparts an optimal
π/2 phase shift for λ = 9 Å neutrons. Figure 5 shows the
SEM images of the four types of phase gratings that were
fabricated.

The experiments with fork-dislocation phase gratings were
performed at the ASTERIX facility at the Los Alamos Neu-
tron Science Center (LANSCE) [43] with the wavelength
distribution shown in Figure 6. The slit was 500 µm by 500 µm
in size and the distance from the slit to the first phase grating
(camera) was 2.13 m (4.25 m). The camera pixel size was
50 µm by 50 µm. The data acquisition time was ≈20 min
at each grating separation distance. A detector normalization
image was obtained by summing phase stepping measure-
ments, where “phase stepping” refers to the translation of

FIG. 5. SEM profiles of the phase gratings used in the experiments. All phase gratings were fabricated out of silicon and had a target period
of 3 µm and height 8.53 µm. The first column depicts the 2D phase gratings, the second, third, fourth columns show the fork-dislocation phase
grating with q = 0, 4, 7, respectively. The q = 0 are the typical 1D phases gratings. There was a 50 µm mask covering the middle region of
the q = 4 and q = 7 fork-dislocation phase gratings. This is a common practice to avoid the fabrication challenges associated with the higher
aspect ratio near the phase singularity. In regards to the presented PGMI configurations, the masked region sets the resolution limit of the
observable moiré phase singularity to ≈100 µm. Therefore the effect of this masked region is negligible.
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FIG. 6. (a) The wavelength distribution for the ASTERIX facility at the Los Alamos Neutron Science Center (LANSCE). This wavelength
distribution was used for the data presented in Figs. 1(d) and 2. (b) The wavelength distribution for the RADEN facility at the Japan Proton
Accelerator Research Complex (J-PARC). This wavelength distribution was used for the data presented in Figs. 3(c) and 4. The vertical lines
show the four regions of the time-of-flight data used in Figs. 4(b) and 4(c).

one of the gratings along the grating vector direction [28].
Figure 7 shows the supporting data for the fork-dislocation
phase-gratings experiments.

The experiments with the 2D phase gratings were per-
formed at the the RADEN facility at the Japan Proton
Accelerator Research Complex (J-PARC) [44] with the wave-
length distribution shown in Figure 6. The 2D slit was
composed of a sequence of two perpendicular 1D slits each
made by bringing two cadmium pieces together with the
target gap of 500 µm. Two experimental setups were used,
one for polychromatic measurements and the other with a
neutron camera with lower dark counts (≈0) for time-of-
flight resolved measurements. For the first configuration the
distance from the slit to the first phase grating (camera) was
4.16 m (8.30 m), the camera pixel size was 100 µm by 100 µm,
and the image acquisition time was 4 h at each grating separa-
tion distance. For the second configuration the distance from
the slit to the first phase grating (camera) was 4.23 m (8.53 m),
the camera pixel size was 31 µm by 31 µm, and the data ac-
quisition time was 5 h. For each setup configuration a detector
normalization image was obtained from a measurement at a

grating separation of several centimeters that results in zero
contrast. Figure 8 shows the supporting data for the 2D phase-
grating experiments.

Double-side polished 10.16 cm diameter (100) silicon
wafers were used to fabricate these gratings. A bilayer resist
(PMGI/S1805 [45]) was patterned via a maskless aligner
(MLA 150, Heidelberg Instrument). As a hard mask for the
plasma etching, Cr metal (60 nm) was e-beam evaporated
and lifted-off in heated PG Remover. A Bosch recipe was
adopted to achieve a vertical sidewall etch profile. The sam-
ples were etched in an Oxford PlasmaLab ICP-380 inductively
coupled plasma reactive ion etching (ICP-RIE) system, which
provides high-density plasma with independently controlled
system parameters. In our Bosch recipe, the passivation half
cycle comprises the RF chuck power: 5 W, ICP coil power:
1000 W, C4F8: 160 sccm, pressure: 2.67 Pa, temperature: 15
◦C for 5 s while the etch half cycle comprises the RF chuck
power: 100 W, ICP coil power: 1000 W, SF6: 160 sccm,
pressure: 3.33 Pa, temperature: 15◦C for 4 s. After fabricat-
ing the gratings, the remaining Cr mask was removed via
plasma etching.

FIG. 7. Supporting data for fork-dislocation phase-gratings experiment presented in Figs. 1 and 2. (Left) Normalized background intensity
profile that is used as the detector normalization image. (Middle) The residual plot for OAM = 4 data in Fig. 2 given given by 100 % ×
|simulat ion − data|/simulat ion. (Right) The residual plot for OAM = 7 data in Fig. 2 given by 100 % × |simulat ion − data|/simulat ion.
Also shown are contour lines of constant contrast from Fig. 2. All of the simulations in this work were done with the k-space model described
in Ref. [35].
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[deg]

FIG. 8. Supporting data for the 2D phase-gratings experiment presented in Figs. 3 and 4. (Top left) Rotation vs contrast image for
determining the the angle between the vertical moiré vector and the Earth’s gravitational vector. Highest contrast occurs from θ = 13.3◦.
(Top right) Detector normalization image. Note that the square pattern is caused by camera effects and unrelated to the moiré pattern (bottom
left) The residual plot for Fig. 4(b) given by 100 % × |simulat ion − data|/simulat ion. (Bottom right) The residual plot for Fig. 4(c) given by
100 % × |simulat ion − data|/simulat ion. All of the simulations in this work were done with the k-space model described in Ref. [35].
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