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Ballistic deposition with memory: A new universality class of surface growth with a new scaling law
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Motivated by recent experimental studies in microbiology, we suggest modifying the classic ballistic depo-
sition model of surface growth, where the memory of a deposition at a site induces more depositions at that
site or its neighbors. By studying the statistics of surfaces in this model, we obtain three independent critical
exponents: the growth exponent β = 5/4, the roughening exponent α = 2, and the new (size) exponent γ = 1/2.
The model requires modifying the Family-Vicsek scaling, resulting in the dynamical exponent z = α+γ

β
= 2. This

modified scaling collapses the surface width vs time curves for various lattice sizes. This previously unobserved
universality class of surface growth could describe the surface properties of a wide range of natural systems.
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Introduction. Interface growth and its roughening is a
paradigmatic nonequilibrium statistical physics process with
many applications [1]. Analytical, computational, and exper-
imental studies have shown that the statistics of interface
roughness in such processes usually is characterized by one
of the well-known universality classes: Poisson, Edwards-
Wilkinson (EW), and Kardar-Parisi-Zhang (KPZ) [2,3], as
well as their extensions to quenched disorder, correlated noise,
and so on [4,5]. In the first, interface heights at every point
are uncorrelated. In the second, peaks in the interface are
smoothed through diffusion. Finally, in the third, nearby sites
in the interface help each other grow, resulting in a nonlin-
ear amplification of fluctuations. Competition between the
smoothing and the nonlinearity leads to the interface rough-
ness that increases with time and eventually saturates at a
system-size-dependent value.

More concretely, we denote the height of a one-
dimensional (1D) interface at point x at time t by h(x, t ).
Then the standard deviation of the interface height defines the
interface roughness

w(L, t ) = [[h(x, t ) − h(t )]2]1/2, (1)

and the average · · · is over a domain of size L for a sin-
gle realization of the interface. Such growth processes are
generally characterized by three critical exponents: β, the
growth exponent, which measures how the roughness grows
with time; α, the roughness exponent, which parameterizes
the dependence of the steady-state roughness on the system
size; and z, the dynamical exponent, which relates the time at
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which the steady state is reached to the system size. The three
exponents are related by the Family-Vicsek dynamical scaling
for the interface averaged over many realizations (denoted by
〈· · · 〉) [6]:

〈w(L, t )〉 ∼ Lα f (t/Lz ), with (2)

f (u) ∝
{

uβ, u � 1,

1, u � 1,
(3)

which results in z = α/β.
What unites all of these cases is that there is no memory

or inertia in the interface growth—deposition is Markovian in
time. This is a reasonable assumption when the interface is
built by or from stateless agents. However, when the agents
are more complex, such as when they are living cells with
a multitude of internal states, such memoryless assumption
should be questioned. For example, in cyclic AMP signaling
in Dictyostelium discoideum, which is a classic biological
model of collective signaling, collective motility, and devel-
opment, a spreading wave of cyclic adenosine monophosphate
(cAMP) activates a cell, but only if the temporal derivative of
the cyclic AMP concentration is positive and large [7] [cf.
Fig. 1(a)]. Thus, diffusion and degradation of cyclic AMP
reduces the probability of cell activation for all cells, while
cell activation events increase the probability of activation
only for nearby cells. In another example, an action potential
propagates in a bacterial film only if a concentration of a pre-
viously secreted extracellular potassium has not yet decayed
through diffusion [8,9]. All such processes possess memory:
the interface at a certain point can grow, but only if it grew
here recently. The theory of such interface growth processes
with memory is not yet established. In particular, we do not
know the relevant critical exponents, how many different uni-
versality classes there are, and whether the Family-Viscek
scaling is satisfied in such settings.
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FIG. 1. (a) Three successive snapshots of the activation front
(dashed lines) of model Dictyostelium cells. An inactive cell (white)
activates (turns to red) in response to cAMP (concentration shown by
the color, from blue to yellow). However, to activate, it must sense
a large positive temporal change of cAMP, which exists transiently
only in the pink oval-shaped region. As cAMP diffuses, only cells
that are next to recently active cells can be activated. (b) A BDM
model of the process. A particle A is deposited (activated) at time step
N into the middle column. The propensity for deposition (shown by
color) in the column and its neighbors becomes one at the next time
step, while the propensity of all other sites decreases.

Here we develop a model of ballistic deposition with mem-
ory (BDM), one of the likely many possible extensions of
the traditional memoryless surface growth processes, which is
inspired by the microbiological systems mentioned above. We
derive the critical exponents and verify them numerically. We
show that the process falls into a new universality class with a
new scaling law and a new scaling relation. The KPZ univer-
sality class is an unstable fixed point in the BDM dynamics.
Finally, we discuss the effect of varying memory duration
and show that the standard KPZ interfaces are achieved in a
particular limit of the memory parameters.

Model formulation. We consider the deposition of parti-
cles on a one-dimensional substrate of length L. Each site i
has a propensity value of 0 � πi(N ) � 1, which determines
the probability that the site will receive a particle deposition
at step N . Initially, all sites are equally likely to receive a
deposition; i.e., πi(0) = 1 for all i. However, unlike in the
ballistic deposition model, if a site j receives a deposition,
then the propensity at that site and its nearest neighbors is set
to 1 (local activation), while the propensity of all other sites
is reduced by a factor r (overall degradation and diffusion),
thus reducing the probability of receiving a deposition if no
deposition has happened for a long time:

πi(N + 1) =
{

1, j − 1 � i � j + 1,

rπi(N ), otherwise.
(4)

Overall, the probability to receive the deposition at site i at the
N th deposition event is

P[i, N] = πi(N )∑L
i=1 πi(N )

. (5)

At step N , the height of the interface at site i is h(i, N ),
with h(i, 0) = 0. After a site i is randomly selected for the
deposition according to Eq. (5), its height increases from

h(i, N ) to

h(i, N + 1) = max{h(i − 1, N ), h(i, N ) + 1, h(i + 1, N )},
(6)

allowing for overhangs, as in the traditional ballistic depo-
sition [cf. Fig. 1(a)]. We model the process with periodic
boundary conditions, h(L + 1, N ) = h(1, N ). The dynamics
of the surface and the propensity are shown in Fig. 2 for vari-
ous values of r. For low values of r, a single propensity finger
(the dark-blue region in the second row of Fig. 2) moves ran-
domly, causing the deposition sites to follow a random walk,
and overhangs form every time the random walk reverts. In
the intermediate-r regime, multiple propensity fingers move
randomly, merge, and split. These fingers induce particle de-
positions whose shapes are reminiscent of diffusion-limited
aggregation [10], but we do not quantitatively assess this
similarity here. For values of r ≈ 1, many deposition fingers
merge into a deposition front, whose fluctuation is KPZ-like
(as we will discuss later), but with chasms that have a much
lower height and whose frequency gets lower as r → 1.

A random walker. We start with the fast-propensity decay
limit, defined as r � 1/L (see the Appendix for details). Here
the probability that any site j receives a deposition at step N +
1 given that a non-neighboring site i received a deposition at
step N is∑

j 
∈{i−1,i,i+1}
1� j�L

P[ j, N + 1|i, N] =
∑

j 
∈{i−1,i,i+1}
1� j�L

π j (N )∑L
k=1 πk (N )

<
Lr

3
� 1

3
, (7)

where we used the bounds
∑L

k=1 πk (N ) >∑
k∈{i−1,i,i+1} πk (N ) = 3 and

∑
j 
∈{i−1,i,i+1}

1� j�L
π j (N ) <

(L − 3)r < Lr to bound the denominator and numerator,
respectively. Therefore, the location xN of the deposition after
N steps is well approximated by a 1D random walker.

Determining the natural timescale. Classical models of
interface growth, such as ballistic deposition or KPZ, mea-
sure time in units of the mean number of deposited layers,
t ∼ N/L. However, when the measure of where particles can
be deposited concentrates, different relations between N , L,
and t emerge [11,12].

In what follows, we use the overbar · · · to refer to spa-
tial averaging, and we use angled brackets 〈· · · 〉 to refer
to ensemble averaging. Then, in the Appendix, we show
that if πk, j is the propensity at site k and realization j,
then ensemble-averaged propensity π (N ) ≡ 〈πk, j (N )〉ens ≡
limM→∞ 1

M

∑M
j=1 πk, j (N ) is independent of the site index k

and is approximated by the recursion relation

π (N + 1) ≈ 1

L
[(L − 3)rπ (N ) + 3]. (8)

The solution of Eq. (8) (see the Appendix) has a characteristic
timescale of N1/e = 1

ln L
(L−3)r

≈ 1
ln 1

r
depositions, approaching a

steady-state space and ensemble-averaged propensity π∗ =
3[L − (L − 3)r]−1. In the limit N � N1/e, there are O(Lπ∗)
sites whose probability of receiving a deposition is O(1/Lπ∗)
(see the Appendix), while all other sites have a probability
near 0 of receiving a deposition. This implies that the effective

L032053-2



BALLISTIC DEPOSITION WITH MEMORY: A NEW … PHYSICAL REVIEW RESEARCH 6, L032053 (2024)

FIG. 2. Examples of the BDM interfaces. In the top row, the deposition height vs space coordinate is shown for each deposition as a black
dot. Different columns are for different values of r. The blue curves show the surface height as a function of the spatial coordinate for different
numbers of depositions, from N = 2000 (light blue) to N = 10 000 (dark blue). The bottom row shows the propensity, encoded by color, as a
function of space and time.

lattice length is Lπ∗ and motivates a definition of the number
of deposited layers and, hence, a definition of time as

t = η
N

Lπ∗
= η

(
1

3
− L − 3

3L
r

)
N (9)

for any constant η. In all figures and equations, we define time
as in Eq. (9) with η = 1.

Dynamical exponents. After N depositions, the deposited
particles span O(

√
N ) lattice sites and the random walker

has performed O(N ) reversals, with each reversal increas-
ing the height by 1. Thus, the space and ensemble-averaged
height of the interface is 〈h̄(N )〉 ∼ c1 × 0 × L−√

N
L + c2 ×

N ×
√

N
L ∼ N3/2

L = λ
3/2
r,L t3/2/L while the ensemble-averaged

mean squared height is 〈h(N )2〉 ∼ c3 × 02 × L−√
N

L + c4 ×
N2 ×

√
N

L ∼ N5/2

L = λ
5/2
r,L t5/2/L for λr,L = 1/(Lπ∗) and some

constants c1, . . . , c4. In the above calculation, we replace
〈 1

L

∑L
i=1 h(i, N )〉2 by 〈[ 1

L

∑L
i=1 h(i, N )]2〉, which we justify a

posteriori. The resulting mean width of the interface becomes

〈w(L, t )〉 ∼
(

λ
5/2
r,L

t5/2

L
− δλ3

r,L

t3

L2

)1/2

(10)

for some constant δ and is valid for
√

N � L.
In the regime where

√
N � L (i.e., the random walker has

yet to span the system), the width of the interface grows with
time (the growth regime), and its value is dominated by the
first term in Eq. (10):

〈w(L, t )〉 ∼ λ
5/4
r,L t5/4/

√
L ∝ tβL−γ . (11)

This determines the size exponent γ = 1/2 and the growth
exponent β = 5/4, which are in excellent agreement with

simulation values (cf. Fig. 3), despite finite-size effects, and
even with r outside the regime r � 1/L.

In the regime where
√

N � O(L), the random walker has
spanned the lattice, and the surface roughness saturates at

wsat ∼ N5/4/
√

L ∼ (L2)5/4/
√

L = L2, (12)

This determines the roughness exponent α = 2, which agrees
with the simulations (Fig. 3).

Dynamical scaling relation and the scaling law. Since the
growth and saturation regimes cross at some time tc, it follows
from Eqs. (11) and (12) that λ

−β
r,L L−γ tβ

c ∼ Lα . The relation

tc ∼ λr,LL
α+γ

β = λr,LLz determines the scaling law z = α+γ

β
=

2 in our model. Note that λr,L has a weak dependence on L
such that for L � 1 it is essentially independent of L. The
scaling relation becomes

〈w(L, t )〉 ∼ Lα f
(
t/L

α+γ

β

)
, (13)

with f defined as in the Family-Vicsek scaling [6]. Indeed,
plotting w/Lα against t/L

α+γ

β , as in Fig. 4, collapses the width
vs time curves plotted for various lattice lengths L in the
inset of Fig. 4. From this, we conclude that there are three
independent exponents, α, β, and γ , that fix the dynamic
exponent z.

As a newly arriving particle sticks to the surface following
Eq. (6), its height is either the same or larger than that of its
neighbors. This introduces correlations between neighboring
sites. The ensuing height fluctuations spread laterally since
particles deposited at nearby sites must have an equal or larger
height. This correlation length ξ|| can only grow up to the
substrate length, i.e., ξ|| ∼ L for t � tc. Replacing L by ξ||
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(a) (b) (c)

FIG. 3. (a) The saturation width of the BDM interface as a function of the system length L. The scaling Lα , where α is the roughening
exponent, obtained from simulation, is shown. (b) The scaling of w/tβ in the growth regime as a function of the system size is Lγ ; t (N ) is
defined as in Eq. (9). The fitted scaling with the size exponent γ = 0.54 ≈ 0.5 is also plotted. (c) The growth exponent β as a function of
the system size L. The black dash-dotted line at β = 5/4 is the theoretical prediction, in agreement with simulations once finite-size effects
become negligible. The value r = 0.5 is used for all subplots.

in tc ∼ λr,LLz, we find that ξ|| ∼ λ
−1/z
r,L t1/z

c for t � tc. Since

ξ|| ∼ N1/2 for t � tc, we see that ξ|| ∼ λ
−1/z
r,L t1/z holds for

t � tc as well.
Varying the memory timescale. As r increases, so does

the total size of the randomly moving propensity fingers
Lπ∗ = λ−1

r,L . Increasing r also decreases the time to saturation
tc (cf. Fig. 5). In the limit of r = 1, the KPZ exponents, as
seen in Fig. 5, and the standard definition of time t = N/L
are recovered. For most of the r ∈ [0, 1] domain, the surface
fluctuations are in the new universality class and are not in the
KPZ class (cf. Fig. 5). At early times, the Poisson regime dom-
inates the growth with a characteristic scale of t1/2 followed
by the KPZ growth with a scale of t1/3 (effectively, r ∼ 1)
within a moving finger of finite width, and eventual transition
to fluctuations with a scale of t5/4 (effectively, r < 1). For

FIG. 4. Interface width w as a function of time for r = 0.5 and
systems of different lengths L. The time axis is scaled by Lz = L2,
and the width axis is scaled by Lα = L2, which achieves the collapse
of all curves. The data come from averaging over 20 independent
runs for all L except L = 6400, which used 5 independent runs. The
inset shows the bare width as a function of the bare time.

finite L, this transition occurs at r∗(L) < 1. However, in the
thermodynamics limit L → ∞, the transition value r∗(L) →
1 because the random depositions would cover only a finite
part of the lattice. This implies that the KPZ class (at least in
1D) is an unstable point of the dynamics that occurs only at
r = 1 if L is infinite.

Discussion. We numerically and analytically studied a
model of interface growth with memory. The introduction of
an overall reduction in propensity driven by local processes,
e.g., degradation and diffusion, induces an autonomous de-
cay in propensity at each site. This decay is balanced by
local deposition, e.g., local production of cyclic AMP from
an activated cell, whose effect increases the propensity for
deposition at sites in the vicinity of the recently deposited
ones. The uniform decay in propensity is important as it

FIG. 5. Interface width w as a function of time for system size
L = 103 and different propensity decay constants r. The growth
exponent changes from the KPZ value of β = 1/3 to the BDM value
β = 5/4 as the propensity decay rate r deviates from r = 1. For
r = 1 and for very small times, the width exhibits the Poisson scaling
with β = 1/2.
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limits the interface growth to small randomly moving regions
where growth is possible. The introduction of memory—an
additional dynamical variable π—changes the order of the
dynamics and breaks the temporal locality of the deposition
process, so that deposition at the current time is dependent on
the history of prior deposition events. This leads to the emer-
gence of a new size exponent γ , which captures the random
walk nature of the deposition process at long times, and to
changes in the values of the growth exponent (β = 5/4) and
the roughening exponent (α = 2). These exponents result in a
new scaling law, z = α+γ

β
= 2, which generalizes the classical

scaling law z = α/β. In other words, BDM is a surface growth
process that does not belong to the KPZ or EW universality
classes and their various well-known modifications [13–19].
This is because our novel class breaks spatial translation
symmetry by allowing sites to have different probabilities of
receiving a deposition.

While our model was inspired by biological systems, it re-
mains to be seen if the discovered universality class is relevant
to them. In order to verify this, it might be easier to introduce
and study a similar memory-enabled extension of the Eden
growth model [6,20]. Further, it is then necessary to explore
empirically large spatiotemporal scales that are beyond the
typical scales probed in current experiments to test our pre-
dicted exponents. We hope that such experiments will provide
exciting new insights into interface growth phenomena.
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der Grants No. 2010524 and No. 2014173 and by the Simons
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Appendix: Deriving the propensity recursion relation.
The dynamics of the propensity in any particular realiza-
tion of the interface growth are complex. This is largely
because the propensity is concentrated, typically, in a small
region of the lattice. For our subsequent analysis, we are
interested precisely in the typical number of active sites,
over which the propensity is large after N depositions.
We approximate the number of such significant propensity
sites by the total propensity over the whole lattice, aver-
aged over realizations of the process. For the realization
j, let {π1, j (N ), . . . , πL, j (N )} denote the propensity on sites
1, . . . , L after N depositions. We now define the total lattice
propensity as 
tot

j (N ) = ∑L
�=1 π�, j (N ). For this realization,

the probability that site k receives the N + 1st deposition is
then πk, j (N )


tot
j (N ) . If this occurs, then the total propensity of realiza-

tion j at deposition N + 1, conditional on the last deposition
being at site k, is


tot
k, j (N + 1) = 3 + r

∑
� 
∈{k,k±1}

1���L

π�, j (N ). (A1)

Averaging this quantity over the probability of the N + 1st
deposition at site k, we obtain


tot
j (N + 1) =

L∑
k=1


tot
k, j (N + 1)

πk, j (N )


tot
j (N )

=
L∑

k=1

(
3 + r

∑
� 
∈{k,k±1}

1���L

π�, j (N )

)
πk, j (N )


tot
j (N )

= 3 + r
L∑

k=1

[

tot

j (N ) − π[(k−1+L) mod L]+1, j (N ) − πk, j (N ) − πk+1, j (N )
]πk, j (N )


tot
j (N )

= 3 + r
tot
j (N ) − r

L∑
k=1

π2
k, j + 2πk, jπ[(k−1+L) mod L]+1, j


tot
j (N )

. (A2)

Since there are no special sites for ensemble quantities, the ensemble average π (N ) ≡ 〈πk, j (N )〉ens ≡
limM→∞ 1

M

∑M
j=1 πk, j (N ) is independent of the site k. Consequently, the ensemble average of the total lattice propensity

can be related to a site- and ensemble-averaged propensity on a single site:

〈

tot

j (N )
〉
ens ≡

L∑
k=1

〈πk, j〉ens ≡ Lπ (N ). (A3)

Now, averaging Eq. (A2) over propensity configurations, we see that

〈

tot

j (N + 1)
〉
ens = 3 + rLπ (N ) − r

〈
L∑

k=1

π2
k, j (N ) + 2πk, j (N )π[(k−1+L) mod L]+1, j (N )


tot
j (N )

〉
ens

. (A4)

We now assume that fluctuations on nearby sites are uncorre-
lated so that expectations of products can be approximated
as products of expectations. There is little a priori reason
for this assumption, and we verify its quality a posteriori by
comparing to simulations. Similarly, we will make another
approximation, verified a posteriori, that fluctuations in the

total propensity are small compared to the mean total propen-
sity, so that the total propensity stays away from 0 (this is
because the propensity has to be 1 for a minimum of three
sites, which always results in a strictly positive propensity
sum). Approximating the average of the ratio by the ratio of
the averages (〈 x

y 〉 ≈ 〈x〉
〈y〉 ) and the average of the product by the
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FIG. 6. The ratio π∞/π∗ vs the propensity decay parameter r
and the lattice length L. π∞ is calculated by averaging π (N ) =
1
L

∑L
�=1 π (�, N ) over 30 realizations and then time averaging over

N in the steady state.

product of the averages (〈xy〉 ≈ 〈x〉〈y〉) [21], we obtain the
term〈

L∑
k=1

π2
k, j (N ) + 2πk, j (N )π[(k−1+L) mod L]+1, j (N )


tot
j (N )

〉
ens

(A5)

≈
L∑

k=1

〈
π2

k, j (N ) + 2πk, j (N )π[(k−1+L) mod L]+1, j (N )
〉
ens〈


tot
j (N )

〉
ens

(A6)

≈
L∑

k=1

π2(N ) + 2π (N )π (N )

Lπ (N )
=

L∑
k=1

3π (N )

L
= 3π (N ).

(A7)

Using this approximation and Eq. (A4), we obtain〈

tot

j (N + 1)
〉
ens ≈ 3 + r(L − 3)π (N ). (A8)

To close this relation, we notice that the site-averaged and
realization-averaged total propensity is

〈

tot

j (N + 1)
〉
ens =

〈
L∑

�=1

π�, j (N + 1)

〉
ens

= Lπ (N + 1),

(A9)
and therefore

π (N + 1) ≈ 1

L
[(L − 3)rπ (N ) + 3]. (A10)

The analysis above makes a lot of approximations, some
more justified than the others. Thus, it is important to verify
the obtained result independently. For this, we compare the
steady state π∗ of the recursion relation with our approxi-
mations, Eq. (A10), (see the next section for its derivation)
to the steady state π∞ of the ensemble average 〈π (N ) =∑L

�=1 π (�, N )〉, obtained through numerical simulations.
Figure 6 shows that π∞ = cr,Lπ∗, where cr,L is an O(1) factor.

We emphasize that, for our analysis, we only need an order
of magnitude estimate of the average propensity, and hence
the propensity finger width, which allows us to set the correct
scale for how long it takes to deposit a layer of particles in
the active part of the system. Discrepancies O(1) only lead
to redefining the scale of time, but not its dependence on the
system parameters.

Solving the propensity recursion relation. Multiplying the
recursion relation, Eq. (8), by the summing factor ( L−3

L r)−N−1

and summing from n = 0 to n = N − 1, we obtain a telescop-
ing sum, which evaluates to

π (N ) = π (0)

(
L − 3

L
r

)N−1

+ 3

L

N−1∑
n=0

(
L − 3

L
r

)n

. (A11)

Rewriting the first term of the above expression and the result
of the remaining geometric sum in the exponential form yields

π (N ) =
(

L

(L − 3)r
− 3

L − (L − 3)r

)
e−N ln( L

(L−3)r )

+ 3

L − (L − 3)r
. (A12)

From the first term, we obtain the propensity decay timescale

N1/e = 1

ln
(

L
(L−3)r

) ≈ 1

ln
(

1
r

) , for L � 1. (A13)

Thus π (N ) exponentially decays to

π∗ = 3

L − (L − 3)r
(A14)

on the timescale O(N1/e). In the limits r → 1 and L � 1,
the timescale N1/e → ∞. That is, the propensity remains at
the fixed value of π ≈ 1 and no decay occurs, consistent with
the regular ballistic deposition process.

Computing deposition probabilities. From Eq. (5), we de-
duce that if site j receives a deposition at step N , then the
probability that site i will receive a deposition is

P[i, N + 1] = πi(N + 1)∑L
i=1 πi(N + 1)

= πi(N + 1)

Lπ (N + 1)
(A15)

≈
{ 1

(L−3)rπ (N )+3 , for j − 1 � i � j + 1
rπ (N )

(L−3)rπ (N )+3 , otherwise.

(A16)

However, for N � 1
ln(1/r) , the propensity π (N ) ≈ π∗ =

3
L−(L−3)r and the probability of deposition at site i becomes

P[i, N + 1] ≈
{ 1

3 − L−3
3L r, for j − 1 � i � j + 1

r
L , otherwise.

(A17)

As a check, we see that the probability that any site receives a
deposition is 1:

L∑
i=1

P[i, N + 1] = (L − 3)
r

L
+ 3

(
1

3
− L − 3

3L
r

)
= 1.

Furthermore, using Eq. (A17), we see that∑
j 
∈{i−1,i,i+1}

1� j�L

P[ j, N + 1|i, N] = L − 3

L
r ≈ r � 1 (A18)
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for r � 1. Therefore, the position xN of the deposition at step
N follows an unbiased random walk in this regime.

Expanding the random walk regime. In practice, the steady-
state propensity π∗ is not spread out over the entire lattice.
Instead Lπ∗ = 3(1 − L−3

L r)−1 sites have a propensity of al-
most 1, and the rest of the lattice has an almost 0 propensity.
This motivates the choice of the units of time as t = η N

Lπ∗
shown in Eq. (9) in the main text. In the limit Lπ∗ � L, the
propensity process is made of multiple fingers of cumulative
size Lπ∗, which all are performing random walks. These fin-
gers dynamically merge and split as particles are deposited
randomly. This has the effect that, outside these fingers, the
probability of a deposition is 0 and hence our dynamical ex-
ponents will hold in the significantly larger regime Lπ∗ � L
or, equivalently, 3

1−r � L.

Extracting exponents from data. To estimate the growth
exponent β, we compute the mean width 〈w(N )〉 =
1
n

∑n
i=1 wi(N ) of n realizations of the simulations, where each

wi is the width of a particular realization, evaluated as in
Eq. (1). To ensure that the estimated value of the growth
exponent remains in the growth regime and is unaffected
by crossover effects, we limit the range of time used in the
estimation to N ∈ [3 × 102, 3 × 104]. According to Eqs. (11)
and (12), the mean width in the growth regime is 〈w(N )〉 ∼
L−γ Nβ . Therefore, linear regression obtains the slopes β and
γ of the plane ln w(N ) = β ln N − γ ln L + k when regressed

against ln N and ln L, respectively. The slopes obtain values of
β ≈ 1.25 ± 0.03 and γ ≈ 0.54 ± 0.09.

To determine the size of the fluctuations around the esti-
mated value of β for a fixed substrate length L, we use the co-
variance matrix �β, of the parameters β and  = −γ ln L +
k. The covariance matrix is �β, ≈ R−1(R−1)T | �eres|2

df , where
R is the triangular factor from a QR decomposition of the
Vandermonde matrix of ln(N ), �eres is the vector of residuals
between the data and the fitting line, and df = 2 is the num-
ber of degrees of freedom. The quantity (�β,)1/2

β,β provides
the standard deviation on β. A similar procedure is followed
when we regress on −γ ln L + k against ln L to find γ and its
standard deviation.

To determine the roughening exponent α, we note that
〈w(t )〉 ∼ Lα in the saturated regime. To avoid a bias in the
estimate of α due to the transition from growth to saturation,
we limit the time range used in the estimate to N ∈ IL =
[2L2, 10L2] for lattice length L. For a fixed lattice length L,
the width in the saturation regime fluctuates over the interval
IL. In this regime, the mean width is obtained from the rela-
tion wsat = 1

|IL |
∑

N∈IL
〈w(N )〉, where |IL| is the length of the

interval IL used for the estimate of wsat of the lattice of length
L. Using linear regression, the value of the slope of the line
ln wsat = α ln L + λ gives α ≈ 2.0 ± 0.18 as seen in Fig. 3, in
agreement with analytical results.
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