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Magnetogenesis via the canonical battery effect
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We show by analyzing the time evolution of canonical vorticity that spontaneous generation of magnetic
fields within an initially unmagnetized, vorticity-free plasma must be achieved through the canonical battery
effect. This effect generalizes well-known magnetogenesis mechanisms across different regimes such as the
Biermann battery in the isotropic regime and the Weibel instability in the kinetic regime, the latter of which
is further verified by particle-in-cell simulations. Using the canonical battery term, a general prediction of any
configuration of the pressure tensor that allows for magnetogenesis can be established. One such configuration—
a two-dimensionally localized pressure anisotropy—that does not correspond to either of the mechanisms is
derived and numerically verified. The advantage of using this term in magnetogenesis analyses is discussed.
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Magnetic fields are ubiquitous in a wide range of scales and
strengths from µG in interstellar media and galaxies, G around
planets, stars, and black holes, to 1010 G around neutron stars
[1–4]. Although magnetic fields play crucial roles in many
physical processes in the Universe such as the formation of
stars and galaxies [5,6], propagation of cosmic rays [7,8],
space weather [9,10], and evolution of the Universe [11], their
exact origin is still a mystery. Cosmological theories suggest
that primordial magnetic fields of large coherence scales orig-
inated in the early Universe through symmetry breaking and
quantum fluctuations, but the details are still under serious
debate [4,8,12,13].

An alternative explanation for the origin of magnetic fields
comes from plasma physics—the amplification of a seed field
by turbulent dynamo [14]. Most astrophysical systems consist
of rotating, conducting plasmas capable of supporting con-
vective dynamo processes. [3,14,15]. However, initiating the
dynamo requires a seed field whose self-generation is crucial
but poorly understood.

Among the known mechanisms for seed-field generation,
the Biermann battery effect [16] and the Weibel instability
[17] are the two major theories. A Biermann battery arises
due to a misalignment of density and temperature gradients
[16,18], which produces a swirling motion of the plasma that
generates a weak seed field. This effect has been theorized
to be important in astrophysical phenomena [18,19], and ob-
served in laser-produced plasmas [20,21].
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On the other hand, the Weibel instability is a kinetic
phenomenon induced by partial isotropization of an initial
temperature anisotropy or equivalently counterpropagating
beams [17,22]. The Weibel instability has been readily re-
produced in the laboratory [23–28] and is theorized to be
important in astrophysical magnetogenesis [29,30].

A seemingly disconnected theoretical framework is that
associated with canonical vorticity, which is a weighted sum
of fluid vorticity and magnetic field. This quantity in vari-
ous forms has been used extensively in studies of magnetic
reconnection [31–39] and canonical helicity [40,41]. It was
recently shown that a pressure-tensor-induced effect called the
“canonical battery” effect is a nonideal source of canonical
vorticity and is important during magnetic reconnection [39].

In this Letter, we show that this canonical battery effect
is responsible for magnetogenesis in an initially unmag-
netized and vorticity-free plasma. The effect generalizes
both the Biermann battery—shown trivially—and the Weibel
instability—shown via particle-in-cell (PIC) simulations. Us-
ing the canonical battery term, a whole menagerie of new
pressure tensor configurations can be derived that enables
magnetogenesis. Two-dimensionally (2D) localized pressure
anisotropy is shown to be an important mechanism which
is again verified through PIC simulations. The advantage of
using the canonical battery term is discussed.

Canonical battery effect. We start from the first moment
of the Vlasov equation of species σ = i, e for ions/electrons
under the Lorentz force,

mσ

(
∂uσ

∂t
+ uσ · ∇uσ

)
= qσ (E + uσ × B) − ∇ · p↔σ

nσ

, (1)

where mσ , qσ , uσ , and nσ are the species mass, charge, mean
velocity, and density. E and B are the electric and magnetic
fields, and p↔σ = mσ

∫
v′

σ v′
σ f (vσ )d3vσ is the pressure tensor

where v′
σ = vσ − uσ is the random part of vσ . We ignore
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collision terms, but viscous terms may be included as off-
diagonal elements in p↔σ . Taking the curl of Eq. (1), using the
vector calculus identity ∇ × (V · ∇V) = −∇ × (V × ∇ ×
V) and Faraday’s law ∇ × E = −∂B/∂t , and defining the
vorticity �σ = ∇ × uσ yields

mσ

[
∂�σ

∂t
− ∇ × (uσ × �σ )

]

= −qσ

[
∂B
∂t

− ∇ × (uσ × B)

]
− ∇ ×

(∇ · p↔σ

nσ

)
. (2)

Now we define canonical vorticity Qσ = mσ�σ + qσ B
which is the curl of the canonical momentum Pσ = mσ uσ +
qσ A where A is the magnetic vector potential. Qσ therefore
represents both inertial and magnetic characteristics of the
plasma species. Collecting the temporal and spatial derivatives
in Eq. (2), we obtain

∂Qσ

∂t
= ∇ × (uσ × Qσ )︸ ︷︷ ︸

�C

�B︷ ︸︸ ︷
−∇ ×

(∇ · p↔σ

nσ

)
, (3)

which is the canonical induction equation [39] that describes
the time evolution of Qσ with just two terms on the right-
hand side. The first term is the convective term �C, which is
isomorphic to the magnetic induction term in ideal magneto-
hydrodynamics (MHD) and thus signifies that Qσ is frozen
into uσ . The second term is the “canonical battery” term �B
which acts as a source/sink of Qσ due to the pressure tensor.

It is clear from Eq. (3) that if the plasma is unmagnetized
(B = 0) and vorticity free (�σ = 0) so that Qσ = 0 and �C =
0, the only term that can generate finite Qσ is the canonical
battery term �B. The generated Qσ cannot be entirely com-
prised of �σ because Ampère’s law gives −∇2B = μ0∇ ×
J � μ0

∑
σ nσ qσ�σ , so finite �σ means finite B. Therefore,

spontaneous generation of Qσ and of B is only possible
through �B.

To more easily understand how a canonical battery gener-
ates B, let us examine a simpler system where the current is
carried entirely by electrons, i.e., the electron-MHD assump-
tion [42]. Then, ∇2B = μ0nee�e. Noting that

√
me/μ0nee2 =

de is the electron skin depth, the electron canonical vor-
ticity becomes Qe = e(d2

e ∇2B − B) and is entirely a func-
tion of B. In fact, denoting the Fourier transform by
Q̃e = ∫

Qe exp(−ik · x)d3x, we have

B = − 1

2πe

∫
Q̃e

1 + k2d2
e

exp (ik · x)d3k. (4)

Equation (4) shows that for k2d2
e � 1, B is small and thus

Qe � me�σ , whereas for k2d2
e � 1, Qe � −eB. For kde ∼ 1,

the inertial and magnetic terms contribute equally. In other
words, B is a “smoothed out” function of Qe. Therefore, the
generation of Qe by the canonical battery effect necessarily
generates B.

To simplify the illustration of the role of the different
terms in the canonical battery, let us assume ∂/∂z → 0 so the

z component of �B is

Bz = ẑ ·
[
−∇

(
1

ne

)
× ∇ · p↔e

]

+ 1

ne

(
∂2

∂y2
− ∂2

∂x2

)
pexy + 1

ne

∂2

∂x∂y
(pexx − peyy), (5)

where pei j is the i j component of p↔e. Each of the three terms
in Eq. (5) corresponds to different effects, as follows.

Biermann battery. The Biermann battery is simply the
canonical battery with an isotropic pressure tensor. When
p↔e = pe I

↔
, only the first term in Eq. (5) survives and becomes

Bz = ẑ ·
[
−∇

(
1

ne

)
× ∇pe

]
= ẑ ·

[∇ne × ∇pe

n2
e

]
, (6)

which is exactly the Biermann battery term [16,18,21], and is
the namesake of the canonical battery term.

Weibel instability. The canonical battery term also embod-
ies the magnetic field source in the Weibel instability [17].
For simplicity, we further assume 1D (∂/∂y → 0) and an
initially uniform density (∇ne = 0), then only the second term
in Eq. (5) survives and becomes

Bz = − 1

ne

(
∂2 pexy

∂x2

)
. (7)

Although Weibel instability is generally attributed to pressure
anisotropy peyy > pexx, Eq. (7) explicitly shows that the mix-
ing term pexy is what generates Qez.

In order to confirm the role of Bz in the Weibel insta-
bility, a 1D3V (one-dimensional in configuration space and
three-dimensional in velocity space) particle-in-cell (PIC)
simulation was conducted using the SMILEI code [43]. The
simulation domain was Lx = 20πde divided by 2048 cells,
and 105 particles were placed per cell. Periodic boundary con-
ditions were used, and the time step was �t = 0.0291/ωpe. A
realistic ion-to-electron mass ratio mi/me = 1836 was used,
and the ions were initially cold. The initial electron tem-
peratures were set as Texx = Tezz = 0.001mec2 and Teyy =
0.01mec2, and the density was set uniformly as n0.

Figure 1 is a streak plot of various quantities in Eq. (3) and
its constituents. It can be seen that Bz spontaneously grows
due to the Weibel instability and saturates at tωpe � 200
[Fig. 1(a)]. The electron vorticity �ez grows with Bz, and
together they constitute Qez = �ez − Bz in normalized units
[Figs. 1(b) and 1(c)]. As expected from Eq. (4), Bz has a sim-
ilar profile to Qez but without the finer sub-de scale structures
and with the opposite sign.

Differentiating Qez with respect to time, one obtains
∂Qez/∂t [Fig. 1(d)] or the left-hand side of Eq. (3). The two
terms on the right-hand side are shown in Figs. 1(e) and 1(f),
which have been Gaussian filtered by seven grid points to
reduce noise. It is clear that ∂Qez/∂t = Bz, i.e., the canonical
battery effect is entirely responsible for the self-generation of
Qez and of Bz.

Figure 2(a) shows the time-dependent rms value of Qez

and its constituents. The exponential growth of all quantities
is clear until tωpe � 200 with a dominance of �ez, but after
saturation �ez and Bz are comparable. Figure 2(b) shows the
rms values of the pressure tensor components. It is clear that
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FIG. 1. Streak plot of various quantities of the z component of
Eq. (3), namely (a) Bz, (b) �ez, (c) Qez, (d) ∂Qez/∂t , (e) Cz, and (f) Bz

from the 1D PIC simulation. They are shown in units of (a) meωpe/e,
(b) ωpe, (c) meωpe, and (d)–(f) meω

2
pe, where ωpe = √

n0e2/meε0.

FIG. 2. Time-dependent rms values of (a) normalized Qez, �ez,
and Bz, and (b) electron pressure tensor components in units of
n0mec2 from the 1D simulation.

pexy, which gives rise to Bz, exponentially increases as the
initially high peyy is imparted to pexx. After saturation, pexy

drops and the generation of Qez stops.
Moreover, the transition from Biermann battery to the

Weibel instability around a system length scale L [44], can
simply be explained by the ratio of the above two sources as
follows, ∣∣∣∣∇ne × ∇Te

ne

∣∣∣∣ :
1

ne

∂2 pexy

∂x2
, (8)

Tdiag

Toff
d2

e : L2, (9)

where we have assumed ∇−1 ∼ L ∼ Ln ∼ LT , and Tdiag and
Toff are diagonal and off-diagonal components of the tem-
perature tensor, respectively. The Weibel instability arises
at de scales, so ∂2 pexy/∂x2 ∼ pexy/d2

e . It can be seen from
Fig. 2(b) that Tdiag is around one or two orders of magnitude
bigger than Toff and so the transition is at around L ∼ 10de.
Thus, the comparison between the subterms within Eq. (5)
simplifies the explanation of the dependence on the length
scale of the dominant field generation mechanism.

2D-localized pressure anisotropy. So far, we have estab-
lished that the canonical battery effect generalizes already-
known magnetogenesis mechanisms. The first and second
terms in Eq. (5) are responsible for the Biermann battery and
the Weibel instability, respectively. However, the canonical
battery term in turn enables us to generally predict pressure
tensor configurations that allow for magnetogenesis.

For instance, the third term in Eq. (5) shows that 2D-
localized pressure anisotropy can also directly generate
magnetic fields, which is different from the Weibel instabil-
ity that involves only the mixing term pexy. In particular, if
the initial localized anisotropy is of the form pexx − peyy ∼
exp[−(x2 + y2)/σ 2] with uniform density, then only the third
term in Eq. (5) survives and has the dependence

Bz ∼ xy exp

(
−x2 + y2

σ 2

)
, (10)

which means that a quadrupole magnetic field will be locally
generated.

To verify these predictions, a 2D3V PIC simulation was
conducted in the domain (Lx, Ly) = (10, 10)de divided into
2048 cells in each direction. Two hundred particles were
placed per cell and the time step was �t = 3.28 × 10−3/ωpe.
The electromagnetic (EM) boundary conditions were Silver-
Müller, and particles were removed upon boundary exit. The
initial electron temperatures were Teyy = Tezz = 10−4mec2 and
Texx = Teyy + 0.04mec2 exp{−[(x − x0)2 + (y − y0)2]/σ 2}
where σ = √

0.5de and x0 = y0 = 5de with uniform density
n0. The ion temperatures were set uniformly to 10−4mec2 and
mi/me = 1836.

Figure 3 shows streak plots of various quantities from
the 2D simulation. All quantities have been Gaussian filtered
by ten grid points. A quadrupole Bz is indeed generated
[Fig. 3(a)] as predicted from Eq. (10). A quadrupole �ez

is also generated, which combines with Bz to yield Qez

[Figs. 3(b) and 3(c)]. The sign of the vorticity corresponds to
inflow in the ±y directions and outflow in the ±x directions.

The magnetic field strength is comparable to that of
the Weibel instability [Fig. 1(a)]. For a plasma density of
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FIG. 3. Streak plots of (a) Bz, (b) �ez, (c) Qez, (d) ∂Qez/∂t , (e) Cz, and (f) Bz from the 2D PIC simulation. The units are the same as in
Fig. 1. The three slices in each panel correspond to tωpe = 0.19, 5.02, 9.94.

n0 = 1019 cm−3 as is typically generated from laser-matter
interactions [28], the strength corresponds to 20 T.

Figure 3(d) shows ∂Qez/∂t , calculated with a backward
difference scheme. Note that in this case the data were saved
at sparse time intervals and so the calculation of ∂Qez/∂t is
relatively inaccurate. Figure 3(f) shows Bz which reasonably
reproduces ∂Qez/∂t , again confirming the role of the canoni-
cal battery effect. Bz initially generates quadrupole structures
and then propagates in the ±x directions. Figure 3(e) shows
that Cz is also generated but is relatively weak.

Figure 4 shows the maximum values of various quantities
in the simulation. It can be seen that the Bz grows and saturates
within ∼2/ωpe, but pexy does not change until later, demon-
strating that the third term in Eq. (5) is generating Bz. In fact,
the first and second terms in Eq. (5) are found to be negligible
in the simulation.

On top of the setups presented here, a whole menagerie
of pressure tensor configurations that lead to magnetogenesis
can be generally predicted with the canonical battery terms.
For example, if a strong density inhomogeneity (∇ne �= 0) and
pressure anisotropy coexist, the first term in Eq. (5) does not
approximate to the Biermann battery term and creates much
stronger magnetic fields (see Appendix for further analyses
in this case). This configuration should be important in laser
experiments with localized densities [46,47]. Similarly, there
can be multiple structures of Qez from all possible combina-
tions of the source terms in Eq. (5). Magnetogenesis by the
ion canonical battery effect should also be possible.

Discussion. The canonical battery effect due to
the pressure tensor anisotropy is important in many
magnetic-field-generating scenarios. In fact, the proposed

FIG. 4. Time-dependent maximum values of (a) normalized Qez,
�ez, and Bz, and (b) electron pressure tensor components in units of
n0mec2 from the 2D simulation.
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FIG. 5. Fourier spectrum of B2 in arbitrary units after satura-
tion in both the 1D and 2D simulations. The dashed line shows a
power law of k−16/3, which is predicted by gyrokinetic theory of
turbulence [45].

kinetic theory and simulation shows that arbitrary density and
temperature gradients lead to localized anisotropies which
leads to magnetic-field generation on top of the well-known
Biermann battery effect [16] and the Weibel instability [17].
In experiments that investigate magnetogenesis and related
phenomena through focused laser beams, such localized
anisotropy is usually inevitable and should be consequential
[46–48]. Schoeffler et al. [44] showed that the relative
importance of the Biermann effect to the Weibel instability
depends on the length scale of the source. As shown in
Eq. (9), a scaling comparison between the subterms in the
canonical battery term can simply explain such dependence
on the dominant sources.

Different generation mechanisms engender different en-
ergy spectra, which may influence subsequent dynamo
amplification. Figure 5 shows that the dominant wave number
in the Weibel instability is around kde � 1, whereas for the
new 2D case it extends to kde > 1. This fact is also manifested
in Fig. 2(a) where �ey � By and Fig. 4(a) where �ez � Bz.
They also have different growth rates; the present 2D case has
a larger growth rate than the Weibel instability.

Although we focus on seed-field generation here, Eq. 3
also allows us to distinguish between seed-field generation
and dynamo-driven amplification. The former should be asso-
ciated with the canonical battery term, whereas the latter with
the convective term. Therefore, by examining the interplay
between the two terms, one can identify the progression of
magnetic fields from microscales to macroscales. Such tran-
sitions have been gaining recent attention [30,49] and are
worth exploring in the canonical vorticity framework, espe-
cially because the merging or breaking of Weibel-induced
filaments involve reconnection which is controlled by both
convective and battery terms [35,36,39]. Even after the re-
laxation of the canonical battery effect and of the system to
MHD scales, stochasticity may induce further dynamo effects
[50,51]. Studies of such effects requires considerations in 3D,
which will engender more terms in Eq. (5).

A simple scaling comparison of the convective and battery
terms in Eq. (3) (|ue × Qe| : |∇ · p↔e/ne|) can be conducted
to estimate the length scale at which this transition oc-
curs, assuming that the convective term becomes the dynamo
term when |ue| ∼ vA (Alfvén velocity) and Qe ∼ B. Further

writing ∇ ∼ L−1, one can show that the battery effect is
dominant over amplification for characteristic lengths up to
L ≈ βedi/2, where βe = 2μ0 pe/B2 is the electron plasma beta
and di =

√
mi/μ0ne2 is the ion skin depth.

Moreover, quadrupole field generation by the localized
pressure anisotropy also has implications for magnetic re-
connection [52] and flux rope generation [53], suggesting
that the proposed model may be used for detailed studies
of magnetic reconnection characteristics involved in the flux
rope dynamics in astrophysical plasmas. Note that Qe flux
can be a conserved quantity while B flux is not. A possibly
more astrophysically relevant scenario is magnetogenesis in,
e.g., supernovae, shocks, and/or pair plasmas, which requires
considerations of relativistic effects [54–56]. Our preliminary
investigations show that relativistic effects are manifested as
single additional term in Eq. (3).

In summary, we have found different magnetogenesis
mechanisms by analyzing the canonical battery effect which is
responsible for the spontaneous generation of canonical vor-
ticity. The effect also generalizes popular mechanisms such
as Biermann battery and Weibel instability, and generally
predicts pressure tensor configurations that can generate seed
magnetic fields. Implications for future magnetogenesis anal-
yses were also discussed.
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Appendix: additional cases. Consider an initially nonuni-
form density ne = n0 exp{−[(x − x0)2 + (y − y0)2]/2σ 2} co-
existing with the 2D-localized pressure anisotropy shown in
Fig. 3. In this case, the dominant term of the battery, in
addition to Eq. (10), is

Bz ∼
(

∂

∂y

1

ne

)(
∂ pexx

∂x

)
, (A1)

which has the dependence ∝ − xy and so opposes the origi-
nal term [Eq. (10)]. Therefore, the quadrupole magnetic field
generation is expected to be reduced.

Figure 6 shows the corresponding simulation result of Bz

at tωpe = 5, which is compared with the middle slice in
Fig. 3(a), that has a maximum Bz amplitude of 0.014. By
comparison, the above figure shows that the maximum of the
generated Bz is only around 0.004, which is a reduction that is
accurately predicted by Eq. (A1).

Consider another case with the same initial nonuniform
ne = n0 exp{−[(x − x0)2 + (y − y0)2]/2σ 2} but with nonlo-
calized electron temperatures anisotropy of Teyy = Tezz =
10−4mec2 and Texx = 0.04mec2. All other parameters remain
unchanged. In this case the additional dominant term, assum-
ing pei j = neTei j , is

Bz ∼ Texx

(
∂

∂y

1

ne

)(
∂ne

∂x

)
, (A2)
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FIG. 6. Strength of quadrupole Bz on the xy plane at tωpe = 5 for
the localized both ne and Tei j case.

which also has the dependence ∝ − xy and so opposes the
original term [Eq. (10)]. However, Eq. (A1) involves gradients
in both ne and Texx and so its magnitude should be stronger
than Eq. (A2), and so the reduction given by Eq. (A2) should
be weaker than that of Eq. (A1).

FIG. 7. Strength of quadrupole Bz on the xy plane at tωpe = 5 for
the localized ne and nonlocalized Tei j case.

Figure 7 shows the corresponding Bz at the tωpe = 5 and
compared with the middle slice of Figs. 3(a) and 6. By com-
parison, Fig. 7 shows that the magnitude of the generated Bz

is around 0.007, which is also a reduction but that is indeed
weaker than in the previous case.
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