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Electric field induced thermal Hall effect of triplons in the quantum dimer magnets
XCuCl3 (X = Tl, K)
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We theoretically propose the electric field induced thermal Hall effect of triplons in the quantum dimer
magnets XCuCl3 (X = Tl, K), which exhibit ferroelectricity in the Bose-Einstein condensation phase of triplons.
The interplay between ferroelectricity and magnetism in these materials leads to the magnetoelectric effect, i.e.,
an electric-field induced Dzyaloshinskii-Moriya (DM) interaction between spins on the same dimer. We argue
that this intradimer DM interaction breaks the symmetry of the system in the absence of an electric field and
gives rise to the thermal Hall effect, which can be detected in experimentally accessible electric and magnetic
fields. We also show that the thermal Hall effect can be controlled by changing the strength or direction of the
electric field.
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Introduction. Quantum spin systems exhibit a variety of
interesting properties that are not present in their classical
counterparts. Quantum dimer magnets are such examples,
where the neighboring S = 1/2 spins form dimers with a
spin-singlet ground state and triplet bosonic excitations called
triplons. The triplons undergo Bose-Einstein condensation
(BEC) when the magnetic field exceeds a critical value [1–10].
In the BEC phase, the ground state of an individual dimer
is a coherent superposition of the singlet and triplet states,
which breaks the inversion symmetry and can lead to the
spontaneous polarization on dimers. In particular, XCuCl3 (X
= Tl, K) is known to exhibit ferroelectricity in the BEC phase,
whereas these materials have inversion centers at the center of
dimers in the weak magnetic field regime [11–14]. When one
applies an electric field in the BEC phase, the spin-dependent
polarization can couple with the electric field, inducing the
intradimer Dzyaloshinskii-Moriya (DM) interaction [15–27].
It is thus natural to ask whether the transport of triplons in
these materials can be significantly affected or controlled by
the electric field.

Various transverse transport phenomena associated with
the Berry curvature have been proposed for bosonic excita-
tions such as magnons [28–71], photons [72–76], phonons
[77–82], and triplons [83–90]. Of particular interest is the
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thermal Hall effect of magnons induced by the DM inter-
actions that has been observed experimentally [29,31]. By
contrast, the thermal Hall effect of triplons has yet to be de-
tected experimentally [89], despite the theoretical prediction
for SrCu2(BO3)2 [83,84,87,88].

In this Letter, we propose the electric field induced thermal
Hall effect of triplons in XCuCl3. The magnetic properties of
these materials are well described by the isotropic Heisenberg
Hamiltonian with DM interactions [3–5,91]. In the absence of
an electric field, the system possesses an effective PT symme-
try and does not exhibit the thermal Hall effect. We find that
an electric field induces intradimer DM interactions breaking
this symmetry, thereby leading to the thermal Hall effect. We
also show that the magnitude (direction) of the thermal Hall
current can be controlled by manipulating the strength (direc-
tion) of the electric field. Our numerical results for TlCuCl3

suggest that the thermal Hall effect in XCuCl3 can be observed
in experimentally attainable electric and magnetic fields.

The model. XCuCl3 is a three-dimensional interacting
dimer system where the S = 1/2 spins of Cu2+ ions form
dimers due to the strong intradimer interactions [3–5,91] [see
Fig. 1 and the Supplemental Material [92]]. The unit cell
contains two equivalent dimers, which belong to two different
sublattices labeled as 1 and 2 in the following. The spin-1/2
operators Sm

l (R) and Sm
r (R) denote the left and right spins of

the dimer in the unit cell at the position R on the sublattice
m(=1, 2), respectively. The lattice unit vectors â, b̂, and ĉ cor-
respond to the a, b, and c axes, respectively. The Hamiltonian
of the system in a magnetic field H‖b and an electric field E
is given by

H = HHei + HDM + Hext, (1)
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FIG. 1. A schematic picture of dimers and relevant interactions
in XCuCl3: (a) a-c plane; (b) b-c plane. The symbols l and r denote
the left and right spins of each dimer. Thick black lines indicate
the intradimer exchange coupling J , whereas the dotted blue, red,
and green lines denote interdimer exchange couplings J1, J2, and
J3, respectively. In (a), x, y, and z axes are indicated. In (b), 1 and
2 are the sublattice indices. The solid brown (dotted green) arrows
represent the direction of (sign convention for) Dint .

HHei = 1

2

∑
R,R′

∑
α,β

∑
m,n

Jmn
αβ (R′ − R)Sm

α (R) · Sn
β (R′), (2)

HDM = 1

2

∑
R,R′

∑
α

Dint
α (R′ − R) · [S1

α (R) × S2
α (R′)

]
, (3)

Hext = −
∑

R

∑
α=l,r

[
gμBH · Sm

α (R)
] + E · Pm(R), (4)

where the sums in Eqs. (2)–(4) are taken over α, β = l, r and
the sublattice indices m, n = 1, 2 (m � n).

In the Hamiltonian HHei, Jmm
lr (0) = J describes the antifer-

romagnetic intradimer exchange coupling, whereas Jmm
lr (â) =

J1 and Jmm
lr (2â + ĉ) = J2 are exchange couplings between the

spins belonging to the same sublattices [see Fig. 1(a)]. The
model also includes Heisenberg interactions between the spins
on the different sublattices: J12

rr (0) = J12
rr (2â + ĉ) = J12

ll (b̂) =
J12

ll (2â + b̂ + ĉ) = J3 [see Fig. 1(b)]. The Hamiltonian HHei

has been studied as a minimal model of XCuCl3 [3–5]. The
Hamiltonian HDM in Eq. (3) describes the symmetry-allowed
interdimer DM interactions, where Dint

r (0) = Dint
l (2â + b̂ +

ĉ) = Dintb̂ and Dint
r (2â + ĉ) = Dint

l (b̂) = −Dintb̂ are inter-
dimer DM vectors parallel to the b axis [see Fig. 1(b)] [92].
Here, we do not consider the other components of the inter-
dimer DM vectors allowed by crystal symmetry since their
contribution to the thermal Hall effect is negligible. The
remaining interactions in Eqs. (2) and (3) are zero. The experi-
mental values of the above mentioned parameters are listed in
Table I. Equation (4) describes the Zeeman and polarization
terms of XCuCl3, where g = 2.06 for H ‖ b [6], μB is the
Bohr magneton, and Pm(R) is the local polarization on each
dimer. To simplify the analysis, we use the coordinate system
as x ‖ â + ĉ/2, y ‖ â − ĉ/2, z ‖ b̂ where â ⊥ b̂ ⊥ ĉ, 2a ∼ c,
and 2

√
2a ∼ b hold approximately for these materials [2] [see

Fig. 1(a)].

TABLE I. Experimental values of the interactions (in meV) for
TlCuCl3 [5]. The value of Dint remains undetermined [3–5,91].

Parameter J J1 J2 J3 Dint

Energy 5.5 0.43 3.16 0.91 −

The polarization term in Eq. (4) can be interpreted as the
electric field-induced intradimer DM interaction [92]

−E · Pm(R) = Dext,m · [
Sm

l (R) × Sm
r (R)

]
. (5)

Here the intradimer DM vector Dext,m can be written in terms
of the polarization tensor of each sublattice C̃m that has nine
independent components Cm

μν (μ, ν = x, y, z) [12–14,93]:

Dext,m
ν = −Eμ′Cm

μ′ν, (6)

where repeated indices are summed over. In the above expres-
sion, Dext,m

ν and Eν (ν = x, y, z) are the ν component of Dext,m

and E. The two tensors C1
μν and C2

μν are related by [92]

C2
μν = −γμμ′C1

μ′ν ′γνν ′ , (7)

where γ = diag(1, 1,−1). The experimental values of C1
μν

obtained in the previous studies [14] are listed in Table II. We
ignore the z component of the electric field-induced intradimer
DM interaction term in the later analysis [94]. In the Supple-
mental Material [92], we provide a qualitative picture of how
the electric field induces the thermal Hall effect in relation to
the no-go condition for magnons [28,31,57].

Methods. To study the excitation spectrum of the system,
we introduce bond operators sm†

R and tm†
Rα (α = +, 0,−) that

create the singlet state |s〉m
R and the three triplet states |tα〉m

R
out of the vacuum |0〉m

R on each dimer [3–5,96]:

|s〉m
R = sm†

R |0〉m
R = 1√

2

(|↑↓〉m
R − |↓↑〉m

R

)
,

|t+〉m
R = tm†

R+|0〉m
R = −|↑↑〉m

R,

|t0〉m
R = tm†

R0 |0〉m
R = 1√

2

(|↑↓〉m
R + |↓↑〉m

R

)
,

|t−〉m
R = tm†

R−|0〉m
R = |↓↓〉m

R, (8)

where R and m denote the position of the unit cell and the
sublattice index. These obey Bose statistics and are subject
to the constraint sm†

R sm
R + ∑

α=+,0,− tm†
Rα tm

Rα = 1 on each dimer.
In the BEC phase, the ground state is well represented by a
coherent superposition of the singlet and triplet states on each
dimer [5,11]

|GS〉m
R = cos θm|s〉m

R + sin θm exp(iφm)|t+〉m
R, (9)

TABLE II. Experimental values of the polarization tensor C1
μν (in

μC/m2) for TlCuCl3 [95]. The values of C1
zx and C1

zy are undeter-
mined [11,12,14]. See Supplemental Material for details. The values
of C1

xz and C1
yz are not used in our study.

C1
μν C1

xx C1
xy C1

yx C1
yy C1

zx C1
zy C1

zz

Values −27.5 −5 −32.5 124.5 − − 2.5
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where θm and φm are variational parameters for each sublattice
m. In Eq. (9) and the following analysis, we focus on the high
magnetic field regimes H � 40 T for X = Tl and H � 25 T
for X = K in XCuCl3, where the contribution of the other two
triplet modes to the ground state (9) can be neglected [5].

To analyze the excited states, we perform the following
unitary transformation:

am†
R = cos θmsm†

R + sin θm exp(iφm)tm†
R+,

bm†
R+ = − sin θmsm†

R + cos θm exp(iφm)tm†
R+,

bm†
R0 = tm†

R0 ,

bm†
R− = tm†

R−, (10)

which preserves the particle number constraint, i.e., am†
R am

R +∑
α=+,0,− bm†

Rαbm
Rα = 1. We follow the standard procedure and

replace am†
R am

R with 1 − (1/N )
∑

R,α bm†
R,αbm

R,α , where N is
the number of dimers on the sublattice m. This assumption
is justified at low temperatures. By introducing the Fourier
transform bm†

Rα = 1/N
∑

kα bm†
kα

eik·Rm
(R1 = R, and R2 = R −

(â + b̂/2 + ĉ/2)) and retaining only up to quadratic order
in b†m

kα
and bm

kα , the Hamiltonian (1) takes the form H =
H(0) + H(1) + H(2). Here the constant term H(0) represents
the energy of the variational ground state and H(1) (H(2)) is
the linear (quadratic) term in bosonic operators. The linear
term H(1) vanishes when we choose the parameters θm, φm to
minimize H(0) [92]. The quadratic term H(2) represents the
bosonic Bogoliubov-de Gennes (BdG) Hamiltonian.

Low-energy effective model. Here, we construct the low-
energy effective model for ease of analysis. When the
magnetic field is strong, the energy of the lowest excitation
mode and those of the other two modes are sufficiently sepa-
rated [92]. For this reason, we consider only the operators b†

+
and b+ to discuss the thermal Hall effect in the high magnetic
field and low-temperature regimes. As a result, we obtain the
BdG Hamiltonian of the form

H(2) 
 1

2

∑
k

b†
kHBdG(k)bk, (11)

with a vector bk = (b1
k+, b2

k+, b1†
−k+, b2†

−k+)T and the 4 × 4 ma-
trix

HBdG(k) =
(

�(k) 	(k)
	∗(−k) �∗(−k)

)
. (12)

The explicit expression of the matrix (12) is given in the
Supplemental Material [92].

To preserve the bosonic commutation relations, the BdG
Hamiltonian (12) has to be diagonalized using a paraunitary
matrix T (k). The matrix satisfies T †(k)
zT (k) = 
z, where

z = diag(1, 1,−1,−1). The BdG Hamiltonian is diagonal-
ized as


zHBdG(k)T (k) = T (k)
zE (k), (13)

where the diagonal matrix E (k) takes the form E (k) =
diag(E1(k), E2(k), E1(−k), E2(−k)). The positive energies
E1(k) and E2(k) correspond to the upper and lower particle
bands, respectively. In order to calculate the thermal Hall con-
ductivity, it is sufficient to consider these two bands [32,34].

Thermal Hall effect. We here provide the expression of the
three-dimensional thermal Hall conductivity in the z-x plane
[34]

κzx = −k2
BT

h̄

2∑
n=1

∫
BZ

d3k

(2π )3

[
c2(ρ(En(k))) − π2

3

]
�y

n(k),

(14)

where ρ(En(k)) = 1/(eβEn (k) − 1) is the Bose distribution
function with β being the inverse temperature. The ex-
plicit form of c2(ρ) is given by c2(ρ) = (1 + ρ)(log 1+ρ

ρ
)2 −

(log ρ)2 − 2Li2(−ρ), where Li2(x) is the dilogarithm func-
tion. The Berry curvature of the nth band �

y
n(k) is defined as

�
y
n(k) = −2Im[
z

∂T †(k)
∂kz


z
∂T (k)
∂kx

]nn.
Results. Fig. 2 shows the numerical results of κzx in

Eq. (14). In the numerics [97], we set the moderate values of
|Dint|, C1

zx, and C1
zy whose values are unknown [see the caption

of Fig. 2]
From Fig. 2(a), we find that increasing |E| leads to an

enhancement of |κzx|. This behavior is consistent with the
approximate expression of |κzx|, which is discussed in the next
section. The obtained values in Fig. 2(a) are comparable to
the experimental values of the thermal Hall conductivity of
magnons and phonons [29,31,37,51,77] and thus are expected
to be experimentally accessible. In addition, the applied elec-
tric field whose strength is of the order of 0.1 MV/cm is
realizable in experiments [98].

Figure 2(b) indicates that the sign reversal of Ey results in
the sign reversal of κzx. This result suggests that the direction
of the Hall current can be controlled by changing the direction
of the electric field in the x-y plane. This can be justified as
follows. The sign reversal of Ex and Ey leads to the exchange
between Dext,1 ↔ Dext,2, and thus the ground-state wave func-
tions of sublattice 1 and 2 [see Eq. (9)] are also swapped.
Consequently, when we take complex conjugation of the BdG
Hamiltonian (12) with the opposite signs of Ex and Ey and
changing the sublattice index as 1 ↔ 2, the BdG Hamiltonian
almost returns to the original one [99]. This implies that the
sign change of Ex and Ey approximately corresponds to the
following effective time reversal operation [100]:

HBdG(k) → P†H∗
BdG(−k)P, P = I2×2 ⊗ σx, (15)

which leads to the reversal of the Hall current as shown in
Fig. 2(b). The constantlike behavior for |Ey| � 0.004 MV/cm
reflects the fact that the ground state (9) does not change much
by varying |Ey| due to |C1

zyEz| � |C1
yyEy| [101].

We expect qualitatively similar results for KCuCl3. How-
ever, it is more difficult to obtain reliable results in the KCuCl3

case since there are more undetermined parameters than in the
TlCuCl3 case.

Discussion. Here, we explain how the electric field induces
and enhances the thermal Hall effect as in Fig. 2(a). Without
an electric field, the difference between the variational param-
eters θ1 − θ2 and φ1 − φ2 in Eq. (9) are 0 and ±π , respectively
[3–5]. In this case, the Berry curvature vanishes due to the ef-
fective PT symmetry of the BdG Hamiltonian (12). However,
the applied electric field gives rise to the difference between
θ1 and θ2, which breaks the symmetry, resulting in the finite
thermal Hall effect [92].
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FIG. 2. (a) The absolute value of the thermal Hall conductivity |κzx| as a function of |E| with Ex = 0.0 MV/cm and Ey : Ez = 1 : 100.
(b) κzx as a function of Ey with Ex = 0.0 MV/cm and Ez = 0.8 MV/cm. The parameters used for (a) and (b) are listed in Tables I and II. We set
the moderate values for the undetermined parameters as Dint = 0.091 meV, C1

zx = −16.3 μC/m2, and C1
zy = 62.3 µC/m2. The magnetic field

and temperature are H = 42 T and T = 10 K, respectively.

We now argue that the electric field can open and control
the band gap. Before applying the electric field, there are
nodal lines G±, j in momentum space: G+, j = ( jπ, ky,

π
2 ),

G−, j = ( 2 j−1
2 π, ky, 0) (modulo reciprocal lattice vectors) for

j = 0, 1, which are protected by the effective PT symmetry
[92]. However, the applied electric field breaks the symmetry
and opens the band gap at G±, j [92], each of which is a source
of the Berry curvature as shown in Fig. 3 [102].

For a fixed direction of the electric field, the band gap at
G±, j , which we denote by Egap,±, j (ky), behaves as [92]

Egap,±, j (ky) ∝ |E|. (16)

FIG. 3. Distribution of the Berry curvature of the upper band
(n = 1) in the kz-kx plane with ky = 0 under the applied electric field
E = (0.0, 0.016, 1.6) MV/cm. The area enclosed by the solid black
lines denotes the first Brillouin zone (BZ). The areas enclosed by the
pink and purple rhombuses indicate the region S+, j (0) and S−, j (0),
respectively (the solid ones for j = 1 and the dashed ones for j = 0).

Let us show that the electric field can increase κzx by
widening the band gap at G±, j . For a rough estimation,
we consider the high-temperature asymptotic form of
κzx in the following. In the temperature region kBT �
E1( jπ, ky,

π
2 ), E1( 2 j−1

2 π, ky, 0), we can use the asymptotic

form of c2(ρ) ∼ π2

3 − 1
ρ

(ρ → ∞) [103]. By assuming that

the Berry curvature is localized at G±, j and using eβEn (k) 

1 + βEn(k), �

y
1(k) = −�

y
2(k), and Eq. (16), we have

|κzx| 
 k2
BT

h̄

∣∣∣∣
∫

BZ

d3k

(2π )3

[
E1(k) − E2(k)

kBT

]
�

y
1(k)

∣∣∣∣


 kB

8π3h̄

∣∣∣∣∣∣
∑
σ, j

∫
ky

dkyEgap,σ, j (ky)
∫

Sσ, j (ky )
dkzdkx�

y
1(k)

∣∣∣∣∣∣

 kB

8π2h̄
|Egap,+ − Egap,−| ∝ |E|, (17)

where the region S±, j (ky) is the area enclosed by the
rhombus around G±, j in Fig. 3, and we have defined
the average band gaps as Egap,± = 1

2

∑
j

∫
ky

dkyEgap,±, j (ky).
In going from the second to the third line, we used
| ∫S±, j (ky ) dkzdkx�

y
1(k)| 
 π

2 . Clearly, Eq. (17) shows that |κzx|
increases with increasing electric field. Under H = 42 T and
E = (0, 0.016, 1.6) MV/cm, |κzx| in Eq. (17) is estimated as
0.048 mW/K.m, whose order of magnitude is consistent with
the numerical result in Fig. 2(a).

Conclusion and outlook. In this Letter, we have proposed
the electric field induced thermal Hall effect of triplons in
XCuCl3. We analyzed the isotropic Heisenberg model with
symmetry-allowed interdimer and electric field-induced in-
tradimer DM interactions. With this model, we showed that
the electric field breaks the effective PT symmetry of the
Hamiltonian and thus induces the thermal Hall effect, which
can be observed experimentally in realistic electric and mag-
netic fields. Furthermore, we found that the electric field
not only triggers the thermal Hall effect but also opens and
enlarges the band gap at nodal lines, which are otherwise pro-
tected by the effective PT symmetry without an electric field,
thereby enhancing the thermal Hall effect. We also showed
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that the sign change of Ex and Ey corresponds to the effective
time reversal operation, which reverses the direction of the
Hall current.

We anticipate that our proposal stimulates further experi-
mental investigations and offers an approach to manipulating
thermal Hall transport. We also expect that our theory should
be applicable to a wide class of materials with magnetoelectric
coupling. In particular, our approach may prove valuable for
lattices whose symmetry properties are heretofore thought to
preclude the thermal Hall effect, potentially broadening the
research horizon in this field. Finally, if the pressure induces
the intradimer DM interaction [104–107], it can play the same
role as the electric field.
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