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A crucial yet challenging issue in quantum metrology is to ascertain the ultimate precision achievable in
estimation strategies. While there are two paradigms of estimations, local and global, current research is largely
confined to local estimations, which are useful once the parameter of interest is approximately known. In
this Letter we target a paradigm shift towards global estimations, which can operate reliably even with a few
measurement data and no substantial prior knowledge about the parameter. The key innovation here is to develop
a technique, dubbed virtual imaginary-time evolution, which establishes an equality between the information
gained in a global estimation and the quantum Fisher information for a virtual local estimation. This offers
an intriguing pathway to surmount challenges in the realm of global estimations by leveraging powerful tools
tailored for local estimations. We explore our technique to reveal a strict hierarchy of achievable precision for
different global estimation strategies and uncover unexpected results contrary to conventional wisdom in local
estimations.
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Introduction. Quantum metrology lies at the heart of quan-
tum science and technologies, aiming to design optimal
strategies for precisely estimating unknown parameters with
limited resources. The burgeoning capabilities of quantum
sensors have opened up possibilities of harnessing quantum
mechanical effects like entanglement to yield quantum metro-
logical advantages [1–3]. This allows quantum metrology to
push precision limits beyond the reach of classical methods,
holding compelling promise for applications such as quantum
imaging, quantum interferometry, and quantum thermometry
[4–6].

The prototypical setting of quantum metrology is to esti-
mate an unknown parameter θ carried by a quantum channel
Eθ with N queries to Eθ . Various types of estimation strategies
can be employed for this purpose: (i) parallel strategies [7],
where these N channels are applied simultaneously on a multi-
partite entangled state; (ii) sequential strategies [7], involving
successive queries of the channels, possibly interspersed with
unitary control operations; (iii) causal superposition strategies
[8], where the channels are probed in a superposition of dif-
ferent causal orders; and (iv) general indefinite-causal-order
strategies [9], encompassing the most general causal rela-
tions among the channels and including causal superposition
strategies as special cases. A crucial yet challenging issue
in quantum metrology is to ascertain the ultimate precision
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achievable in estimation strategies, which has recently moti-
vated vibrant activity [7–19].

While there are two paradigms of estimations in quantum
metrology [10], local and global, the current research on the
issue is largely confined to local estimations [7–19]. This
bias is partially attributed to the fact that the performance of
local estimation strategies is characterized by the quantum
Fisher information (QFI) [20,21] and many powerful tools
are available for computing the QFI. However, unless dealing
with a special class of probability models [5], local estimation
strategies require the parameter to be approximately known.
This severely restricts their applicability, excluding diverse
situations where little is known about the parameter a pri-
ori [22,23]. Alternatively, the knowledge about the parameter
may be acquired a posteriori using a sufficiently large number
of measurement samples [24,25], which nevertheless demands
too much experimental effort.

Here we target a paradigm shift towards global estimations.
Unlike local ones, global estimation strategies can operate
reliably even with a few measurement data and no substantial
prior knowledge about the parameter [26–29]. This general
applicability is highly valuable in realistic settings, given the
limited capabilities of near-term quantum sensors [30,31].
Unfortunately, useful tools for evaluating the performance
of global estimation strategies are currently lacking [32,33],
raising technical obstacles in tackling the mentioned issue.
Consequently, whereas significant advancements have been
made towards fully understanding quantum metrological ad-
vantages in local estimations [7–19], the progress in global
estimations has remained quite limited so far.

The key innovation of this Letter is to develop a tech-
nique, dubbed virtual imaginary-time evolution (ITE), which
allows us to establish an equality between the information
about the parameter gained in a global estimation and the QFI
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associated with a virtual local estimation. We can therefore
figure out the ultimate precision achievable in global estima-
tion strategies by computing the QFI. Aided by our technique,
we tackle the hierarchy problem on ultimate precision achiev-
able in global estimation strategies, which stands out due to its
vital role in understanding quantum metrological advantages
but has remained open up to now [9,34]. Meanwhile, we
uncover some unexpected results contrary to the conventional
wisdom established for local estimations. The result of this
Letter offers an intriguing pathway to surmount challenges in
the realm of global estimations by leveraging powerful tools
tailored in local estimations.

Preliminaries. Let ρθ denote the state produced in a
strategy. To estimate θ , one needs to perform a positive-
operator-valued measure {�x} on ρθ and then postprocessing
the measurement outcome via an estimator θ̂ (x), where x
labels the outcome. The objective of a local estimation is
to choose suitable {�x} and (unbiased) θ̂ (x) to minimize
the local variance Var[θ̂ |θ ] = ∑

x p(x|θ )[θ̂ (x) − θ ]2, where
p(x|θ ) = tr(�xρθ ). The quantum Cramér-Rao bound reads
Var[θ̂ |θ ] � 1/I[ρθ ] [20], where

I[ρθ ] = tr
(
ρθ L2

θ

)
(1)

is the QFI, with Lθ the symmetric logarithmic derivative de-
fined as the Hermitian operator satisfying

d

dθ
ρθ = (ρθLθ + Lθρθ )/2. (2)

Notably, the optimal measurement saturating the bound typ-
ically depends on θ , implying that local estimations are
useful only when θ is approximately known. Unlike lo-
cal estimations, a global estimation aims to minimize the
global variance Var[θ̂] = ∫

dθ
∑

x p(x, θ )[θ̂ (x) − θ ]2,1 where
p(x, θ ) = p(θ )p(x|θ ) is the joint probability distribution of x
and θ , with p(θ ) denoting the prior probability distribution of
θ . It has been shown [35–41] that Var[θ̂ ] is bounded by

Var[θ̂] �
∫

dθ p(θ )θ2 − tr(ρ̄S2). (3)

Here ρ̄ = ∫
dθ p(θ )ρθ is the averaged state and S is a Hermi-

tian operator satisfying

θρ = (ρ̄S + Sρ̄ )/2, (4)

with θρ := ∫
dθ p(θ )θρθ . The inequality (3) can be saturated

by choosing {�x} as the projective measurement of S and
θ̂ (x) as the eigenvalues of S [35–41]. Crucially, the {�x} and
θ̂ (x) thus chosen are parameter independent, implying that
global estimations are operationally meaningful even if little
is known a priori about θ . Note that the first term on the right-
hand side of Eq. (3) is fixed once p(θ ) is given. By contrast,
the second term tr(ρ̄S2) depends on ρθ and represents the
information about θ gained in a global estimation. We define

J = tr(ρ̄S2). (5)

To ascertain the ultimate precision achievable for each of
the four types of strategies (i)–(iv), we need to maximize J

1The figure of merit may be chosen to be another functional instead
of the global variance [35], which is beyond the scope of this work.

(a)
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FIG. 1. Schematic of (a) parallel strategies, (b) sequential strate-
gies, and (c) general indefinite-causal-order strategies in the N = 2
case. The left column illustrates that a strategy is an arrangement
of physical operations such as initial-state preparations and adaptive
controls. This arrangement, when concatenated with the N chan-
nels, produces an output state carrying information about θ . The
right column depicts that a strategy amounts to a supermap which,
akin to completely positive maps, can be described by a positive-
semidefinite operator X .

over all the allowed freedoms such as the initial state and
adaptive controls (see Fig. 1). However, it is formidable to
do so directly due to the lack of effective tools [33].

Virtual imaginary-time evolution. To overcome this dif-
ficulty, our idea is to establish an equality between the
information J gained in a global estimation and the QFI for
a virtual local estimation so that the above maximum can be
figured out indirectly by calculating the QFI.

We first specify the state ρθ . Let HIk and HOk be the
input and output Hilbert spaces of the kth copy of the chan-
nel Eθ . Denote by L(H) the set of linear operators over a
Hilbert space H. The kth copy of Eθ , as a completely pos-
itive map from L(HIk ) to L(HOk ), can be described by a
positive-semidefinite operator in L(HIk ⊗ HOk ), Eθ := id ⊗
Eθ (|I〉〉〈〈I|), known as the Choi-Jamiołkowski (CJ) operator
[42,43]. Here id is the identity map and |I〉〉 = ∑

j | j〉| j〉. The
CJ operator of N identical channels is Cθ := E⊗N

θ ∈ L(HI1 ⊗
HO1 ⊗ · · · ⊗ HIN ⊗ HON ). A strategy is an arrangement of
physical operations which, when concatenated with these N
channels, produces the output state ρθ carrying information
about θ [9] (see the left column of Fig. 1). We can therefore
regard a strategy as a supermap [44], taking the N channels
as its input and outputting the state ρθ (see the right column
of Fig. 1). This supermap, akin to completely positive maps,
can be described by a positive-semidefinite operator X in
L(HI1 ⊗ HO1 ⊗ · · · ⊗ HIN ⊗ HON ⊗ HF ) [9]. Here HF is the
Hilbert space upon which ρθ acts [45]. We have [46]

ρθ = X � Cθ . (6)

Here � denotes the link product [46], that is, X � Cθ =
trI1O1···IN ON [X (CT

θ ⊗ IF )], where T indicates the transpose op-
eration and IF represents the identity operator on HF .
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We next introduce a virtual ITE. Recall that, whereas tra-
ditional time evolution is described by the operator e−iHt with
a Hamiltonian H , ITE is described by the operator e−Hτ [47],
that is, for a system undergoing ITE, its initial state ρ(0) is
evolved to be the state ρ(τ ) = e−Hτ ρ(0)e−Hτ at time τ . It is
interesting to note that the expression e−Hτ is obtained from
the expression e−iHt by setting t to be purely imaginary, i.e.,
t = −iτ with τ ∈ R. It is also interesting to note that ITE,
as a map, is completely positive but not trace preserving be-
cause of its nonunitary character. With the above knowledge,
we introduce the averaged CJ operator C̄ := ∫

dθ p(θ )Cθ and
assume that C̄ is evolved to be

C̄(τ ) := e−HτC̄e−Hτ (7)

at time τ . Here H is a Hermitian operator in L(HI1 ⊗ HO1 ⊗
· · · ⊗ HIN ⊗ HON ) that satisfies

θC + {H, C̄} = 0, (8)

with θC := ∫
dθ p(θ )θCθ . Equations (7) and (8) specify the

ITE of interest here. We clarify that the physical realization of
this ITE is irrelevant in the present work, because our purpose
is to devise an effective approach to computing J . Hence we
regard the ITE as a virtual process. We employ it to define the
family of states

στ := X � C̄(τ ). (9)

Note that στ is positive semidefinite but its trace may not equal
to 1 for τ �= 0.

We now establish an equality between J and the QFI. To
serve our purpose, we still define the QFI for στ via Eqs. (1)
and (2), although tr(στ ) �= 1 when τ �= 0, that is,

I[στ ] = tr
(
στ L2

τ

)
, (10)

where Lτ is the Hermitian operator satisfying d
dτ

στ =
(στ Lτ + Lτ στ )/2. Using Eqs. (6)–(9), we have

στ |τ=0 = ρ̄,
d

dτ
στ |τ=0 = θρ. (11)

Further, noting that inserting Eq. (11) into Eq. (4) yields the
equality S = Lτ |τ=0, we arrive at the following theorem.

Theorem 1. Let I[στ ] be the QFI defined by Eq. (10). Then

J = I[στ ]|τ=0, (12)

i.e., the information J gained in the global estimation with ρθ

is equal to the QFI I[στ ] for the local estimation with στ at
τ = 0.

Thus we can alternatively compute I[στ ] for obtaining J .
We emphasize that, despite tr(στ ) �= 1, it is still possible to use
existing tools to compute I[στ ]. To illustrate this point and
also for later usage, we prove in the Supplemental Material
(SM) [48] that the formula proposed by Fujiwara and Imai
[49] remains applicable when tr(στ ) �= 1.

Theorem 2. (Fujiwara and Imai’s formula). Let {|ψ j〉}q
j=1

be an ensemble of pure states for στ , namely, στ =∑q
j=1 |ψ j〉〈ψ j |, where q � rank(στ ) is an integer. Then

I[στ ]|τ=0 = min
{|ψ j〉}q

j=1

4 tr

⎛
⎝ q∑

j=1

|ψ̇ j〉〈ψ̇ j |
⎞
⎠

∣∣∣∣∣
τ=0

, (13)

where |ψ̇ j〉 = d|ψ j〉/dτ and the minimum is taken over all the
ensembles with fixed q.

Maximal information gained in global estimation strate-
gies. We use index k to specify the type of strategies in
question, that is, k = i, ii, iii, iv refer to the four types of
strategies (i), (ii), (iii), and (iv), respectively. Note that the
value of J depends on the specific strategy adopted. We are
interested in the maximum of J over all the strategies of type
k. Hereafter we denote this maximum by J (k)

max. In addition, we
define X(k) to be the collection of X that can describe all the
strategies of type k. Using Theorem 1 as well as substituting
Eq. (9) into Eq. (12), we can write J (k)

max as

J (k)
max = max

X∈X(k)
I[X � C̄(τ )]|τ=0, (14)

which is the maximal information gained in the strategies of
type k. To ascertain the ultimate precision achievable in the
strategies of type k, which is

∫
dθ p(θ )θ2 − J (k)

max according to
Eq. (3), we need to figure out J (k)

max. To this end, we write the
ensemble decomposition of C̄ as C̄ = ∑q

j=1 |φ j〉〈φ j | = 

†,

with 
 := [|φ1〉, . . . , |φq〉]. We introduce the set X̃(k) := {X̃ =
trF X | X ∈ X(k)}. Using Theorem 2, we show [48] that

J (k)
max = max

X̃∈X̃(k)
min

h∈H(q)
tr[X̃�(h)], (15)

representing a computation-friendly formula for J (k)
max. Here

H(q) denotes the set of all q × q Hermitian matrices and

�(h) = 4(H∗
∗ − i
∗h)(H∗
∗ − i
∗h)†. (16)

Notably, the formula (15), which is derived here for global
estimations, is analogous to those for local estimations [9,15].

Semidefinite programs for computingJ (k)
max. We now convert

Eq. (15) into two semidefinite programs (SDPs) for computing
J (k)

max. To do this, we resort to the process matrix formalism
[50], which allows us to characterize X̃(k) as

X̃(k) = {X̃ | X̃ � 0,�(k)(X̃ ) = X̃ , trX̃ = dO}, (17)

when k = i, ii, iv. Here dO = dim(HO1 ⊗ · · · ⊗ HON ) and
�(k) is a linear map whose expression can be found in the
SM [48] (see also Ref. [50]). The discussion of strategy (iii)
needs to be carried out separately and is left to the SM [48].
We show that J (k)

max can be computed via the SDP [48]

max
X̃ ,B,C

− trC − 4 Re[tr(H∗
∗B)]

s.t. �(k)(X̃ ) = X̃ , trX̃ = dO,[
X̃ B†

B C

]
� 0,

(18)

referred to as the primal SDP, where B
∗ is Hermitian. As
demonstrated below, the gaps among the J (k)

max may be small,
due to which numerical errors in the SDP may compromise
the reliability of computed results. To overcome this issue, we
propose Algorithm 1 in the SM [48]. Using Algorithm 1 to
assist the primal SDP, we can obtain reliable lower bounds on
J (k)

max, for which numerical errors are eliminated. Further, to
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obtain upper bounds, we derive the dual SDP

min
Ỹ ,λ,h

λ

s.t. �(k)(Ỹ ) = 0,[
λ

dO
+ Ỹ 2(H∗
∗ − i
∗h)

2(H∗
∗ − i
∗h)† Iq

]
� 0,

(19)

where Iq is the q × q identity matrix [48]. Likewise, Algo-
rithm 2 is proposed in the SM [48] to eliminate numerical
errors in the dual SDP [48]. Notably, compared with those in
Refs. [9,15], our SDPs feature significantly fewer constraints.
This enables our algorithms to yield tight bounds.

Strict hierarchy. Clearly, the four types of strategies (i)–(iv)
form a hierarchy J (i)

max � J (ii)
max � J (iii)

max � J (iv)
max, since each of

them is a superset of the preceding one. We show that all
three inequalities can be strictly satisfied simultaneously. To
this end, we examine the channel

Eθ = E (AD) ◦ E (BF) ◦ Uθ , (20)

composed of the unitary channel Uθ with the Kraus operator
e−iθσz/2, the bit-flip channel E (BF) with the Kraus opera-
tors K (BF)

1 = √
ηI and K (BF)

2 = √
1 − ησx, and the amplitude

damping channel E (AD) with the Kraus operators

K (AD)
1 =

[
1 0
0

√
1 − γ

]
, K (AD)

2 =
[

0
√

γ

0 0

]
, (21)

where σα (α = x, y, z) denotes the Pauli matrices. Here-
after, we set p(θ ) to be the uniform probability distribu-
tion, that is, p(θ ) = 1/2π for θ ∈ [−π, π ). Applying the
two SDPs as well as the two algorithms to the channel
in Eq. (20) with η = 1/2 and γ = 7/10, we can show
that J (i)

max � 0.5516 < 0.5572 � J (ii)
max � 0.5574 < 0.5703 �

J (iii)
max � 0.5705 < 0.570 53 � J (iv)

max when N = 2. We there-
fore reach the following theorem.

Theorem 3. There exist parameter estimation problems for
which

J (i)
max < J (ii)

max < J (iii)
max < J (iv)

max, (22)

i.e., the strict hierarchy of ultimate precision can hold for
global estimation strategies (i)–(iv).

We point out that the hierarchy phenomenon reported in
Theorem 3 is not exclusive to the above specific example. We
have randomly generated 1000 channels and found that 780 of
them obey the strict hierarchy [48].

Unexpected results. To illuminate distinct features of global
estimations, we make reference to the work by Giovannetti
et al. [7], where parallel and sequential strategies are ex-
amined within the local estimation framework. We need to
consider the unitary channel Eθ = Uθ , i.e., the channel in
Eq. (20) with η = 1 and γ = 0. Hereafter, we refer to the
parallel strategies examined within the local (global) esti-
mation framework as local (global) parallel strategies, and
similarly for local (global) sequential strategies. It is well
known that the optimal input state in local parallel strategies
is the Greenberger-Horne-Zeilinger (GHZ) state (|0〉⊗N +
|1〉⊗N )/

√
2 for all θ ∈ [−π, π ) [7]. As such, an intuitive

deduction may be that the optimal probe state would also
be the GHZ state for global parallel strategies. However,
we find that 1.5217 � J (i)

max � 1.5218 but J = 1/4 for the
GHZ state when N = 2, implying that the above deduc-
tion is invalid in general. Also, our result suggests that
one candidate for the optimal input state in global parallel
strategies is

√
3/10|0000〉 + √

1/5|0101〉 + √
1/5|1010〉 +√

3/10|1111〉, indicating that the optimal input state differs
in structure from the GHZ state. We next switch our dis-
cussion to sequential strategies. Recall that adaptive controls
are useless in improving the ultimate performance of local
sequential strategies [7]. However, we find that adaptive con-
trols are useful for global sequential strategies. Indeed, when
N = 2, the maximal information attained in global sequen-
tial strategies without controls is 0.25, which is strictly less
than the maximal information attained with controls 1.5217 �
J (ii)

max � 1.5219. Finally, in contrast to the result that local
parallel and sequential strategies share the same ultimate per-
formance for every N and every θ ∈ [−π, π ) [7], we find
that global sequential strategies can be superior to global
parallel strategies in ultimate performance. We illustrate this
point by showing that J (i)

max � 1.845 07 < 1.845 17 � J (ii)
max

when N = 3.
We present in the SM [48] more numerical results on

different priors.
Conclusion. A bottleneck hindering the current research in

global estimations is the lack of effective tools, which is in
sharp contrast to the situation that many such tools are avail-
able in local estimations. In this Letter we have advocated a
pathway to surmount this bottleneck. The key innovation here
is the technique of the virtual ITE, in which the fictitious state
στ is constructed such that its QFI is equal to J at τ = 0, its
dependence on X is linear, and its ensemble decompositions
are easy to find. This opens up the exciting possibility of
solving crucial problems in the realm of global estimations
by leveraging powerful tools tailored for local estimations.
We have demonstrated this possibility by successfully solving
the hierarchy problem in global estimations with Fujiwara and
Imai’s formula, a useful tool in local estimations. Meanwhile,
we have uncovered a number of unexpected results, highlight-
ing that the same quantum resource may assume disparate
roles when scrutinized through the lenses of local and global
estimations. For instance, while the GHZ state is optimal in
local estimations, its utility diminishes in global estimations.
These captivating differences underscore the need for further
explorations of global estimations. Finally, we remark that our
technique makes it possible to construct optimal strategies
in global estimations [51,52] and devise tight bounds in the
nonasymptotic regime, which are two research directions for
future studies.

The codes used in this article are openly available from
[53].
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