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Exponentially faster preparation of quantum dimers via driven-dissipative stabilization
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We propose a rapid, high-fidelity, and noise-resistant scheme to generate many-body entanglement between
multiple qubits stabilized by dissipation into a 1D bath. Using a carefully designed time-dependent drive, our
scheme achieves a provably exponential speedup over state-of-the-art dissipative stabilization schemes in 1D
baths, which require a timescale that diverges as the target fidelity approaches unity and scales exponentially
with the number of qubits. To prepare quantum dimer pairs, our scheme only requires local 2-qubit control
Hamiltonians, with a protocol time that is independent of system size. This provides a scalable and robust
protocol for generating a large number of entangled dimer pairs on-demand, serving as a fundamental resource
for many quantum metrology and quantum information processing tasks.

DOI: 10.1103/PhysRevResearch.6.L032047

Introduction. Entangled quantum states are essential for
quantum computation [1] and metrology [2], which demand
their high fidelity generation in a way that is resilient to
noise and dissipation. Dissipation, once seen as detrimental,
is now explored as a resource for entanglement generation
[3]. However, despite a plethora of theoretical proposals and
experimental realizations for generating entangled states with
cavity quantum electrodynamics (QED) systems [3–7], ion
traps [8–10], Rydberg atoms [11–14], color centers [15–18],
circuit QED [19,20], and optical lattices and spin chains
[21–25], limitations persist in either the speed of state genera-
tion, entanglement fidelity or the aforementioned robustness
to noise and dissipation. For instance, the dissipative en-
tanglement generation schemes based on Ref. [3] rely on
perturbative expansions in the system’s driving strengths,
which fundamentally limits the speed of entanglement gen-
eration.

It was also shown in [26,27] that when multiple locally
driven system qubits are coupled to a chiral 1D bath (which
could either be a waveguide or a spin chain), one can ob-
tain many-body entangled states stabilized by the dissipation
into the 1D bath. In this theoretical scheme, no perturbative
expansions in the system’s driving strengths are required,
which circumvents the aforementioned speed limit. An atomic
implementation of this scheme on cold quantum gases was
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proposed in [21], and experimentally implemented recently
on superconducting qubits [28].

However, as we will demonstrate in this manuscript, time-
independent many-body entanglement generation schemes
using engineered dissipation as proposed in [21,26,27] require
a timescale that diverges as the target fidelity approaches
unity, leading to an inevitable tradeoff between fidelity and
speed. Furthermore, for existing steady state schemes in-
cluding [29], the protocol time scales exponentially with the
number of qubits. This presents a severe limitation for scaling
up to many qubits, especially in the presence of noise. We
propose a new scalable protocol based on carefully designed
time-dependent driving to generate many-body entanglement
in 1D systems in a fast, high-fidelity, and noise-robust manner.

An important application of our scheme is in preparing
a large number of quantum dimer pairs on demand, which
are valuable resource states for various quantum technologies
such as quantum metrology [29,30] and quantum information
processing. Our scheme achieves a high-fidelity preparation
using only local 2-qubit control Hamiltonians, rendering it
feasible to current experimental capabilities. Crucially, our
protocol time is independent of the number of qubits, thereby
exponentially faster than the previously proposed schemes
[21,26,27,29]. We perform a systematic study of robustness of
our scheme against various sources of noise and decoherence.
We show that in the presence of any amount of spontaneous
decay outside of the 1D bath, previous time-independent
schemes eventually fail for a sufficiently large number of
qubits due to the exponentially long timescales required. On
the contrary, our scheme is robust against such losses for any
number of qubits.

Many-body entangled dark states of 1D systems. In waveg-
uide QED, one often considers the case where there are
N qubits coupled to a 1D bath [27,31]. The 1D bath serves first
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FIG. 1. Schematic for the setup described by Eqs. (1) and (2). N
qubits are coupled to a waveguide as per [26] or to a 1D spin chain
with a synthetic gauge field as per [27]. Here, σ j is the lowering
operator for the jth system qubit that is driven with an external local
drive � j . φ jk describes the phase picked up by the bath excitation
as it travels between the jth and kth qubit along the infinite 1D
bath, which affects the bath-mediated chiral interaction between the
jth and kth qubit. Hextra is the extra external field in our scheme
which we will introduce later. All the qubits decay collectively
into the 1D bath through collective jump operators cL (left-going
modes) and cR (right-going modes) with decay rates γL and γR,
respectively.

as a decay channel for the system qubit excitations, and sec-
ond to mediate long-distance coherent interactions between
the system qubits. With reference to Fig 1, under the Born-
Markov and rotating wave approximations, by tracing out the
1D bath, we obtain the following Hamiltonian (setting h̄ = 1)
for the N system qubits:

HS = −
N∑

i=1

δiσ
†
i σi + Hdrive(t ) +

∑
j<k

(HC ) jk, (1)

where (HC ) jk = i
2 (γRe−iφ jk − γLeiφ jk )σ †

j σk + H.c. describes
the coherent interaction mediated by the 1D bath between
the jth and kth system qubits, Hdrive(t ) = ∑N

i=1(�i(t )/2)σi +
H.c. describes the local driving on the qubits with Rabi fre-
quency �i(t ), and δi describes the detuning between the ith
qubit and the carrier frequency of the 1D bath. The dissipa-
tion of the system into the 1D bath is described by a master
equation for the N system qubits [26,27]

ρ̇ = −i[HS, ρ] + γLD[cL]ρ + +γRD[cR]ρ. (2)

Here, D[cL(R)]ρ = cL(R)ρc†
L(R) − {c†

L(R)cL(R), ρ}/2 describes
the leftward (rightward) dissipation of the system qubits into
the bath, where cL = ∑N

j=1 eiφ j σ j , cR = ∑N
j=1 e−iφ j σ j are the

collective jump operators. The system is chiral if γL �= γR,
physically manifesting as an asymmetric emission into the
bath. While entanglement generation schemes which oper-
ate in the transient regime for these 1D systems have been
proposed [32,33], a higher fidelity that is also stabilized by
the dissipation into the bath can be attained in the steady
state [26,29]. In particular, it was shown [26] that when
φ jk mod 2π = 0, together with certain conditions on δi (or in
the chiral case γL �= γR) with homogeneous time-independent
driving �i(t ) = �, it is possible to obtain the following mul-

tipartite entangled dark steady state for even N :

ρss = |	〉〈	|, where |	〉 =
Nm∏

q=1

|Mq〉 (3a)

|Mq〉 = a(0)|g〉⊗Mq +
∑
j1< j2

a(1)
j1, j2

|S〉 j1 j2 |g〉⊗Mq−2

+ · · · +
∑

a
(Mq/2)
j1,... jMq

|S〉 j1 j2 . . . |S〉 jMq−1 jMq
. (3b)

We define |S〉i j = (|e〉i|g〉 j − |g〉i|e〉 j )/
√

2 as a singlet state
(or a dimer pair) between qubits i and j. |	〉 is a product of Nm

adjacent multimers |Mq〉, and each |Mq〉 is an entangled state
over Mq qubits as defined in Eq. (3b), where Mq is an even in-
teger. Note that the summation in the last line of Eq. (3b) runs
over all different pairings of qubits {( j1, j2), . . . ( jMq−1, jMq )}
with jk < jk+1. It can also be shown that a(i) ∝ |�|−Mq/2+i

[26]. In the above equation, of particular interest is the Nm =
1, Mq = N case, since that corresponds to the maximal gen-
uine entanglement (across all bipartite cuts of qubits). We also
consider |�| → ∞, since it is the most relevant for metrology
[29,30]. Hence, we shall focus on obtaining the state

|	〉 ∝
∑

|S〉i1i2 |S〉i3i4 . . . |S〉iN−1iN , (4)

where the summation in Eq. (4) runs over different pairings
of qubits {(i1, i2), (i3, i4), . . . (iN−1, iN )} where i j < i j+1. By
a suitable detuning pattern, it is also possible to obtain the
special case where there is only one term in the sum, such
that the system forms dimerized pairs of qubits in the steady
state. However, we will now show that such schemes require
a prohibitively long time to generate high-fidelity, many-body
entanglement.

Divergent timescale of preparing entangled dark states.
As mentioned in [26], the timescale required to form one
dimer pair from N = 2 qubits diverges as the target fidelity
approaches one. This can also be seen by analyzing the
Liouvillian gap [34,35] (see the Supplemental Material [36]),
but is analytically challenging for large N . By using a recently
developed general framework for analyzing quantum speed
limits in dissipative state preparation [37], we derive a lower
bound on the time T required to generate the state in Eq. (3)
for any system size N (see the Supplemental Material [36] for
a derivation),

T � TQSL ∝
Nm∏

q=1

|�|Mq/2 = |�|N/2 ∼
(

1

1 − F

)N/4

. (5)

The preparation time diverges as |�| → ∞, or equivalently
as the fidelity F to the target state in Eq. (4) approaches unity.
Crucially, for any fixed target fidelity F , the preparation time
scales exponentially with the number of qubits N .

In the presence of any spontaneous decay rate 
 f outside
of the 1D bath, the time-independent scheme would fail when
the preparation time required exceeds ∼1/
 f . From Eq. (5),
we can estimate that the time-independent scheme fails for
N � log(
/
 f ), where 
 = γL + γR is the total decay rate
into the 1D bath. This can be interpreted as a fundamental
trade off between fidelity and speed, and highlights a se-
vere limitation to the scalability of such schemes. We now
propose an exponentially faster scheme that circumvents all
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these problems while retaining the robustness from dissipative
stabilization.

Exponentially faster scheme for many-body entanglement
generation. Our scheme deviates from the previously pro-
posed time-independent schemes in two important aspects.
First, instead of a time-independent homogeneous drive � j =
�, we consider � j = �(t ) such that �(0) = 0 and �(t )
is any nondecreasing real-valued function of t . Second, all
the detunings δ j are zero, even at zero chirality. In this
case, with φ jk mod 2π = 0, in the master equation, Eq. (2),
we have γLD[cL] + γRD[cR] = 
D[c]ρ where c = ∑N

j=1 σ j ,


 = γL + γR, and (HC ) jk = (i�γ/2)(σ †
j σk − σ jσ

†
k ) where

�γ = γR − γL. We define the total coherent interaction term
as H (t ) ≡ HC + Hdrive(t ), where HC = ∑

j<k (HC ) jk .
Our scheme begins by choosing a target state |	〉 of the

form in Eq. (4), where in the summation, we have the freedom
to choose which different pairings of qubits to sum over.
Let θ (�(t )) be a function where θ (�(t ) = 0) = 0, θ (�(t ) =
∞) = π/2. For example, θ (�(t )) could be

θ (�(t )) = π

2
(1 − e−k�(t )/
 ), k > 0, (6)

though many other examples exist. The main idea is that both
the initial state |g〉⊗N and the target state |	〉 at �(t ) → ∞ are
instantaneous steady states, which means that if we can gener-
ate the unitary evolution U (θ (�))|g〉⊗N = cos(θ (�))|g〉⊗N −
i sin(θ (�))|	〉, then � → ∞ gives us U (θ (�))|g〉⊗N = |	〉.
In practice, we do not require �(t ) → ∞, since at large
�(t ) such that θ (�) = π/2 − ε, U (θ ) already prepares a state
|ψ (θ )〉 ≡ U (θ )|g . . . g〉 with a fidelity of F = |〈ψ (θ )|	〉|2 =
cos2(ε) ≈ 1 − ε2 to |	〉. Hence, by a judicious choice of
θ (�(t )) and �(t ), we can achieve a state |ψ (θ )〉 that has very
high fidelity to |	〉 at times much shorter than the dissipation
timescale 
−1. Using Eq. (6) as an example, for k�(t )/
 ≈ 4,
we have F ≈ 0.999. After preparing |ψ (θ )〉 at a short time
t f , we keep �(t > t f ) constant. This causes the state to relax
toward the steady state close to |	〉. Thus, our scheme works
with a high fidelity even for a finite �, rendering its practical-
ity. In short, our scheme moves along a trajectory within the
decoherence-free subspace spanned by |g〉⊗N and |	〉 and is
thus dissipation stabilized.

To construct U (θ ), we first define X ≡ |g⊗N 〉〈	| +
|	〉〈g⊗N | and then see that U (θ ) = exp(−i

∫ t
0 (∂t ′θ )Xdt ′)

which means that the desired U (θ ) can be generated by the
Hamiltonian Hu(t ) = (∂tθ )X . Thus, we simply need to add
an extra time-dependent control field Hextra(t ) ≈ Hu(t ) to our
system Hamiltonian H (t ). This extra time-dependent control
field would only need to be switched on from t = 0 to t = t f

for some finite t f to generate U (θ ), after which the time
dependence can be switched off and �(t ) held constant. One
might be concerned about spurious effects from the coherent
interactions mediated by the 1D bath. While this can be en-
tirely mitigated in Hextra(t ), we find that it is unnecessary. The
validity of the approximation Hextra(t ) ≈ Hu(t ) is discussed in
detail in the Supplemental Material [36], but here we note
the following two points. First, the approximation is better
for a smaller �γ , with the best case being zero chirality
(�γ = 0). This is actually an advantage when compared to
[26] which requires �γ �= 0 when all the detunings δi are
zero. Second, by choosing ∂tθ to be as large as possible,

we can perform the transformation |g〉⊗N → |ψ (θ )〉 ≈ |	〉 in
this decoherence-free subspace arbitrarily quickly, which also
improves the approximation Hextra(t ) ≈ Hu(t ).

We stress that while this protocol looks similar to the
idea of counterdiabatic driving in decoherence-free subspaces
[38–40] due to the presence of an additional time-dependent
control Hamiltonian, it is different in many ways. Unlike
counterdiabatic driving, the state |ψ (θ )〉 does not need to be
an instantaneous eigenstate of H (t ). In fact, moving along the
adiabatic trajectory in the Hilbert space as proposed in [26]
requires �γ �= 0, whereas our scheme allows for �γ = 0.
Thus, our scheme is fundamentally different from the various
shortcut-to-adiabaticity schemes [41]. In our computation of
the extra driving field Hextra(t ), unlike the various counterdia-
batic driving schemes, we do not require all the instantaneous
eigenstates of H (t ). This is highly advantageous in many situ-
ations where an exact diagonalization of H (t ) is difficult, such
as for large N . More details about the differences between our
proposed scheme and counterdiabatic driving can be found in
the Supplemental Material [36].

In our scheme, the key part is implementing the X
operator, which can be experimentally difficult for certain
target states |	〉 due to the many-body interactions required
to generate X . An example for N = 6 qubits is shown in the
Supplemental Material [36]. However, when |	〉 describes
the state of N/2 dimerized pairs, applying the above
formalism gives us U (θ ) = Ui1i2 (θ )Ui3i4 (θ ) . . .UiN−1iN (θ )
where Uikik+1 (θ ) = cos(θ )1 − i sin(θ )Xikik+1 , and Xikik+1 =
|gg〉〈S|ik ik+1 + |S〉〈gg|ik ik+1 is a two-body interaction term
between qubits ik and ik+1. U (θ ) can then be generated by
the Hamiltonian Hu(t ) = (∂tθ )X where X = Xi1i2 + Xi2i3 +
· · · + XiN−1iN . Finally, we have Hextra(t ) ≈ Hu(t ), which
means that it suffices for the engineered control Hamiltonian
to be 2-qubit interactions. Explicitly, for geometrically
local dimer pairs, we have Hextra(t ) ≈ ∑

k odd Vk,k+1 where
Vk,k+1 = (∂tθ )( 1

2 (σ x
k − σ x

k+1) + 1
2 (σ x

k σ z
k+1 − σ z

k σ x
k+1)). Since

the control Hamiltonian is local and can be applied in parallel,
our protocol time is independent of N , which is exponentially
faster than state-of-the-art time-independent schemes [26,29]
while still benefiting from dissipative stabilization.

Figure 2 shows the results of numerical experiments
comparing our scheme against previous proposals. We also
benchmark our scheme against an adiabatic scheme. As can
be seen, at short timescales 
t � 1, our scheme achieves
concurrence ≈1 for the case where �γ = 0 and concurrence
≈0.97 for the case where �γ/
 = 1. On the other hand,
the adiabatic scheme fails at timescales 
t � 1 as the driv-
ing strength is modulated too quickly, violating the adiabatic
condition for open quantum systems [42]. This is corrobo-
rated by a sharp drop in purity between 0 < t < t f . After
t > t f where the driving strengths become fixed, the adiabatic
and the time-independent schemes become very similar. Our
scheme is scalable and can be used to generate many dimer
pairs simultaneously.

Robustness analysis. We consider the robustness of our
scheme to two types of noise which arise from imperfect con-
trol. Let ξ1(t ) and ξ2(t ) be two independent Gaussian white
noise random variables with zero mean and unit variance. A
stochastic fluctuation in Hdrive(t ) can be modeled by making
the replacement Hdrive(t ) → (1 + η1ξ1(t ))Hdrive(t ). Similarly,
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FIG. 2. The case of N = 8 qubits forming N/2 = 4 geometri-
cally local dimer pairs {(1, 2), (3, 4), (5, 6), (7, 8)}. Since all dimer
pairs are treated equally, we plot the concurrence [43] and the purity
(in the inset) between the qubits (1,2) for various entanglement
generation schemes mentioned in the main text. For our scheme,
we use Eq. (6) with k = 10. For both our scheme and the adiabatic
scheme, we use the linear ramp function �(t )/
 = m
t�(t f − t ) +
m
t f �(t − t f ) saturating at t = t f , where �(t ) is the Heaviside step
function with �(0) = 1/2, and with m = 25, t f = 
−1, whereas for
the time-independent scheme, we have �/
 = 25. For both the adia-
batic scheme and the time-independent scheme, we have �γ/
 = 1,
and also the appropriate detuning conditions as proposed in [26].
The adiabatic schemes and the time-independent schemes are very
similar after t > t f because the driving strengths �(t ) become fixed
after t > t f . Clearly, only our scheme succeeds at short timescales

t � 1.

a stochastic fluctuation in Hextra(t ) can be modeled by making
the replacement Hextra(t ) → (1 + η2ξ2(t ))Hextra(t ). Following
[41,44], we average over the white noise random variables

using Novikov’s theorem for white noise [45] to obtain
the following modified master equation: ρ̇ = −i[Hdrive(t ) +
Hextra(t ), ρ] + 
D[c]ρ + η2

1D[Hdrive(t )]ρ + η2
2D[Hextra(t )]ρ.

Using θ (�(t )) from Eq. (6) with k =10, and �(t )=mt, m>0,
we numerically study the effect of ηi separately in Fig. 3 for
the �γ = 0 case. Our scheme is robust against noise in Hdrive

regardless of how fast �(t ) is increased. The reason is that
our scheme works as long as �(t )/
 � 1 at large t , such
that the fluctuations �(t )/
 are insignificant. On the other
hand, when dealing with noise in Hextra(t ), there is a tradeoff
between the amount of noise present η2 and the maximum
m allowed such that the concurrence remains high, which
can be explained by the adiabatic theorem for open quantum
systems [42].

Another common source of noise is spontaneous decay
outside of the 1D bath. As discussed earlier, the time-
independent schemes fail completely for N � log(
/
 f )
where 
 f is the spontaneous decay rate, due to the exponen-
tially long timescales needed. In contrast, our scheme is able
to generate quantum dimers with high concurrence for any N
on the relevant system timescale 
−1, as long as 
 f /
 � 1,
which is achievable in current experiments (see the
Supplemental Material [36] for more details).

Discussion. We present a scheme for rapid, high fidelity
generation of many-body entanglement for qubits coupled to
a 1D bath, which is also robust to noise. Our scheme is ex-
ponentially faster than previously proposed time-independent
schemes in [21,26,27,29], and does not require chirality or
specific detuning patterns on the qubits, which makes it more
convenient for experimental implementation. Our scheme
avoids the usual drawbacks of dissipative state preparation in
open systems such as the use of time-dependent dissipators or
potentially unphysical dynamics [39]. Remarkably, to gener-
ate geometrically local dimer pairs, we only require 2-qubit
control Hamiltonians Hextra(t ), which can be experimentally

FIG. 3. Analysis of the robustness of our scheme against noise. Here, we use Eq. (6) for θ (�(t )) with k = 10 and �(t ) = mt , and we
consider the case where �γ = 0 in generating four dimerized pairs from N = 8 qubits. Since the concurrences of all the dimers are the same,
we use the concurrence of a dimer pair at the steady state to characterize the entanglement generated. In (a), since the values of concurrence C
of the final state obtained are all close to one, we plot log(1 − C) against η1 and m while assuming η2 = 0, and in (b), we plot the concurrence
of the final state obtained as a function of η2 and m but with assuming η1 = 0. From (a), since the values of the concurrence C are all close to
one, we see that our scheme is relatively insensitive to fluctuations in the driving strength �(t ) regardless of how fast we increase the driving,
though there is still some trade off. From (b), we see that there is a trade off between the amount of noise allowed and the rate m at which we
can increase the driving strength �.
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implemented in superconducting qubits [46–49]. Nonlocal
interactions between the dimers are suppressed by destructive
interference.

Furthermore, recent experiments using superconducting
qubits work with free space spontaneous emission and
dephasing decay rates of 
 f /2π ≈ 15 kHz and Kφ/2π ≈
100 KHz [50]. Considering a typical decay rate of a single
qubit into a waveguide 
/2π ≈ 15MHz, from Fig. 2, it is
clear that our scheme is faster than the superconducting qubit
decoherence times. Since the time-independent scheme has
been recently demonstrated experimentally with supercon-
ducting qubits [28], it is a promising platform to realize our
exponentially faster protocol. As potential future work, it is
worth exploring the possibility of approximating the many-

body interaction terms in our general scheme using local
driving terms, following the formalism developed in [51,52]
for counterdiabatic driving.
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