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Chaotic roots of the modular multiplication dynamical system in Shor’s algorithm
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Shor’s factoring algorithm, believed to provide an exponential speedup over classical computation, relies on
finding the period of an exactly periodic quantum modular multiplication operator. This exact periodicity is the
hallmark of an integrable system, which is paradoxical from the viewpoint of quantum chaos, given that the
classical limit of the modular multiplication operator is a highly chaotic system that occupies the “maximally
random” Bernoulli level of the classical ergodic hierarchy. In this work, we approach this apparent paradox from
a quantum dynamical systems viewpoint, and consider whether signatures of ergodicity and chaos may indeed
be encoded in such an “integrable” quantization of a chaotic system. We show that Shor’s modular multiplication
operator, in specific cases, can be written as a superposition of quantized A-baker’s maps exhibiting more
typical signatures of quantum chaos and ergodicity. This work suggests that the integrability of Shor’s modular
multiplication operator may stem from the interference of other “chaotic” quantizations of the same family of
maps, and paves the way for deeper studies on the interplay of integrability, ergodicity, and chaos in and via
quantum algorithms.

DOI: 10.1103/PhysRevResearch.6.L032046

Introduction. Shor’s algorithm [1,2] to factorize an inte-
ger N is a cornerstone of quantum computation [3], being
exponentially faster than all known classical factorization
algorithms and capable of breaking RSA encryption [4], a
widely used scheme for secure data transmission. Interest-
ingly, the success of this algorithm hinges on a foundational
tension with the very notion of “quantum chaos” [5]: the
quantum modular multiplication operator at the core of Shor’s
algorithm [1–3] belongs to a class of quantum systems that
have a strongly chaotic classical limit, but violate several
expected signatures of “chaos” on quantization.

The quantization of classically ergodic, chaotic systems
[5,6] is typically associated with spectral signatures such
as nondegenerate energy levels and spectral rigidity [5,7–
16]. Paradoxically, as indicated above, some quantizations
[1,17] of certain canonical textbook examples of classically
ergodic and chaotic systems [6]—such as modular multi-
plication fA(x) = (Ax mod N ) on a 1D interval x ∈ [0, N )
(quantized in Shor’s algorithm) and Arnold’s cat map on
the torus—are exactly periodic at long times with highly
degenerate and orderly spectra [1,18], which is at odds with
ergodic quantum dynamics [16]. This is because quantization
itself is not a uniquely defined procedure, and several distinct
quantum systems can have the same classical limit (e.g., Refs.
[1,19–21] consider entirely different quantizations of f2(x)
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with different spectral properties). In particular, the (conven-
tionally) “standard” quantization of each of the above maps
[1,17] captures the dynamics of only a measure-zero subset
of periodic orbits with a common (not necessarily fundamen-
tal) period [6,22]. This gives the appearance of early-time
“chaos” on quantization via the exponential divergence of
typical nearby orbits, but completely misses out on the full
ergodic and chaotic classical dynamics at late times in the bulk
of the phase space.

On the one hand, the example of Shor’s algorithm demon-
strates a possibly generic need to eliminate “quantum chaos”
in the quantization of even a classically chaotic map, for
its successful utilization in certain quantum algorithms. On
the other, it also suggests the more fundamental question of
whether appropriate manifestations of quantum ergodicity and
chaos can be hidden in some way even in such nonergodic
quantizations. Interestingly, a partial resolution to this ques-
tion was noted in Refs. [23,24], where it was shown [24] that
the unitary operator implementing modular multiplication by
A = 2 in Shor’s algorithm can be expressed as a superposition
of quantized baker’s maps [20,25], which may be regarded as
“chaotic” quantizations of f2(x) [more precisely, of baker’s
maps [6] in a 2D phase space (x, p) whose action on the
position coordinate x ∈ [0, 1) is identical to f2(Nx)/N] that
by and large exhibit the expected signatures of quantum chaos
and ergodicity [20,21].

In this work, we show that this “embedding” of a super-
position of “quantum chaotic” maps in the periodic modular
multiplication map generalizes to an arbitrary multiplier A.
The appropriate chaotic maps are direct generalizations of the
2D A-baker’s maps [extensions of baker’s maps whose 1D
projection is fA(Nx)/N], and these maps can be quantized in
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terms of certain combinations of discrete Fourier transforms
[20], when either N + 1 or N − 1 is a multiple of A. This
establishes a rigorous correspondence between specific “er-
godic” and “nonergodic” quantizations of fA(x) for arbitrary
A, which may serve as a simple model for understanding the
interplay of integrability, ergodicity, and chaos in different
quantizations of the same system. We will now present the de-
tails of this correspondence, and subsequently discuss both its
potential implications for studying the embedding of quantum
chaos in Shor’s algorithm, and in extending the quantization
of A-baker’s maps to arbitrary N .

Results. In the remainder of this Letter, we will refer to
the exactly periodic quantum modular multiplication used in
Shor’s algorithm simply as modular multiplication, without
explicitly mentioning the qualifier “quantum”. Our main re-
sult [Eq. (8)] is to show that modular multiplication, in some
specific cases, can be exactly written as a superposition of
“chaotic” quantum A-baker’s maps. Modular multiplication
UA, given two co-primes N and A (A < N ), is defined in an
N-dimensional Hilbert space according to the equation

UA|m〉 = |mA (mod N )〉, for m ∈ {0, 1, . . . , N − 1},
(1)

where {|0〉, |1〉, . . . , |N − 1〉} forms an orthonormal basis. UA

can be regarded as a quantization of fA(x), as a generic narrow
wave packet of width w � N centered at some x0 remains
narrowly distributed around the classical trajectory of x0 up
to an Ehrenfest time [26,27] tE ∼ ln(N/w)/ ln A determined
by the Lyapunov exponent λ = ln A. However, since N and A
are co-primes, quantum modular multiplication is an exactly
periodic unitary operator at longer timescales, which permutes
the basis states according to Eq. (1).

The classical A-baker’s map, a generalization of the baker’s
map, is a canonical example of an ergodic and chaotic system
[28]. It maps a unit square to itself by stretching in one
direction and compressing in the perpendicular direction in
such a way that the total area of the square is preserved, and
rearranging the stretched square to fit inside the unit square.
The map is defined by the following transformation:

x → x′ = Ax − �Ax	, (2)

p → p′ = p + �Ax	
A

. (3)

Here (x, p) ∈ [0, 1) × [0, 1) are phase space coordinates and
�x	 denotes the integer part of x. The map is illustrated in
Fig. 1. The unit square is divided into A rectangles of equal
area as shown on the left side of Fig. 1. Each of the rectangles
is stretched by a factor of A along the horizontal direction and
by 1/A along the vertical direction. Then the rectangles are
stacked on top of each other as shown on the right side of
Fig. 1. When A = 2 the A-baker’s map reduces to the standard
baker’s map [29].

As with any classical dynamical system, there is no unique
way to quantize the A-baker’s map. Conventionally, the basic
requirements are that the quantum map is unitary and it re-
duces to the classical map in the semiclassical limit. Several
quantization procedures satisfying these requirements have
been developed for the A-baker’s map [20,21,28,30–32]. In
this Letter, we will use the quantization procedure developed

FIG. 1. The A-baker’s map transforms the unit square on the left
to the one on the right. The unit square is divided into A rectan-
gles which are marked by numbers from 1 to A. Each rectangle is
stretched along the x axis and contracted along the p axis before the
rectangles are stacked on top of each other.

by Balazs and Voros (BV) [20]. In the BV quantization,
one replaces the phase space of the classical map with a
D-dimensional Hilbert space. Then one can consider discrete
position (|xn〉) and momentum (|pn〉) bases with the boundary
conditions |xn+D〉 = e−2π iβ |xn〉 and |pn+D〉 = e2π iα|pn〉. Fi-
nally one constructs a D × D unitary matrix which transforms
the states in ways analogous to the classical transformation in
Eqs. (2) and (3). This unitary matrix is the quantum A-baker’s
map. The Hilbert space dimension D plays the role of h̄−1

[20]. Therefore the semiclassical limit of this map is obtained
by taking D → ∞ which is equivalent to h̄ → 0. We ex-
plain the associated procedures in detail in the Supplemental
Material [33]. The quantum A-baker’s map, obtained using the
BV procedure, is given by the following unitary matrix B(0)

A

(block diagonal with q blocks of Fα,β
D
A

):

B(0)
A = (

Fα,β
D

)−1
q⊕

j=1

Fα,β
D
A

. (4)

Here α, β are phases introduced in the boundary condition
of position and momentum basis and Fα,β

D is a generalized
discrete Fourier transform (DFT) matrix whose elements are

[
Fα,β

D

]
nm = 1√

D
e−2π i(n+α)(m+β )/D. (5)

For periodic boundary conditions (α = β = 0), Fα,β
D reduces

to the standard DFT matrix which we simply denote by FD.
Note that D/A in Eq. (4) should be an integer which requires
D to be a multiple of A.

One can modify the A-baker’s map so that the rectangles
on the right side of Fig. 1 are stacked differently, and then
use the same BV procedure to quantize this modified map.
For example, if all the rectangles on the right side of Fig. 1
are cyclically permuted by one step so that now 1 goes to A,
2 goes to 1, . . ., 3 goes to 2, we get a different quantized
map B(1)

A . Similarly one can construct other quantum maps
B(2)

A , B(3)
A , . . . , B(A−1)

A by cyclically permuting the horizontal
rectangles by 2, 3, . . . , A − 1 steps, respectively. The general
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equation for the A-baker’s map B(k)
A is

B(k)
A = [

Fα,β
D

]−1

0 . . . k − 1 k . . . A − 1
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 . . . 0 Fα,β
D
A

. . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . Fα,β
D
A

Fα,β
D
A

. . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . Fα,β
D
A

0 . . . 0

, (6)

where k ∈ {0, 1, . . . , A − 1}. When k = 0 it reduces to
Eq. (4).

With this background we can state our main result. Given
two co-prime integers N and A such that N = Aq ± 1 where q
is an integer, the corresponding modular multiplication opera-
tor U ±

A can written to act instead on D = Aq states (rather than
on N = Aq ± 1 as usual). This operator is obtained in the case
N = Aq + 1 by removing the state |0〉 which is always a fixed
point, U +

A |0〉 = |0〉, and in the case N = Aq − 1 by adding a
Dth state |D − 1〉, with the extension U −

A |D − 1〉 = |D − 1〉
which agrees with the original map defined in Eq. (1). The
modular multiplication map dynamics are thus preserved, but
the advantage is the number of states is now a multiple of
A. With these conventions, the Aq × Aq representation of the
modular multiplication operator U ±

A can be expressed as

U ±
A = F−1

Aq

⎡
⎢⎢⎣

Fq . . . F
0,∓ A−1

A
q

...
...

...

Fq . . . F
0,∓ A−1

A
q

⎤
⎥⎥⎦  F̃∓

Aq. (7)

Here  denotes Hadamard or entry-wise product of two ma-
trices defined as (A  B)i j = Ai jBi j and F̃Aq = F∓

A ⊗ Jq with
Jq being a q × q matrix with all elements equal to 1, F+

A the
A × A DFT matrix with no phase, F−

A the conjugate of F+
A ,

and ⊗ denoting tensor product. We analytically derive Eq. (7)
in the Supplemental Material [33].

To extract the quantized A-baker’s maps embedded in
Eq. (7), we rewrite it as

U ±
A = 1√

A

A−1∑
k=0

B̃±(k)
A , (8)

where B̃±(k)
A are quantized maps similar to the ones obtained

in Eq. (6) but with some differences. Let us write the explicit
form of B̃±(k)

A to identify the differences:

B̃±(k)
A = F−1

Aq

0 . . . k − 1 k . . . A − 1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 . . . 0 F
0,∓ k

A
q . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . F
0,∓ A−1

A
q

Fq . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . F
0,∓ k−1

A
q 0 . . . 0

 F̃∓
Aq.

(9)

FIG. 2. The density plot of the absolute value of the matrix
elements of B(1)

3 (left) and B̃(1)
3 (right) when N = 52. They are mostly

identical except for minor difference in the cuts between the 3 seg-
ments. Both of them resemble the classical A-baker’s map for A = 3.
This is necessary but not sufficient to claim that B̃(1)

3 reduces to the
3-baker’s map in the semiclassical limit.

Comparing Eq. (9) with Eq. (6) we notice two main dif-
ferences: (1) In B̃±(k)

A , the inverse of FAq has no phase and
the phases of each q × q DFT matrix are different but in B(k)

A
all of them have the same phase. (2) The Hadamard product
in Eq. (9) is absent in Eq. (6). Despite these differences, the
evolution of states under the operators B̃±(k)

A is very similar to
that of B(k)

A in the semiclassical limit, and we will call B̃±(k)
A

quantum A-baker’s maps. We note that if we plot the matrix
elements of B̃±(k)

A they resemble classical Bernoulli maps in
the same way as the B(k)

A do (Fig. 2), although as we explain
shortly this is not a sufficient criterion.

Classical limit. To justify calling B̃±(k)
A a quantum A-

baker’s map, in the Supplemental Material [33] we determine
the action of B̃±(k)

A on Gaussian states (“coherent states”)
maximally localized at a point (x, p) in phase space. We
show that B̃±(k)

A sends such a state to another coherent state
localized close to the classical evolution location (Ax −
�Ax	, p+(�Ax	−k) modA

A ). We only do this for (x, p) away
from the discontinuities of the classical A-baker’s map;
otherwise there can be diffraction effects [30,34,35]. The
action on coherent states can be interpreted in terms of
the Wigner or Husimi function in phase space: A state
whose Wigner/Husimi function is localized near (x, p) is
transformed by B̃±(k)

A to a state localized near the classical
trajectory point (Ax − �Ax	, p+(�Ax	−k) modA

A ). This correspon-
dence between quantum and classical evolution is shown
visually in Fig. 3.

Such an action on Gaussian states was used in [35] to
prove a rigorous classical-quantum correspondence (Egorov-
type theorem [35, Theorem 12]) for the original Balazs-Voros
quantization of the baker’s map. In the case here, we will be
content with just analyzing the behavior of B̃±(k)

A on Gaussian
states. Due to the varying phases in the DFT matrices in
Eq. (9), the action on Gaussian states will be more compli-
cated than in the original Balazs-Voros quantization. In partic-
ular, the quantum evolved state here is more accurately cen-
tered a small distance OA(D−1) away from the classical tra-
jectory point, though this will be sufficiently close for our pur-
poses to the state actually centered at the classical trajectory.

L032046-3



PATOARY, VIKRAM, SHOU, AND GALITSKI PHYSICAL REVIEW RESEARCH 6, L032046 (2024)

(a)

(b)

FIG. 3. Comparison of the quantum evolution under B̃+(1)
3 , and

the classical evolution by the 3-baker’s map with cyclic shift k = 1.
(a) Phase space plots (Husimi functions) of the quantum evolution of
a Gaussian state |�〉 by B̃+(1)

3 , for D = 150. The colored rectangles
are overlayed for easier comparison to (b). (b) Classical evolution of
the unit square by the 3-baker’s map with cyclic shift k = 1, which
sends (x, p) �→ (3x − �3x	, p+(�3x	−1) mod3

3 ). The bottom row shows
the intermediate components of the total transformation in the top
row. The time-evolved quantum state B̃+(1)

3 |�〉 shown in (a) follows
the classical action shown in (b), and also displays the stretching in
the x direction and shrinking in the p direction characteristic of the
classical A-baker’s map.

As noted previously, the matrix elements of B̃±(k)
A in the

position basis (and momentum basis) trace out the classical
1D action of the position (momentum) coordinate in the A-
baker’s map defined in Eqs. (2) and (3). This is not sufficient
to conclude that B̃±(k)

A has the correct semiclassical behavior,
as the Walsh baker’s maps considered in [28] also display this
behavior, but as shown in [36] are not quantizations of the
baker’s map. Checking the behavior in phase space, to ensure
the quantizations entwine position and momentum together
correctly, is thus necessary to understand the semiclassical
limit.

Discussion. We have illustrated a specific “embedding”
of quantum chaotic behavior in the periodic orbits of a
classically ergodic, chaotic map via quantum superposition,
by deriving an exact correspondence between the periodic
modular-multiplication-by-A maps and “chaotic” A-baker’s
maps, for N such that either of N ± 1 is a multiple of A. As
will be shown in an upcoming work, this result generalizes to

other values of N albeit via a more complicated construction
with two important implications.

First, in any practical implementation of Shor’s algorithm,
it is N that is given while A is chosen as per convenience, in
contrast to the dynamical systems approach, in which a fixed
A specifies the modular multiplication map while N → ∞
through any subsequence of N gives the classical limit. This
means that a general result for N would be crucial if one is
to understand the implications of this “embedding of quantum
chaos” for Shor’s algorithm (otherwise, choosing an A that
is a factor of either of N ± 1 would require the output of
Shor’s algorithm as applied to N ± 1, introducing a circular
element). Conversely, achieving such a generalization may
provide a fuller picture of how certain perturbations affect the
dynamics of Shor’s algorithm, along the lines of the analysis
in Ref. [24].

Second, from a fundamental quantum dynamical systems
viewpoint, the study of quantized A-baker’s maps has gen-
erally been restricted to Hilbert space dimensions that are
multiples of A, due to a need to consider A copies of discrete
Fourier transforms in, e.g., the Balazs-Voros quantization
[20]. The above connection to modular multiplication in
Shor’s algorithm provides a promising avenue to generalize
quantum A-baker’s maps to a larger set of Hilbert space
dimensions N , in particular any co-prime pair (A, N ), us-
ing generalizations of Fourier transforms. This also opens
avenues for studying the semiclassical behavior of such gen-
eralized quantum A-baker’s maps to explore atypicalities and
any N-dependence in their “quantum chaos” signatures, not-
ing that such atypicalities were observed for N a multiple of A
in the Balazs-Voros quantization [20]. Further, A-baker’s maps
can be directly realized in quantum simulators using quantum
Fourier transforms [37,38], which may allow the experimental
detection of such atypical spectral signatures using recently
developed measurement protocols for signatures of quantum
ergodicity [39,40].

Finally, classical results in ergodic theory indicate that the
above results relating different quantizations of the modular
multiplication map fA(x) may generalize in some form to
arbitrary sufficiently chaotic systems. This is due to Sinai’s
factor theorem [41,42], which implies that any ergodic and
chaotic system, whose Kolmogorov-Sinai entropy [43] (sum
of positive Lyapunov exponents) is at least ln A, contains
fA(x) as a factor [i.e., can be coarse grained to yield a sys-
tem equivalent to fA(x)]; a direct illustration is provided by
the x-coordinate action of the A-baker’s map (coarse-graining
over p) being fA(x). Successfully implementing such a gen-
eralization in practice would depend on identifying suitable
quantizations of a given chaotic system that capture the appro-
priate properties of its modular multiplication factor(s), and
may provide further avenues for future work.
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