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While topology is a property of a quantum state itself, most existing methods for characterizing the topology of
interacting phases of matter require direct knowledge of the underlying Hamiltonian. We offer an alternative by
utilizing the one-particle density matrix formalism to extend the concept of the Chern, chiral, and Chern-Simons
markers to include interactions. The one-particle density matrix of a free-fermion state is a projector onto the
occupied bands, defining a Brillouin zone bundle of the given topological class. This is no longer the case in the
interacting limit, but as long as the one-particle density matrix is gapped, its spectrum can be adiabatically
flattened, connecting it to a topologically equivalent projector. The corresponding topological markers thus
characterize the topology of the interacting phase. Importantly, the one-particle density matrix is defined in
terms of a given state alone, making the local markers numerically favorable, and providing a valuable tool
for characterizing topology of interacting systems when only the state itself is available. To demonstrate the
practical use of the markers we use the chiral marker to identify the topology of midspectrum eigenstates of
the Ising-Majorana chain across the transition between the ergodic and many-body localized phases. We also
apply the chiral marker to random states with a known topology, and compare it with the entanglement spectrum
degeneracy.
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Introduction. Local topological markers [1–18] are topo-
logical invariants particularly useful for characterizing
the topology of materials lacking translation symmetry. The
Chern [5], chiral, and Chern-Simons markers [16,19] provide
general analytic expressions for local markers for free-
fermion topological states protected by local symmetries,
conveniently characterizing their topological phases in prac-
tice. All three local markers are expressed in terms of the
single-particle density matrix, so the topology of a given
free-fermion state is verified without the need of its parent
Hamiltonian. Another advantage of the single-particle density
matrix formalism is that it generalizes to interacting systems
through the one-particle density matrix [20–26].

Topological phases are characterized through topologi-
cal equivalence under local unitary transformations, where
two states are topologically equivalent if they are connected
by a symmetry-preserving local unitary operator [27]. The
one-particle density matrix is relevant to those interacting
topological phases, protected by local symmetries, that in-
clude a free-fermion point represented by Gaussian states.
From now on we will only discuss these phases and refer to
them simply as (interacting) topological phases.
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Ways of characterizing the topology of interacting states
include computing the topological response function for in-
teracting many-body systems [28–32], and the single-particle
Green’s function invariants characterizing topological phases
of interacting Hamiltonians that are adiabatically connected
to a single-particle Hamiltonian [33–40]. There also exist
local topological markers targeting noncrystalline materials
[18,41]. While these approaches necessitate knowledge of a
parent Hamiltonian, topology is an inherent property of the
state itself, and it is theoretically possible to formulate topo-
logical invariants in terms of the state of interest alone. This
has numerical benefits and is important for characterizing,
for example, the topology of midspectrum states in many-
body localized phases [42–45], as well as quantum engineered
states [46–51].

In this Letter we take advantage of the one-particle density
matrix formalism [20–24], which only requires knowledge of
the specific state of interest, to expand the local topological
markers to interacting topological phases. Specifically, we ex-
tend the Chern, chiral, and Chern-Simons markers, defined in
Ref. [16], to characterize the topology of interacting topolog-
ical states close to Gaussians. The one-particle density matrix
of a Gaussian state is a projector onto the occupied single-
particle states, defining a vector bundle for which the topology
is characterized by the local marker of the symmetry class. By
introducing interactions the one-particle density matrix is no
longer a projector, since the corresponding state is no longer
Gaussian. However, as long as the gap in the one-particle den-
sity matrix spectrum remains open, it can be flattened to that
of a projector, and the corresponding local marker is still well
defined, extending the topological classification to include all
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states with a gapped one-particle density matrix spectrum. The
interacting local Chern, chiral, and Chern-Simons markers
provide closed-form expressions for characterizing topology
in a broad range of systems ranging from amorphous matter
[52,53] to many-body localized phases [54–56].

To illustrate the advantages of these markers we analyze
two sets of simulations. In the first we use the chiral marker
to characterize the topology of midspectrum eigenstates of
the one-dimensional Ising-Majorana chain across the tran-
sition from the ergodic to the many-body localized regime
[43–45,57–60], providing a direct measure of topology for
the first time. Second, to demonstrate the robustness of the
markers, we analyze the local chiral marker for generic states
with a known topology. We compare these results with the
entanglement spectrum degeneracy [61–63].

Classification of free-fermion states using the one-particle
density matrix. The one-particle density matrix for a state
|�〉 is

� =
(

�̃ κ

κ† 1 − �̃∗

)
, (1)

where the block matrices are defined by the expectation values
�̃i j = 〈�| c†

i c j |�〉 and κi j = 〈�| cic j |�〉 of the fermionic
creation, c†

i , and annihilation, ci, operators [22–24]. Diag-
onalizing � yields a single-particle eigenbasis of natural
orbitals |φα〉, where the corresponding eigenvalues 0 � nα �
1 are interpreted as occupations of the orbitals [20–23,64]. In
the translation invariant and noninteracting limit the one-
particle density matrix is a projector onto the occupied
single-particle orbitals in momentum space. The image of the
projector constitutes a vector space at each momenta, forming
a vector bundle over the Brillouin zone [65]. In the pres-
ence of unitary symmetries the one-particle density matrix
becomes block diagonal where each block defines a bundle.
The possible symmetries constrain the one-particle density
matrix of each block, limiting the bundles to a specific family,
one for each Altland-Zirnbauer class [66–69]; the class to
which a bundle belongs characterizes the topological phase of
the corresponding state [68]. The one-particle density matrix
is no longer a projector in the presence of interactions, and
the connection to vector bundles seems lost. However, by
only considering states that can be adiabatically transformed
into a Gaussian state while preserving the spectral gap in
the one-particle density matrix, the vector bundle determining
the topology of the state remains well defined by the bundle
obtained from the band flattened density matrix, ρ = [(2� −
1)/|2� − 1| + 1]/2, of the state. This parameter range holds
significant physical relevance, as many physical states, such
as many-body localized eigenstates [22,70,71] and ground
states of Hamiltonians with weak interactions, fall within
this region. This region does not include all states equivalent
under non-Gaussian local unitary transformations—such as
those reducing the Z classification of interacting time-reversal
invariant states in one dimension to Z8 [72]—rendering the
number of topological equivalence classes equal to the nonin-
teracting case.

Local topological markers in terms of the one-particle
density matrix. The Z-invariant Chern marker [5,16] in
even dimensions, and the Z-invariant chiral and Z2-invariant

Chern-Simons markers [16] in odd dimensions are all
formulated in terms of a single-particle density matrix. In-
corporating the notion of the interacting one-particle density
matrix expands the use of these local markers to become
a valuable tool with which to characterize topology of in-
teracting states, both in crystalline and disordered settings.
The local chiral marker [16], which characterizes topological
phases in odd dimensions with a chiral constraint S such that
{ρ, S} = S, S2 = 1, is defined as

ν(r) = γDεi1,... ,iD
∑

α

[ρSXi1ρ · · · ρXiDρ](rα),(rα), (2)

where the dimension-dependent coefficient γD =
−4(8π i)(D−1)/2[(D + 1)/2]!/(D + 1)!, is derived in the
Supplemental Material [73]. Xi are the Cartesian position
operators where the subscripts i stand for the ith component
of the position r, D is the odd spatial dimension, and α

denotes any internal degrees of freedom.
The local markers remain well-defined away from a

translation-invariant limit even though the one-particle density
matrix no longer defines a vector bundle, the key being the
restoration of translation invariance in the long-wavelength
limit, in which the coarse-grained one-particle density matrix
defines a vector bundle. In practice, in the absence of transla-
tion invariance, this means that the value of the marker varies
from lattice site to lattice site, and the quantized invariant
is recovered by averaging the value of the marker over a
large enough volume, where the size of the required volume
corresponds to the level of coarse graining.

The Ising-Majorana model. We use the chiral marker to
explore the topology of the disordered Ising-Majorana model
described by the Hamiltonian

H =
∑

j

(−it jγ jγ j+1 + gγ jγ j+1γ j+2γ j+3), (3)

where γ2 j−1 = c j + c†
j and γ2 j = i(c j − c†

j ) are Majorana

operators expressed in terms of fermion creation, c†
j , and

annihilation, c j , operators. The parameters t j are uni-
formly distributed in the intervals t2 j−1 ∈ [0, e−δ/2] and t2 j ∈
[0, eδ/2], and the interaction strength g = 0.5. The Hamilto-
nian in Eq. (3) has a time-reversal symmetry, restricting the
one-particle density matrix ρ of the eigenstates of H to be
real. Together with the particle-hole constraint that ρ has by
construction [74], these symmetries enforce a chiral constraint
on ρ given by S = σx, where σx is a Pauli matrix operating
within the block space given by Eq. (1), placing 2ρ − 1 in
the symmetry class BDI. The Ising-Majorana model can host
trivial and topological, ν = 1, many-body localized phases
depending on the values of t j and g [42–45,60]. By adding
next-nearest-neighbor terms to the Hamiltonian in Eq. (3) the
model can host several nontrivial phases, for example the
Majorana-XYZ model with ν = ±1 considered in detail in
the Supplemental Material [73].

The topology of the midspectrum eigenstates of the chain is
characterized by the local chiral marker, since the one-particle
density matrix is typically gapped for many-body localized
states [22,23,64]. Figure 1 depicts the median of the spatially
averaged chiral marker ν as a function of δ for midspectrum
energy eigenstates [75]. For each state ν approaches a quan-
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FIG. 1. The spatially averaged chiral marker, ν =
(1/L)

∑L−1
i=0 ν(ri ), for the Ising-Majorana model as a function

of the parameter δ defining the upper bound of the disorder
distribution, with interaction strength g = 0.5, for system sizes
L = 9, 13, and 17. The plot markers represent the median ν̃ of
the ensemble of disorder realizations. The width of the shaded
contours in the graph is defined as the smallest range of ν containing
75% of the realizations. The insets show the median and width
of the distribution for a range of δ where the shift from localized
to delocalized states is predicted to occur [45]. The number of
iterations for L = 9 and L = 13 are selected sufficiently high to
ensure that the statistical errors remain imperceptible on this scale
while the medians for L = 17 are given with error bars representing
a 95% confidence interval.

tized value, ν = 0 for negative δ and ν = 1 for positive δ, as
|δ| increases. For intermediate values of δ the marker is not
quantized and the states are most likely not localized [45]. In
this region the length scale ξ setting the exponential decay
of ρ(rα),(r′α′ ) ∼ e−|r−r′ |/ξ is large compared to the system size.
The shaded region in Fig. 1 contains 75% of the distribution

of values of ν for the different disorder samples. This region
narrows rapidly as |δ| grows, so that the topology in the
localized phases is obtained from a single realization. The
insets in Fig. 1 show that for large enough |δ| the distribution
narrows rapidly as the system size increases, suggesting that
the distribution converges to a Dirac-delta function at large
system sizes.

Figure 2 shows the probability density for obtaining a
specific value of ν in a given disorder realization for δ = 2.8,
δ = 3.6, and δ = 4.4. These δ values are all in proximity to
the phase transition between the ergodic and nontrivial topo-
logical phase, where an analysis using entanglement entropy
becomes indeterminate for the system sizes considered here
[45]. For the two larger δ values the distributions tend towards
Dirac-delta functions, peaking at quantized values as the sys-
tem size increases. In the limit of infinite system size all states
are therefore topological. For δ = 2.8 the distribution broad-
ens, and no conclusion can be made for the infinite system
size limit. This behavior is corroborated by the system size
dependence of the peak height and width of the probability
distribution, depicted in the insets of Fig. 2. For δ = 3.6 and
4.4 these are consistent with exponentials, while the data for
δ = 2.8 are inconclusive.

Topology of random circuit states. To explore the robust-
ness of the local topological markers, and compare to the
entanglement spectrum degeneracy, we apply them to random
states. In particular, we analyze states as they move away from
the parameter regime where the marker is expected to work.
To achieve this we transform Gaussian states with a known
topology through a unitary circuit with N layers, retaining
the topology of the states. The unitary gates in each layer
are two-site nearest neighbors chosen from the Haar random
distribution of time-reversal and fermion-parity-preserving
gates. We consider three classes of Gaussian states: a positive
and a negative random Kitaev state |ψ±〉 and a topologically
trivial state |ψ0〉. The two topological states are defined by
the two different ways the Majorana fermions couple be-
tween fermion sites i, (γ2i+1 ± γ2i )|ψ+〉 = 0, and (γ2i−1 ±
γ2i+2)|ψ−〉 = 0, as depicted in Fig. 3(c), where the ± sign
is chosen at random at each site i. The trivial state is a

(a) (b) (c)

FIG. 2. Numerical probability distributions of the spatially averaged chiral marker, ν = (1/L)
∑L−1

i=0 ν(ri ), for the Ising-Majorana model
with interaction strength g = 0.5 at (a) δ = 2.8, (b) 3.6, and (c) 4.4. The realizations, N = 105 + 50 for L < 17 and N = 2025 for L = 17, are
partitioned into 75 equal-size bins. Each ν represents the mean of the values in each bin and P(ν )−1 equals the number of bins (i.e., 75) times
the difference between the largest and the smallest ν value in the bin. The insets show the peaks of the probability distributions Pmax and widths
�ν of the intervals encompassing 75% of the values for ν, plotted against system size, and supplemented by exponential extrapolation guides
based on the two largest system sizes.
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(a) (b)

(c)

FIG. 3. (a) The spatially averaged chiral marker,
ν = (1/L)

∑L−1
i=0 ν(ri ), for the states |ψ+〉, |ψ−〉, and |ψ0〉 as a

function of the number of layers N in the circuit. The plot markers
represent the median ν̃ of the ensemble of disorder realizations.
The width of the shaded contours in the graph is defined as the
smallest range of ν containing 75% of the realizations. The dashed
lines show the spectral gap � of the one-particle density matrix.
(b) Entanglement spectrum degeneracy as a function of the number
of layers N . (c) Schematic representation of a four-site chain for the
random states at N = 0 used in (a) and (b). Each circle represents
one site with two Majorana operators paired by solid lines.

product state with a fermion on every other site, except on
the sites (a = �L/4	, b = L − �L/4	) that are in the state
(c†

a + c†
b ) |0〉, with L = 26 the number of sites. These states

satisfy the chiral constraint and are classified by the local
chiral marker in Eq. (2), where ν = ±1 for the topological
states |ψ±〉 and ν = 0 for the trivial state. The chiral marker
[Fig. 3(a)] remains quantized up to roughly five circuit layers,
characterizing the topology of the three topologically dis-
tinct interacting states. Beyond five layers the spectral gap
� of the one-particle density matrix becomes small and the
length scale ξ becomes large, and the marker tends towards
zero. The reason is that for ξ 
 L the marker value on
each site is a random number with a random sign averaging
to zero.

We compare these results with entanglement spectrum
degeneracy [61–63]. The entanglement spectrum {εα} of
the reduced density matrix of a region is the logarithm of
its eigenvalues in an increasing order. For a region large
compared to twice the correlation length the entanglement
spectrum in a topological state is degenerate [61–63]. The de-
generacy is defined by the parameter λα = (εα − εα+1)/(εα −
εα+2) which is bounded by one, and where λα = 0 indicates a
degeneracy in the spectrum [76].

Figure 3(b) shows the half-chain entanglement spectrum
degeneracy, averaged over the full entanglement spectrum,
as a function of the layer number N for the states obtained
from |ψ±〉 and |ψ0〉. The entanglement spectrum is degenerate
for both topological states up to six circuit layers, and there
is no distinction between them at any N . This demonstrates
how states in different topological phases can share the same

edge correlation and hence the same degeneracy, making it
impossible to distinguish them through their entanglement
spectrum. The distribution of degeneracies for the trivial state
overlaps almost everywhere with that of the topological states.
This degeneracy is caused by the Bell pair across the partition
of the system, highlighting the possibility of accidental de-
generacies falsely indicating that a trivial state is topological.
While this Bell pair is artificially constructed the conclusions
are generic. The marker, in contrast, captures the correct
topology despite the accidental Bell pair. It can in principle
also fail but this would require a state with a gapped one-
particle density matrix that cannot be connected to a Gaussian
state without closing the gap. For generic states this does not
happen as shown in Fig. 3(a), and we do not know how to
construct such a state. For many-body localized states this is
never a problem since the l bits are perturbatively connected
to the Anderson orbitals [22,70,71].

Discussion. We argued that the one-particle density matrix
defines a vector bundle in the presence of interactions adiabat-
ically connected to the noninteracting limit. This allowed us to
define local topological markers that characterize the topology
of nontranslationally invariant interacting states. An advan-
tage of these markers is that they are defined in terms of states
alone, making them a practical tool for characterizing topo-
logical phases. To demonstrate the usefulness of the markers
we characterized the topology of midspectrum states along
the transition between the ergodic and many-body localized
phases of the Ising-Majorana chain. This direct calculation
of a topological invariant for such states and its distribution
allows a more accurate determination of the underlying phases
of the Hamiltonian.

By applying the marker to random states with a known
topology we verified its robustness. The marker captures the
correct topology even in cases when the entanglement spec-
trum degeneracy fails. The reason is that the marker is a
topological invariant while the entanglement spectrum degen-
eracy is only an indicator of topology. Although there exist
phases where nonlocal order parameters [77–80] are topolog-
ical invariants, they are not applicable in all instances where
the local markers are.

We defined the local markers in any dimension and they are
numerically efficient to calculate since they only require two-
point correlation functions. Such two-point functions are in
principle measurable in experiment, which further highlights
the benefit of the topological markers [81–85].
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