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Quantum soliton-trains of strongly correlated impurities in Bose-Einstein condensates
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Strongly correlated impurities immersed in a Bose-Einstein condensate (BEC) can form a periodic structure
of tightly localized single atoms due to competing inter and intraspecies interactions, leading to a self-organized
pinned state. In this work, we show numerically that the impurities in the self-pinned state form a soliton-train,
as a consequence of a BEC-mediated attractive self-interaction and ordering due to the exclusion principle.
The dynamics of the impurities possess the characteristics of bright matter-wave soliton trains as often seen in
classical fields; however, in the few impurities cases, the detailed nature of collisions is determined by their
quantum statistics.
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Introduction. Solitons, and more generally nondispersive
solitary waves, appear in many physical systems. The histori-
cal and paradigmatic example are shallow water waves, whose
dynamics can be modeled by the Korteweg-de Vries equation,
which is well known to possess soliton solutions [1]. Over
the last couple of decades dark and bright solitons have been
extensively studied in nonlinear optical systems [2–7] and
in atomic Bose-Einstein condensates (BECs) [8–16], which
are both systems that are well described by classical fields
whose dynamics is governed by the nonlinear Schrödinger
equation (NLSE). As atomic BECs are amenable to clean and
highly controllable experiments many different realizations of
solitons have been explored, ranging from scalar dark [8,9,12]
and bright [11,14] solitons to vector dark-dark [17,18] and
dark-bright [19–22] solitons. More recently, complex soliton
structures in two-dimensional two-component BECs, called
Townes solitons, have been experimentally observed [23].

Beyond single solitons, highly excited soliton arrays,
known as soliton trains, have also been theoretically and ex-
perimentally investigated. While the exact solutions of the
free-space NLSE contains such states for both repulsive (dark)
[10] and attractive (bright) [11] interaction, their experimental
realization is not easy. While more controlled ways to create
bright solitons have been suggested [24], bright solitons are
usually created by first preparing a stable condensate with
repulsive interactions and then suddenly quenching the scat-
tering length from positive to negative. However, this excites
a modulational instability that results in the cloud breaking
up into bright soliton trains [14,25]. This process is therefore
inherently uncontrollable and results in a collection of bright
solitons of differing widths and particle numbers, making
single solitons and soliton-train states hard to study systemat-
ically. In nonlinear optics, on the other hand, the controllable
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generation of temporal soliton trains is possible using ul-
trashort laser pulses with high repetition rates [26–31]. The
ability to deterministically create and control matter-wave
soliton trains could have important applications in quantum
engineering, such as in high-precision sensing with atom
interferometry [32–36].

Recently, it was suggested that strongly repulsive bosonic
impurities immersed in a BEC can localize and self-organize
into a periodic atomic array due to the competition between
impurity-impurity and impurity-BEC interactions [37]. In
this work, we show that such self-localized impurities form
soliton-train states in the regime where their velocity is below
the speed of sound of the BEC. Such bright soliton trains
can be understood as the spatial matter-wave counterpart of
temporal optical solitons in nonlinear media, with the non-
linear coupling mediated by the BEC matter wave. However,
contrary to the similarities with optics, here only few atoms
are sufficient for these nonlinearities to appear [37,38] and
the solitonic impurities can be treated fully quantum mechan-
ically. The system therefore supports quantum soliton-train
states, and we show that quantum properties, such as the
statistics of the impurity atoms (bosonic or fermionic), have
a strong influence on their nonequilibrium properties.

Self-pinning state. In the following we first briefly re-
view the system of two coupled one-dimensional quantum
gases at ultralow temperatures where the first component is
a weakly correlated atomic BEC described in the mean-field
limit, while the second one is a minority component of N ≪
NBEC bosonic impurities [37]. The impurities are assumed
to strongly interact with each other so that their many-body
dynamics can be described using the Tonks-Girardeau (TG)
gas model [39]. The intercomponent interaction is described
by a repulsive density-density coupling of strength γ , which
we scale relative to the strength of the mean-field interaction
of the condensate g. We assume equal masses m for both com-
ponents with the dynamics of the coupled system described by

i�̇ =
[
−1

2

∂2

∂x2
+ VBEC + |�|2 + γ ρ

]
�, (1)

iφ̇n =
[
−1

2

∂2

∂x2
+ VTG + γ |�|2

]
φn. (2)
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FIG. 1. (a) Density profiles and (b) single-particle eigenstates of
the ground state of the impurities (red solid lines) pinned in a BEC
with density profile given by the blue dashed line at t = 0. Evolution
of the density of the impurities, ρ(x, t ), after receiving a momen-
tum kick of (c) v = 0.15 and (f) v = 1. Evolution of the respective
single-particle states |φ1(x, t )|2 and |φ2(x, t )|2 for (d), (e) v = 0.15
and (g), (h) v = 1. Parameters are NBEC = 5000, LBEC = 25, L = 15,
and γ = 2.

Here �(x, t ) is the condensate order parameter obeying the
mean-field Gross-Pitaevskii equation (GPE) [40] and φn(x, t )
are the single-particle states needed to describe the TG gas
using the Bose-Fermi mapping theorem [39]. All quanti-
ties are scaled with respect to the characteristic lengthscale
x0 = h̄2/(mg), which is related to the condensate-healing
length, and timescale t0 = mg2/h̄3, so that all wave functions
are in units of

√
x0. Since the density of the TG gas ρ(x, t ) is

equivalent to the density of a gas of spin-polarized fermions,
at zero temperature it can simply be written as ρ(x, t ) =∑N

n=1 |φn(x, t )|2. We assume the BEC to be trapped in a ring
potential of length LBEC so that it has a flat density profile,
while the TG gas is confined in a smaller box trap VTG(x)
of length L < LBEC [37]. This setup allows us to explore
the motion of the impurities without considering edge effects
from the condensate.

The ground state of the coupled system can be found by
solving the coupled equations in a self-consistent manner
by means of imaginary time evolution for Eq. (1) and exact
diagonalization for Eq. (2). When the systems are decoupled
for γ = 0, the TG gas is delocalized in the box potential and
may be considered as a quasisuperfluid state. For sufficiently
strong coupling strength γ the impurity atoms localize in-
dividually in the mean-field potential provided by the BEC.
The many-body ground state then becomes a regularly spaced
array of pinned impurities [see Fig. 1(a)]. This array of impu-
rities therefore represents a self-pinned insulator state within

a matter-wave lattice, and the distance between impurities is
set by the Fermi momentum kF = Nπ/L [37,41].

In this self-pinned state, an effective model for the impurity
eigenstates and their dynamics can be constructed by taking
the Thomas-Fermi approximation for the BEC component.
The solution to Eq. (1) is then given by [42]

�(x, t ) ≈
√

μTF − γ ρ(x, t )eiβt , (3)

where β is a real-valued, constant phase and the equilib-
rium chemical potential is μTF = μ0(1 + γ N/NBEC), with
μ0 = NBEC/LBEC being the chemical potential evaluated at
γ = 0 [37]. Under this approximation the Schrödinger equa-
tion for the impurities Eq. (2) can be rewritten as

iφ̇n(x, t ) =
[
−1

2

∂2

∂x2
− γ 2ρ(x, t )

]
φn(x, t ), (4)

with the impurities coupled to one another through the
effective attraction term −γ 2ρ(x, t ) and the eigenstates be-
ing orthogonal to each other

∫
dx φn(x, t )φm(x, t ) = δnm.

Equation (4) resides in the large group of N-coupled NLSEs
(N-CNLSEs), which are also often referred to as Manakov
equations [43]. They possess (bright) soliton trains as station-
ary solutions that are thoroughly investigated in the field of
nonlinear optics [44–48]. In particular, Eq. (4) simplifies for
a single impurity (n = N = 1) with density ρ = |φ1|2 which
results in the NLSE with self-attraction and the solution is the
celebrated scalar bright soliton ρ(x) = (γ /2)2sech2(γ 2x/2)
[49].

Dynamics of two impurities: Evidence of the soliton train.
To go beyond this effective model and explore the nonequi-
librium properties of impurities in the BEC, it is necessary to
solve the full Eqs. (1) and (2) numerically. However, in the
following we will show that in certain regimes it is possible
to describe the behavior observed by just considering the
soliton-train solutions that the N-CNLSE (4) allows for. For
this we will confirm that the wave profile is maintained during
the free evolution and that the shape and phase difference
are maintained after a collision [1,50–52]. Our first step is
therefore to solve Eqs. (1) and (2) for the minimal system
of N = 2 impurities and to study the collisional properties
by applying opposite momentum kicks e±ivx to the initially
localized parts of the wave function in Fig. 1(a) (see Appendix
for the detailed numerical technique). The resulting density
evolutions of the impurities for two different relative initial
velocities is shown in Figs. 1(c) and 1(f). One can immedi-
ately see that in both cases the impurities stay localized and
maintain their individual shape after the kick and also after
the collision process. However, while for the collision with
large relative velocity, v = 1, the two localized solitonic im-
purities strongly overlap (and possibly cross), for the collision
with lower velocity, v = 0.15, a clear repulsion between the
impurities is visible. To investigate the impurity scattering we
calculate the relative distance

d (t ) =
∫

dx1dx2|x1 − x2||
(x1, x2, t )|2 , (5)

which is shown for different velocities in Fig. 2(a). One can
see that with increasing relative velocities the impurities ap-
proach and overlap with each other more and more, and their
trajectories approach that of noninteracting classical particles
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FIG. 2. (a) Average distance between impurities from Eq. (5), for
v = 0.2 (blue), 0.6 (red), 1 (green), 3 (yellow) calculated by solving
the full system in Eqs. (1) and (2). Dashed lines are calculated from
the effective model Eq. (4). Dotted line is the corresponding quan-
tity for two noninteracting classical particles: d (t ) = |d (0) − 2vt |.
(b) BEC density evolution after an impurity momentum kick of
v = 1. White dotted line corresponds to x = ±vBt − d (0)/2, where
vB is the Bogoliubov speed of sound for a homogeneous BEC.

represented by the dotted line. We also show that the results
obtained from the effective description Eq. (4) (dashed lines)
agree quite well with the result from the full coupled system
of Eqs. (1) and (2). This shows that we remain in the regime of
validity of the Thomas-Fermi approximation as the impurity
velocity never exceeds the Landau critical velocity, which
can be estimated by the Bogoliubov speed of sound for a
homogeneous BEC to be vB ≈ √

NBEC/LBEC ∼ 14. We note,
however, that immediately after the instantaneous momentum
kick, a weak burst of phononic excitations with velocity ±vB

appears in the BEC [see Fig. 2(b)] [53], nevertheless they do
not alter the dynamics of the impurities as their amplitude is
small. The effective N-CNLSE (4), therefore, well describes
the system and its dynamics in the regime where phononic
excitations in the BEC can be neglected, which in turn means
that the soliton-train solutions provide an accurate description
of the dynamics of the N impurities [54].

This agreement then allows us to understand the velocity
dependence of the scattering process due to the overlapping
phenomena of the solitons [55–58] from the fact that these
solitonic impurities can be seen as composite vector solitons
formed by the single-particle states φ1 and φ2 of Eq. (4), which
are coupled by their total density ρ. While the scattering
behavior of scalar many-body Bose-condensed bright solitons
is purely determined by their relative phase [1,50–52], for
the soliton trains formed by the single-particle states φ1 and
φ2, one has to carefully examine the eigenstates’ individual
dynamics. For this one can see in Fig. 1(b) that the phase
of state φ1 is flat, whereas the phase for state φ2 possess
a π -phase jump at x = 0. This jump leads to an effective
repulsion between the localized parts on the left and the right
hand side of φ2, which will dominate over the kinetic energy
at small distances. For low relative velocities the impurity
density therefore never shows a crossing [55–58], as the cou-
pling between φ1 and φ2 ensures that the state φ1 follows the
trajectory given by φ2 as can be seen from Figs. 1(d) and
1(e). This results in the repulsive collision dynamics observed
in Fig. 1(c). On the other hand, for large relative velocities
the kinetic energy can be high enough to lead to a closer ap-
proach for φ2 and therefore a significant overlap in the density

FIG. 3. (Left column) Density evolution of four impurities cou-
pled to a BEC after a sudden quench from an external box potential to
a harmonic trap with trapping frequency ω = 0.15. (Right column)
Largest occupation number, λ0(t ), of the RSPDM. Solid line is
obtained by evolving the coupled equations (1) and (2), while the
dashed lines in panels (e) and (f) are obtained by evolving Eq. (4).
Dotted line shows the coherence λ0 of the ground state of the TG gas
in the harmonic trap with frequency ω. Coupling strengths are γ = 0,
γ = 1, and γ = 1.8 from top to bottom and the other parameter
choices are NBEC = 104, LBEC = 50, and L = 30.

can become indistinguishable from a crossing [see Figs. 1(f)
to 1(h)]. We emphasize that the dynamics shows composite
(vector) bright soliton-trains formed by orthogonal fermionic
states whose properties are strongly influenced by exclusion
statistics; therefore, the dynamics of the N-CNLSE (4) [or the
original coupled Eqs. (1) and (2)] cannot be described by that
of the single NLSE, leading to distinctively different bright
soliton dynamics compared to simple BEC systems.

Quantum statistics of solitonic impurities. To explore the
dynamical behavior of larger trains of impurity solitons we
quench the system by instantaneously changing the external
trap from a box to a harmonic oscillator potential, VTG(x) =
ω2x2/2, with ω in units of 1/t0. The resulting density dy-
namics for N = 4 impurities is shown in Figs. 3(a) to 3(c)
for different coupling strengths: for γ = 0 the impurities
are not coupled to the BEC and undergo free evolution,
whereas for γ = 1.8 the system is deep in the pinned regime
where the impurities behave as soliton-trains. In between
(γ = 1) the system is in an intermediate regime where the
impurities are quasilocalized but still have finite overlap
with one another. In all cases, the time evolution of the
density profile shows the harmonic trap-induced breathing
mode with periodic collisions and revivals of the impuri-
ties every t ∼ π/ω, which is a realization of the quantum
Newton’s cradle [59,60] in a coupled two component system.
Furthermore, one can note that in the case of γ = 1.8, the
impurities are localized even after all four impurities have
collided multiple times providing further evidence of being
the soliton train.

Since the evolution Eqs. (1) and (2) can be used to simulate
both the bosonic TG impurities as well as free fermionic
impurities, it is interesting to explore how their dynam-
ics are affected by differences in their quantum statistics.
However, since the Bose-Fermi mapping theorem ensures
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that the density evolution is identical for both exchange
symmetries, ρF(x, t ) = ρTG(x, t ), it cannot be used to dis-
cern any differences between them [39]. On the other
hand, the reduced single-particle density matrices (RSPDMs)
and the (experimentally measurable) momentum distribu-
tions can be different for bosonic or fermionic impurities.
The RSPDM of the impurities is given by (x, x′, t ) = ∫


∗
(x, x2, . . . , xN , t )
(x′, x2, . . . , xN , t )dx2, . . . , dxN , where 


is the respective many-body wave function (see Appendix
for the detailed discussion). This matrix can be diagonal-
ized to find the so-called natural orbital basis, (x, x′, t ) =∑

n λn(t )ϕ∗
n (x, t )ϕn(x′, t ), where λn(t ) are the occupation

probabilities of the orbitals ϕn(x, t ). The largest occupation
number λ0(t ) characterizes the degree of coherence in the
system and takes a maximal value of λ0 ≈ N for a weakly
interacting coherent BEC, and is λ0 = 1 for noninteracting
fermions.

The coherence within the TG system strongly depends on
the coupling strength γ [see Figs. 3(d) to 3(f)]. For γ = 0 at
time t = 0, the TG impurities overlap and strongly interact
with each other, which reduces the coherence compared to
weakly interacting bosons, but still allows for a large degree of
coherence on the order of λ0 ∼ √

N [61]. Such a system may
still be considered as a quasisuperfluid. When the particles
approach each other around the collision time, t = π/2ω, the
coherence increases due to quasi-condensation [62]. Since for
γ = 0 the impurity system is integrable, the collisions and the
increase in coherence happen periodically. For γ = 1.8 the
pinned TG state is initially fully incoherent due to the isola-
tion of particles from each other. However, during collisions,
the coherence temporarily increases rapidly as the impurities
overlap, reaching about the same value as in the uncoupled
situation. The quench dynamics in the solitonic regime there-
fore allows to realize a dynamical transition between different
phases, with the periodic oscillations between the pinned in-
sulator and the quasisuperfluid state being supported by the
coupling to the BEC. Finally, in the intermediate regime of
γ = 1, the impurities overlap throughout the dynamics, and
their coherence can be seen to decay after repeated collisions.
This can be attributed to the fact that the BEC-mediated
coupling among the TG atoms breaks the integrability of the
system. We note that in all cases the maximum velocity of
the impurities is around v ∼ Lω/2 = 2.25, which is much
smaller than the Landau critical velocity estimated above.
Thus, although we do not show it here, the amplitudes of
phonons excited in the BEC are negligible, and the Thomas-
Fermi approximation also holds in this case. The dynamics
observed from the effective nonlinear equation [dashed lines
in Figs. 3(e) and 3(f)] are therefore indistinguishable from the
dynamics described by the full system.

For a fermionic system the coherence is unchanged
throughout the dynamics, λn(t ) = 1 for 0 � n � N − 1 due
to the separable mean-field ansatz between the noninter-
acting fermions and the condensate. However, the dy-
namics of the fermionic momentum distribution n(k, t ) =∫

e−ik(x−x′ )(x, x′, t )dxdx′ can be compared to the bosonic
TG one, and distinct characteristics due to different particle
symmetries can be seen. The upper row of Fig. 4 shows the
momentum distributions for free evolution, γ = 0, and one
can see notable differences. In particular, the TG impurities

FIG. 4. (Top row) Momentum distribution n(k, t ) following a
trap quench in the free regime γ = 0 for (a) TG and (b) Fermi impu-
rities. (c) Peak of the momentum distribution at k = 0 for TG (solid
line) and Fermi (dashed line) impurities. (Bottom row) Equivalent
dynamics in the self-pinning regime (γ = 1.8). The parameter choice
is the same as in Fig. 3.

show a significant peak at k = 0 whenever the atoms col-
lide [see Fig. 4(c)]. This is due to the impenetrable hardcore
character of their scattering, which reverses the impurity mo-
menta after each collision [63,64]. For fermions, this peak is
absent as they simply pass through each other. The lower row
in Fig. 4 shows the same quantities, but now for the situation
where the impurities strongly interact with the BEC, γ = 1.8.
One can see that the momentum distribution of the TG and
fermionic impurities are equivalent at all times between col-
lisions, highlighting the incoherent single-particle nature of
both systems when deep in the pinned regime where we have
λn(t ) = 1. However, during the collisions the different scatter-
ing mechanisms are enhanced by the BEC-mediated effective
attraction. The k = 0 mode for the fermions is drastically
depleted as the attractive interactions accelerate the particles
through one another when their densities overlap. Conversely,
the k = 0 mode for TG impurities is increased as the par-
ticles scatter with larger kinetic energy. Solitonic impurities
in the BEC therefore act in different ways according to their
quantum statistics whenever the particles collide and overlap,
while at all other times they have an incoherent single-particle
nature.

Conclusions. In conclusion, we studied the dynamics of
strongly correlated impurities, namely, bosons in the TG
regime or fermions, which are coupled to a BEC in the
mean-field limit. Investigating the collision dynamics of two
impurities in the pinned limit, we provide strong evidence
that the impurities satisfy the characteristic scattering prop-
erties of soliton trains when the velocity of the impurities
is small enough such that the amplitude of the generated
phonons in the BEC are negligible. The system can then
be accurately described by a set of N-coupled nonlinear
Schrödinger equations, which allows one to identify the ori-
gin of the formation of the impurity brght soliton train as
a consequence of exclusion principles and BEC-mediated
self-attraction. Unlike the soliton states formed by a (fully
coherent) classical field such as in BECs or nonlinear optical
systems, the few-body nature of the impurity soliton train
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allows to study correlations among impurities and the
quantum statistical difference between TG bosons and non-
interacting fermions. Indeed, the coupling to the BEC can
stabilize the impurities against dispersion, allowing the lo-
calized pinned state to survive even after repeated collisions
and the induced breathing mode exhibiting dynamical transi-
tions between insulating and quasisuperfluid states. Moreover,
TG bosons can be distinguished from spinless fermions in
the momentum distribution whenever the impurities overlap,
showing distinct collisional effects enhanced by the presence
of the BEC. It is also known that the N-CNLSE (4) can show
interesting intensity redistributions (or energy exchanges),
leading to inelastic scattering among the solitons [46,47]. To
study this inelastic scattering along with the quantum statis-
tical properties of solitonic impurities would be an intriguing
future work. Another important extension would be the inclu-
sion of correlations between the BEC and impurities, allowing
to explore beyond mean-field effects on both the impurity
localization and their soliton dynamics.
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Appendix A: Initialization and dynamics. The order pa-
rameter of the Bose gas, �, and the fermionic single-particle
wave functions, φn, obeying Eqs. (1) and (2) in the main text,
are coupled via the density of the respective other species,
ρ = ∑N

n=1 |φn|2 and |�|2. Therefore, the two equations have
to be solved self-consistently to find the ground state. We
perform this computation by finding the ground state and
the density of the mixture using imaginary time evolution
with a split-step Fourier transform technique for the BEC
[65], and an exact diagonalization scheme for the fermionic
single-particle states. In the first instance, the ground state
and the density of the mixture at γ = 0 can be found an-
alytically as it is the solution of the homogeneous BEC
and fermionic particles in a box. This ground state is then
used as a trial wave function for the bosonic component to
obtain the BEC ground state with a small but finite cou-
pling strength γ > 0 by evolving Eq. (1) in imaginary time.
The obtained density of the BEC is then inserted into the
single-particle Hamiltonian Eq. (2) diagonalized to find the
updated density of the impurities. This procedure is iterated
until convergence is reached. The newly obtained ground
state can be again used as an initial trial state to find the
ground state with a slightly larger coupling strength γ and
this procedure is repeated for small increases in the coupling
until the final ground state is found for the desired coupling
strength [66].

Using the obtained ground state as an initial state, we
compute the time evolution for N = 2 as presented in Figs. 1
and 2 and for N = 4 as presented in Figs. 3 and 4. In each case,
the dynamics is initiated by quenching impurity component
as follows. For N = 2, a momentum kick with strength v

is performed [ψn(x, t = 0+) = ψn(x, t = 0−)e−ivx for x < 0
and ψn(x, t = 0+) = ψn(x, t = 0−)eivx for x > 0] to moni-

tor the time evolution in free space. For N = 4, an external
harmonic trap is added only for the impurities to study the col-
lision of four solitonic impurities. The subsequent dynamics
of the mixture are again simulated using the split-step Fourier
transform method [65].

Appendix B: Reduced single-particle density matrix of
Tonks-Girardeau gas. The equation of motion for the TG gas
couples to the BEC in the form of a single-particle potential,
which means that the Hamiltonian reads

Ĥ =
N∑

n=1

(
−1

2

∂2

∂x2
n

+ γ |�(xn)|2
)

+ g
N∑

1�i< j�N

δ(x j − xk ),

(B1)

with the TG limit taking g → ∞. The infinite repulsive in-
teraction prevents two particles from occupying the same
position which implies a constraint on the many-body wave
function

�TG(x1, . . . , xi, . . . , x j, . . . , xN ) = 0 for xi = x j . (B2)

This constraint allows to map the TG gas to spin-polarized
fermions described by the single-particle Hamiltonian

Ĥsp = −1

2

∂2

∂x2
+ γ |�(x)|2 , (B3)

with eigenfunctions φn(x). The fermionic many-body wave
function can be constructed by the Slater determinant �F =
det[φi(x j )]1�i, j�N with its bosonic counterpart found through
appropriate symmetrization via �TG = ∏

k> j sgn(xk − x j )�F.
This is the famous Bose-Fermi mapping theorem [39], which
allows to simplify the computation of the physical quantities
of the TG gas dramatically as the main computational effort is
to obtain the fermionic single-particle states φn(x).

In the main text, making use of the Bose-Fermi map-
ping, the largest eigenvalue (coherence) of the reduced
single-particle density matrix (RSPDM) of the TG gas and
the momentum distribution is computed. The RSPDM is
defined as (x, x′, t ) = 〈ψ̂†(x, t )ψ̂ (x′, t )〉 and its Fourier
transform leads to the momentum distribution n(k, t ) =
(2π )−1

∫
dxdx′eik(x−x′ )(x, x′, t ) [61]. In the case of the non-

interacting fermions, the RSPDM takes the form of

(x, x′, t ) =
N∑

n=1

φ∗
n (x, t )φn(x′, t ), (B4)

and therefore, the momentum distribution is a simple sum
of the Fourier transformed single-particle states: n(k, t ) =∑N

n=1 |φn(k, t )|2, where φn(k, t ) = (
√

2π )−1
∫

dxeikxφn(x, t ).
As shown by Pezer and Buljan [67], there exists an efficient
computational method to compute the RSPDM of the TG gas,
which can be written analogously to the fermionic counterpart
as

(x, x′, t ) =
N∑

n=1

N∑
m=1

φ∗
n (x, t )Anm(x, x′, t )φm(x′, t ), (B5)

where N by N matrix Â(x, x′, t ) = Anm(x, x′, t ) is defined as

Â(x, x′, t ) = (P̂(x, x′, t ))−1 det P̂(x, x′, t ), (B6)

[P̂(x, x′, t )]nm = δnm − 2
∫ x′

x
φ∗

n (y, t )φm(y, t )dy. (B7)
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We compute the RSPDM using Eqs. (B5) to (B7) for the TG
gas and Eq. (B4) for the fermions, which yields the momen-
tum distribution via the Fourier transform presented in Fig. 4
in the main text.

The eigenstates and eigenvalues of the RSPDM are called
natural orbitals φ̃(x, t ) and occupation numbers λn(t )

(x, x′, t ) =
∑
n=0

λn(t )φ̃∗
n (x, t )φ̃n(x′, t ), (B8)

which can give further information about the many-body
properties. For instance, the RSPDM of noninteracting

fermions at zero temperature, Eq. (B4), is diagonal with natu-
ral orbital being exactly the same as the single-particle states
φ̃n(x, t ) = φn(x, t ) with unit occupation number λ0�n<N = 1
and λn�N = 0 indicating its incoherent nature. A fully co-
herent BEC, on the other hand, possesses only one orbital,
λn = Nδn,0 and φ̃0(x, t ) becomes the Bose order param-
eter. The largest eigenvalue, λ0, is also known to be
a measure of the coherence and is used to characterize
the coherent dynamics of the TG impurities in a BEC,
which is presented in the main text in the right column
of Fig. 3.
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