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Impossibility of adversarial self-testing and secure sampling
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Self-testing is the task where spatially separated Alice and Bob cooperate to deduce the inner workings of
untrusted quantum devices by interacting with them in a classical manner. We examine the task above where
Alice and Bob do not trust each other which we call adversarial self-testing. We show that adversarial self-testing
implies secure sampling—a simpler task that we introduce where distrustful Alice and Bob wish to sample from
a joint probability distribution with the guarantee that an honest party’s marginal is not biased. By extending
impossibility results in two-party quantum cryptography, we give a simple proof that both of these tasks are
impossible in all but trivial settings.
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Introduction. The last few decades have witnessed massive
leaps in the capabilities of quantum computers, in terms of
both theory and implementation. With intensified efforts from
government, industry, and academia, the future where useful
quantum computers are widely accessible is becoming closer
to a reality every day. The availability of such quantum de-
vices begs the question of whether one can trust that they are
performing as advertised. In other words, should we blindly
trust the output of quantum mechanical devices? And if not,
is there a way to test them?

Somewhat surprisingly, one can sometimes test spatially
separated devices to see if they are doing what they are pur-
ported to be doing based solely on its (classical) input/output
behavior and the assumption that quantum mechanics is a
faithful description of Nature. This area is broadly referred to
as self-testing. As an early example, Coladangelo, Goh, and
Scarani showed that any pure bipartite state can be self-tested
[1]. In addition, other strong results have been reported [2–9].
Many of these deal with two parties, call them Alice and
Bob, who cooperate to ascertain the inner workings of the
respective quantum devices.1

In this Letter, we prove that to self-test quantum devices,
it is necessary that Alice and Bob cooperate. More precisely,
we define adversarial self-testing as the self-testing task in the
setting where Alice and Bob do not trust each other and give a

*These authors contributed equally to this work.
1Recent works [10,11] give self-testing schemes of single devices

using computational assumptions. We do not place any such limita-
tions on Alice and Bob in this work.
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surprisingly simple proof that this task cannot be realized. To
this end, we use adversarial self-testing to perform a simpler
task we call secure sampling, and then leveraging results from
quantum cryptography, show that secure sampling is impossi-
ble. We now introduce these two tasks in detail.

Self-testing setting. Consider a quantum mechanical device
shared by two mutually trusting parties, Alice and Bob, each
having their own part of the device which we refer to as a
box. Each box has several buttons (input choices) and, upon
pressing a button, one of several lights turns on (indicating an
output). Crucially, suppose that the two boxes are not allowed
to communicate after they are distributed to the parties (e.g.,
by ensuring enough physical separation between them).

The most general physical description of such a device is
given by a device specification

spec := ( |ψ〉AB ,
{
Mx

a

}
,
{
My

b

})
,

where |ψ〉AB is bipartite quantum state in an arbitrary Hilbert
space, the projector Mx

a corresponds to Alice inputting x and
obtaining outcome a, and similarly My

b corresponds to Bob
inputting y and obtaining outcome b. We call the joint proba-
bility distribution of getting outcomes (a, b) from the boxes,
given inputs (x, y), a quantum correlation, and denote it by

p(ab|xy) = 〈ψ | Mx
a ⊗ My

b |ψ〉 . (1)

Note that the marginals satisfy p(a|x) = p(a|xy) and p(b|y) =
p(b|xy).

In some cases, given that such a device produces a specific
correlation p(ab|xy), one can deduce the state |ψ〉AB and the
measurements {Mx

a}, {My
b} up to local isometries, i.e., one

can self-test the device. In particular, one may be able to
deduce that the state is entangled. In cryptographic contexts,
self-testing allows one to model the quantum devices as black
boxes and thereby establish device-independent security for
tasks such as quantum key distribution. Treating quantum
devices as black boxes already includes the possibility that the
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FIG. 1. Alice and Bob share several pairs of boxes but have no
reason to trust them. They could test all but one and deduce (with
hopefully high confidence) that either the boxes are faulty or the
untested box will behave as expected.

quantum devices are prepared by the adversary and therefore
yield secure constructions even against such powerful adver-
saries [12–15].

How does one test whether the device, in fact, produces
the purported correlation p(ab|xy)? Assuming Alice and Bob
can communicate classically, they can start with n devices
and use n − 1 randomly among them to test for the right
correlation [16].2 More concretely (see also Fig. 1), Alice
could randomly select n − 1 devices, measure them, and share
this information with Bob who can then measure his part of
the corresponding devices. He can then decide whether the
purported correlation is consistent and share the result with
Alice. If they are satisfied, they can use the remaining device,
confident that it will work as claimed.

The literature on self-testing and its use in quantum
cryptography, in summary, points to the following recurring
theme.

Theme: The ability to self-test suggests security in quantum
cryptography.

Note that in the discussion above, even though Alice and
Bob did not trust their quantum devices, they did trust each
other.

Adversarial self-testing. Consider the fully distrustful set-
ting [17] where Alice trusts neither her devices nor Bob, and
similarly Bob trusts neither his devices nor Alice. Conceptu-
ally, define adversarial self-testing to be the natural extension
of self-testing to this fully distrustful setting.

2In the literature, the more common setting is where all n devices
are measured right away. See, e.g., [15] that shows how self-testing
is used for key distribution. Note that, in both cases, the devices are
not assumed to be identical.

We first look at why the self-testing procedure involving n
devices fails and then suggest a plausible alternative.

In (standard) self-testing as described above, suppose Bob
is malicious and he created the devices for his own nefarious
purposes. If Alice suspects this might be the case, then she
has no reason to trust the tests (that only he performed) nor
his final decision to use the remaining device.

To alleviate this issue, we allow the parties to exchange
boxes—this can be achieved using quantum communication
[17]. We also allow them to prevent communication across
the boxes they possess (e.g., by shielding). The idea is to have
both parties perform tests and, furthermore, if a party chooses
to test device i, they ask for the corresponding box from the
other party to run the test themselves using both boxes. A
plausible protocol based on the cut-and-choose idea is for Bob
to test roughly half the devices, selected uniformly at random,
and then if he is satisfied, to allow Alice to perform her own
tests. She can select all but one of the remaining devices and
perform her own tests. If she is also satisfied, then they agree
to use the remaining device.

Why might such a strategy work? Since Alice and Bob’s
test involve randomly select devices, then regardless of who
might have tampered with the devices, neither of them has
full control over which device is ultimately used and as such,
each device is likely to be tested.

Before proceeding, we briefly remark on two important
distinctions between the two settings. First, even though ex-
changing boxes is relevant for adversarial self-testing, as
motivated above, it does not offer any advantage in the (stan-
dard) self-testing setting. This is because Alice and Bob
can coordinate and broadcast their inputs and outputs and
collectively process their statistics. Second, in (standard) self-
testing, once the boxes are prepared and distributed, they can
no longer be modified. However, for adversarial self-testing,
a malicious party can tamper with the boxes at any point
during the protocol as long as the box is in their possession.
In fact, the only constraint is that the malicious party cannot
tamper with the boxes currently held by the honest party. For
example, suppose Alice and Bob share two pairs of boxes and
Alice asks Bob to send her his box from the first pair. Then
Bob can tamper with his box right before he sends it, such that
it acts in a way favorable to him. See Fig. 2 for an illustration.

What is known about adversarial self-testing? Recently,
notions closely related to it have implicitly appeared in certain
device-independent cryptographic settings, such as weak coin
flipping [16] and network entanglement certification [18]. In
these works, only one-sided tests were used, i.e., where either
Alice tests Bob or Bob tests Alice. Moreover, for coin flipping,
only partial security was obtained. This begs the question of
whether one can have a (two-sided) adversarial self-test to
achieve ideal security for such tasks. In this work, we show
that this is impossible.

Our contributions. We start by concretely defining adver-
sarial self-testing. Consider a device specification spec :=
(|ψ〉AB , {Mx

a}, {My
b}) and n untrusted quantum devices pur-

portedly consistent with spec. We denote the ith untrusted
device by two boxes �A,i and �B,i. Let Alice and Bob be
two remote parties, connected by a classical channel and a
quantum channel. Alice and Bob are uncorrelated initially
except that Alice holds boxes {�A,i}i and Bob holds {�B,i}i.

L032039-2
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FIG. 2. If Bob is malicious, he can tamper with the boxes adap-
tively. For example, he can tamper with box �A,i when it was created,
then change the contents of �B,i later before sending it to Alice.

Assume that, at any point during the protocol, boxes held by
Alice cannot communicate with those held by Bob and also
that the parties can choose to prevent communication among
the boxes in their possession. Let P be a bipartite protocol
among Alice and Bob, which specifies a procedure for the two
parties to perform classical computations, exchange classical
messages, measure, and exchange n − 1 of the n untrusted
quantum devices. Based on this, each party either outputs
⊥ denoting abort or an index j ∈ {1, . . . n} that specifies the
certified unused quantum device.

Consider the following three situations describing the vari-
ous adversarial attacks we allow when the target specification
is spec. In each, an honest party proceeds exactly as specified
by P .

(i) Fully trusted. Both parties are assumed to be honest and
all n quantum devices are specified by spec.

(ii) Trusted parties (but untrusted devices). Both parties are
assumed to be honest but all n quantum devices are created by
an adversary.

(iii) Fully distrustful. An adversary creates the devices and
controls one party, say Bob, i.e., can make Bob arbitrarily
deviate from protocol P . The only restriction on the adversary
is that it cannot influence Alice’s classical computations and
it cannot influence any quantum box while it is held by Alice.
It is similar when Alice is controlled by the adversary.

We set up some notation. We say that a device specification
(|φ〉A′B′ , {Nx

a }, {Ny
b }) is δ close to the target specification spec

if there are local isometries �A′ : A′ → AA′′ and �B′ : B′ →
BB′′ such that

�
((

Nx
a ⊗ Ny

b

) |φ〉A′B′
) ≈δ

(
Mx

a ⊗ My
b

) |ψ〉AB ⊗ |junk〉A′′B′′

for all x, y, a, b, where � := �A′ ⊗ �B′ and ≈δ is used to
denote that the states are at most δ far in trace distance. Then,
adversarial self-testing is defined as follows.

Definition 1 (Adversarial self-test). P adversarially self-
tests the device specification spec := (|ψ〉AB , {Mx

a}, {My
b}),

if there exist decreasing vanishing functions ε, δ � 0 such
that the following conditions hold, corresponding to the three
situations above.

(i) Correctness (Fully trusted). Both parties output the
same device index j (and neither aborts).

(ii) Self-testing (Trusted parties). Both parties have identi-
cal outputs and with probability at least 1 − ε(n), the protocol
either aborts or, given that the protocol does not abort, the
certified device (|φ〉A′B′ , {Nx

a }, {Ny
b }) is δ(n) close to the target

specification spec.
(iii) Adversarial self-testing (Fully distrustful). Suppose

Alice is honest and Bob is controlled by the adversary. When
Alice does not abort, we denote by |φ〉A′B′ the purification
of the state in Alice’s certified box and assume its purifica-
tion is held by Bob. We denote by {Nx

a } the measurements
corresponding to Alice’s certified box. Then, it is required
that irrespective of Bob’s output, the same condition as in the
self-testing case above holds for some measurements {Ny

b }.
The analogous condition must also hold when Bob is honest
and Alice is controlled by the adversary.

We make two remarks about our definition. (i) Observe that
if a specification spec can be adversarially self-tested then,
in particular, spec can be self-tested in the standard setting
(i.e., without exchanging boxes). (ii) A weakened variant of
the third requirement, for instance, by assuming that one party,
say Alice, is always honest, can be realized and has also found
applications [16,18], as discussed earlier.

Consider any device specification spec that produces
a product correlation, i.e., p(ab|xy) = p(a|x)p(b|y) for all
a, b, x, y where p(ab|xy) is as in Eq. (1). This correlation
can be produced locally (without shared randomness) and
classically. Therefore, any guarantee from self-testing, which
must be up to local isometries, becomes meaningless. Remark
(i) above entails that adversarial self-testing is, consequently,
also meaningless in this case.

What can one say about device specifications that pro-
duce nonproduct correlations, i.e., p(ab|xy) 
= p(a|x)p(b|y)
for some a, b, x, y? In [1], the authors show that for every
entangled state, one can find measurements such that the re-
sulting device specification can be self-tested. Can one extend
this to adversarial self-testing? The following result shows
that adversarial self-testing is impossible for any meaningful
specification.

Theorem 1. Any device specification spec that produces
nonproduct correlations [i.e., p(ab|xy) 
= p(a|x) · p(b|y) for
some a, b, x, y where p(ab|xy) is as in Eq. (1)] cannot be
adversarially self-tested.

Adversarial self-testing of spec implies one can securely
sample, a simpler task we define below, according to the cor-
relation p(ab|xy) [which is produced by spec as in Eq. (1)].
Clearly, if secure sampling of p(ab|xy) is impossible, the
proof of Theorem 1 is immediate. The remaining discussion
focuses on proving the impossibility of secure sampling of
nonproduct correlations.

Secure sampling. We consider secure sampling in the bipar-
tite setting where the parties are untrusted but their quantum
devices are trusted. More concretely, a valid protocol for
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securely sampling from the joint distribution p(ab|xy) is an
interactive protocol among Alice and Bob who are given
inputs x, y and produce outputs a, b (or abort). The protocol
specifies local quantum computations for each party, involv-
ing exchange quantum messages, to compute their respective
outputs.

As before, note that a malicious Alice may digress from
the protocol. She may try to bias the marginal distribution of
b. Similarly a malicious Bob may try to bias the marginal
distribution of a. Note also that it does not make sense to
consider the entire joint distribution p(ab|xy) in the security
analysis. This is because a malicious party can always output
anything they wish, at the end. Thus, what makes sense is
to bound the deviations away from the marginal distributions
p(a|x) and p(b|y).

We say that p(ab|xy) can be δ securely sampled for a δ >

0, if there exists a protocol such that for any pair of outputs
(a, b), for any input (x, y) the following hold.

(i) When both Alice and Bob are honest, they output a
and b with probability p(ab|xy).

(ii) The probability that Alice outputs a is at most
p(a|x) + δ when Bob cheats (implying she did not
abort).

(iii) The probability that Bob outputs b is at most p(b|y) +
δ when Alice cheats (implying he did not abort).

In words, a malicious party can only really influence the
honest party’s outcome toward “cheating detected.” We say
that a distribution p(ab|xy) can be securely sampled if for any
δ > 0, the distribution can be δ securely sampled. Note that,
product correlations can be trivially sampled securely—the
parties sample their own outputs, depending on their respec-
tive inputs. We prove that the converse also holds.

Theorem 2. Given a correlation3 p(ab|xy), secure sam-
pling is possible if and only if it is a product correlation.

From the definitions, one can check that adversarial
self-testing of spec that produces p(ab|xy) implies there
is a protocol for secure sampling from p(ab|xy). Thus,
Theorem 1 follows directly from Theorem 2. Turning to the
proof of Theorem 2, we start with a simple fact about non-
product correlations.

Lemma. For a nonproduct correlation p(ab|xy), there exist
a, b, x, and y such that

p(ab|xy) > p(a|x) · p(b|y). (2)

To prove this, suppose that for all a, b, x, and y we have

p(ab|xy) � p(a|x) · p(b|y). (3)

Then, for any fixed x and y, one can easily see that
p(ab|xy) = p(a|x) · p(b|y) by adding over a and b on both
sides, and using the fact that if 0 � �i and

∑
i �i = 0, it

follows that �i = 0 for each i. Thus, p(ab|xy) is a product
correlation, a contradiction.

The above lemma says that there is some input pair (x′, y′)
such that Alice and Bob’s outcomes are correlated, i.e., not
sampled from a product probability distribution. Henceforth,

3Recall that we only consider correlations/distributions that can
arise from measuring a quantum state with local measurements.

we focus on secure sampling of the nonproduct distribution
p(ab) := p(ab|x′y′). This particular nonproduct distribution
is exactly the issue when Alice and Bob try to adversarial
self-test. It turns out that Alice or Bob can always bias the
marginals of nonproduct distributions in quantum settings
which we show follows from the insecurity of certain tasks
in quantum two-party cryptography. The literature on this area
contains many impossibility results. Some of the more popular
tasks include bit commitment [19–21], strong coin flipping
[22,23], die rolling [24,25], oblivious transfer [26–28], and,
more generally, secure function evaluation [29,30] (many of
the references above point toward their impossibility). With
this said, we revisit the theme of this paper, stated in the
contrapositive.

Theme, restated: The insecurity in quantum cryptography
suggests the inability to self-test.

To illustrate this connection, we consider one particular
task within two-party cryptography we alluded to earlier, coin
flipping, where Alice and Bob wish to generate a shared
uniformly random bit. In other words, they wish to securely
sample from the joint distribution p(ab) = 1

2δa,b. However,
there is a constant lower bound on the security of any quantum
coin flipping protocol due to Kitaev [22] indicating that this
particular distribution cannot be securely sampled. Can one
say something more generally?

Indeed, Kitaev’s lower bound states that for any quantum
protocol that samples from the joint distribution p(ab), we
must have

p∗(a) · p∗(b) � p(ab) (4)

for any fixed a and b, where we use the following notation.
(i) p(ab): The probability with which Alice and Bob out-

put a and b (when both follow the protocol honestly).
(ii) p∗(a): The maximum probability Bob can force Alice

to output a (when she follows the protocol honestly).
(iii) p∗(b): The maximum probability Alice can force Bob

to output b (when he follows the protocol honestly).
Now, suppose one can securely sample from the nonprod-

uct distribution p(ab). Then, for any fixed δ > 0, there exists
a protocol such that p(a) + δ � p∗(a) and p(b) + δ � p∗(b).
Combining with Kitaev’s bound, we have

(p(a) + δ)(p(b) + δ) � p∗(a) · p∗(b) � p(ab) (5)

for any a and b. By taking limits as δ → 0, we have that
p(a) · p(b) � p(ab) for all a and b which can only hold for
product distributions from our lemma—a contradiction. Thus,
p(ab) cannot be securely sampled, completing the proof of
Theorem 2.

Multiparty setting. We now briefly discuss the possibility
of secure sampling if there are more than two parties. Con-
sider the task where there are n parties who wish to sample
from the joint distribution p(a1a2 . . . an) where party i out-
puts ai. One may wonder if there is some way to use the
extra parties involved to test the devices. It turns out that
this is also impossible for certain distributions. We say that a
mulitpartite distribution is nontrivial if there exists a partition,
such that p(a1a2 . . . an) is nonproduct across that partition.
Consider such a nontrivial multipartite distribution and call
the partitions A for “Alice” and B for “Bob” (this suggestive
naming convention will make sense shortly). If we also set
a to be the tuple (ai : i ∈ A), and b to be the tuple where
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(ai : i ∈ B), we have effectively reduced the multiparty setting
to the two-party setting where we only have Alice and Bob.
Since p(ab) is nontrivial, then we cannot securely sample
from this distribution. Here, when Alice or Bob cheats, we
suppose that they are not bound by any locality constraints.
That is, they are allowed to act as a single cheating entity. In
summary, we cannot securely sample a nontrivial multiparty
distribution since there exists one subset of the parties who can
(collectively) cheat the rest. Thus, if we generalize adversarial
self-testing to multiple parties, we see that this is impossible
as well if a certain partition and choice of inputs leads to a
nonproduct distribution.

Comparisons to previous work. The work [31] considers
nonlocal games in a two-phase setting where, in the first
phase, the two parties cooperate to play the game and in the
second phase, they try to learn the other party’s output. It
shows that even if the other party’s input is revealed, their
output remains random. The multiparty case with dishonest
parties has been studied in [18]. In this work, the identity of
the malicious parties is known in advance. In [16], these ideas
are applied to improve protocols for the cryptographic task of
weak coin flipping. All these works can be interpreted as posi-
tive results as contrasted to our negative result. Indeed, they all
have assumptions concerning how the parties trust each other
(while we make no assumptions). This opens the question of
what possible results can be obtained in this adversarial setting
if one places assumptions/restrictions on the cheating parties
involved.

Conclusions. In this Letter, we proved that one cannot
securely sample nonproduct probability distributions, and thus

adversarial self-testing of devices producing nonproduct cor-
relations is also impossible. For future work, it would be
interesting to see if a form of adversarial self-testing is pos-
sible in certain multiparty settings. Perhaps restricting the
cheating subsets to only have a small number of parties would
circumvent the impossibility. Another interesting research av-
enue would be to see how our results change if one were
to add restrictions to what Alice and Bob are allowed to
do when tampering with the boxes. Kitaev’s lower bound
is in the information-theoretic setting; it may not hold if
we impose certain restrictions on Alice and Bob (e.g., Al-
ice and Bob are computationally bounded). We believe that
adversarial self-testing should be possible in this restricted
setting.
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