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Trade-offs between unitary and measurement induced spin squeezing in cavity QED
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We study the combined effects of measurements and unitary evolution on the preparation of spin squeezing
in an ensemble of atoms interacting with a single electromagnetic field mode inside a cavity. We derive simple
criteria that determine the conditions at which measurement based entanglement generation overperforms unitary
protocols. We include all relevant sources of decoherence and study both their effect on the optimal spin
squeezing and the overall size of the measurement noise, which limits the dynamical range of quantum-enhanced
phase measurements. Our conclusions are relevant for state-of-the-art atomic clocks that aim to operate below
the standard quantum limit.
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Introduction. Within the field of quantum metrology [1,2],
spin squeezed states [3,4] constitute a concrete example of
a quantum-enhanced resource with near-term practical ap-
plications. Their ability to measure spin rotations with a
sensitivity that surpasses the standard quantum limit (SQL),
i.e., the fundamental limit on phase estimation achievable
with N uncorrelated particles, provides the opportunity for
practical metrological gain in, e.g., atomic clocks [5,6], mag-
netometers [7–9], and matter-wave interferometers [10–12].
Consequently, schemes for efficient spin squeezing prepara-
tion [3,13,14] and experimental demonstrations in a variety
of quantum platforms [5,15–21] have attracted considerable
attention.

Particularly promising strategies for the scalable genera-
tion of squeezing are provided by QED cavities, where a
shared light field mediates all-to-all interactions among atoms
inside of a cavity. When driven by an external laser, the
resulting dispersive atomic response is nonlinear and can
be interpreted as an infinite range unitary Ising interaction
called one-axis-twisting (OAT) [3]. This is known to create
spin squeezing [3] and this specific drive-induced mechanism
is known as cavity-feedback squeezing [5,18,21,22]. On the
other hand, after atoms and light interact, photons leaking out
of the cavity carry information about the atomic ensemble
[17,19,20] that can be accessed by continuously monitoring
the output light via quantum nondemolition (QND) measure-
ments [13,23,24]. Adequate use of this information allows
for the estimation of the number of nonexcited atoms, which
decreases the noise of the state along the magnetization axis,
leading to spin squeezing.

In this paper we examine the possible advantages of com-
bining both methods of preparation. We employ a general
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analytical framework, analogous but distinct to the ones pre-
sented in Refs. [25,26], that considers the effects of finite
detection efficiency, and include from the outset fundamental
sources of noise and dissipation.

Our main result can be stated succinctly: when the de-
tection efficiency of the QND measurement is above 0.19,
QND outperforms OAT. Otherwise, the choice between QND
or OAT depends on other experimentally relevant parameters
such as spin flip probability, cavity cooperativity, and atom
number [see Fig. 4(c) for details]. We also perform a system-
atic study of the area of the generated measurement noise,
which negatively impacts the dynamical range and utility of
the state for quantum-enhanced phase measurements [27].

Model. We begin with a simple model that exemplifies the
physics that we are trying to describe [28] [see Fig. 1(a)]. We
consider an ensemble of N atoms with three levels: |↑〉, |↓〉 ,

and |e〉 in the level configuration shown in Fig. 1(a). The ex-
cited state has a finite lifetime, and decays to |↑〉 and |↓〉 with
rates γ1 and γ2, respectively. The atoms interact with a single
mode of a single port QED cavity, with resonance frequency
ωc, which is detuned from resonance with the |↑〉 , |↓〉 → |e〉
transitions by ±�, as illustrated in Fig. 1(a). The cavity is in
turn driven close to resonance by a laser tone at frequency
ωd [detuning δ = ωd − ωc, see Fig. 1(a)] and input flux of
|β|2 photons per second, and the transitions |↑〉 , |↓〉 ↔ |e〉
are coupled to the cavity with single photon Rabi frequencies
2g1 and 2g2, respectively. The light that comes out of the
system can then be measured in a homodyne configuration
with detection efficiency η.

Under conditions (to be stated later) that permit adiabatic
elimination of the excited state |e〉 and the cavity degree of
freedom, the system evolves under an effective Ito stochastic
differential equation [29,30]
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FIG. 1. (a) Schematic of the model: a three level system inter-
acting with a QED cavity, which is in turn driven by a laser. Output
light is measured via homodyne detection with efficiency η. Dashed
gray lines represent effective processes (χ , γsc). (b) Effective single
particle processes in ground manifold. (c) OAT dynamics shears the
noise distribution, causing it to get squeezed. (d) Schematic of QND,
showing pre (blue) and post (red) measurement distribution in the
basis of Ŝz.

+ p[Lσ̂ k+ (ρ̂) + Lσ̂ k− (ρ̂)]

)}
dt

+
√


η(Ŝzρ̂ + ρ̂Ŝz − 2 〈Ŝz〉 ρ̂) dW, (1)

where Ŝx,y,z = ∑N
k=1 σ̂ k

x,y,z/2 are collective spin operators act-
ing on the ground manifold |↑〉 , |↓〉, σ̂ k

x,y,z are Pauli matrices
acting on atom k, and χ, 
, γsc, p are effective parameters
related to experimental quantities (precise definitions will
be provided later). Unitary dynamics is described by the
parameter χ . Incoherent evolution is expressed in terms of
Lindbladians LL̂(ρ̂) ≡ L̂†ρ̂L̂ − {L̂†L̂, ρ̂}/2, and includes col-
lective dephasing (
) and single particle spin conserving
[γsc(1 − p)] and spin changing (γsc p) incoherent processes.
The final line of Eq. (1) incorporates continuous measurement
of Ŝz via homodyne detection (in an appropriately chosen
quadrature) [30,31] with efficiency η, and includes a stochas-
tic Wiener increment dW to model the probabilistic nature of
quantum measurements. The output of the measurements is a
time-dependent current i(t ) ≡ dq/dt = 2

√

η 〈Ŝz〉 + dW/dt .

To unpack the content of Eq. (1), we consider that all the
atoms begin in the superposition |↑〉 + |↓〉, which is relevant
to experimental implementations and corresponds to a Bloch
vector entirely polarized along the x direction, i.e., 〈Ŝx〉 =
N/2. Furthermore, to obtain a manageable set of equations we
use a large N approximation, in which the state remains
gaussian, but relax these assumptions later. In this limit the
Bloch vector remains polarized along x but relaxes due to γsc

according to 〈Ŝx〉 = Ne−γsct/2/2. Fluctuations perpendicular
to the Bloch vector satisfy [29,32,33]

v̇zz = −
ηNv2
zz − 2γsc p(vzz − 1)

v̇yy = 2χNvzye−γsct/2 + 
Ne−γsct − 
Nηv2
zy − γsc(vyy − 1)

v̇zy = χNe−γsct/2vzz − 
ηNvzzvzy − γsc

2
(2p + 1)vzy, (2)

where vab = (2 〈{Ŝa, Ŝb}〉 − 4 〈Ŝa〉 〈Ŝb〉 )/N (for a, b = z, y)
are (co)variances normalized to the spin projection noise. The
equation for vzz (∝ Ŝz variance) evolves under two competing
effects: measurements (
Nη) reveal information about the
magnetization and thus reduce vzz [see Fig. 1(d)]. On the other
hand, spin flips (γsc p) restore the variance to its initial un-
correlated value vzz = 1. For vyy (Ŝy variance), single particle
processes (γsc) also restore the variance to its uncorrelated
value, but measurement backaction (
N) instead increases
the variance. Furthermore, coherent interactions (χN) mix
vyy with vzy and leave vzz untouched, reflecting the shearing
dynamics characteristic of OAT [see Fig. 1(c)] that leads to
a noise distribution squeezed along an intermediate direction
in the Ŝz/Ŝy plane. Note that dW does not appear in these
equations, indicating that the dynamics they describe does not
depend on the specific measurement outcomes.

Measurements do introduce small stochastic corrections to
the orientation of the Bloch vector that manifest as deflections
in the yz plane. In a small time interval dt , these deflections
satisfy [29]

dz = −γsc p z dt +
√


ηNvzz dW

dy = (χNe−γsct/2z − γscy/2) dt +
√


ηNvzy dW, (3)

where z = 〈Ŝz〉 /
√

N/4 and y = 〈Ŝy〉 /
√

N/4. The measured
current evolves according to dq = √


Nη z dt + dW and is
connected to y and z through the common increment dW . To
take advantage of the measurement process these deflections
need to be calculated accurately using i(t ), since they are
different for each measurement realization. Neglecting this
information leads to an average state that is not squeezed in
any directions.

The absolute scale for time is set by the total scattering rate
from the excited state induced by the probe [see Fig. 1(b)] γsc:

γsc = γ1g2
1|α|2
�2

+ γ1g2
2|α|2
�2

+ γ2g2
1|α|2
�2

+ γ2g2
2|α|2
�2

, (4)

where |α|2 = κ|β|2/(δ2
∗ + κ2/4) is the number of circulat-

ing photons in the cavity, found by multiplying the incident
photon flux, |β|2 [see Fig. 1(a)], by the cavity buildup factor
κ/(δ2

∗ + κ2/4), and δ∗ = δ − (g2
1 − g2

2)N/2� is the detuning
of the drive with respect to the dressed cavity mode. The
other effective parameters can be expressed in terms of γsc,
d = 2δ∗/κ and C = 4g2

1/(κγ1) = 4g2
2/(κγ2), the single parti-

cle cooperativity, which is a property of cavity geometry:

χ = Cγscd/2

1 + d2
, 
 = Cγsc

1 + d2
, p = 2γ1γ2

(γ1 + γ2)2
� 1

2
. (5)

The spin flip probability p measures the relative importance
of single particle spin changing processes relative to spin
conserving processes, both of which arise through virtual
excitation of the excited state and subsequent decay into the
ground manifold [see Fig. 1(b)].

Cavity feedback squeezing arises when δ∗ � κ . Then χ �

 and OAT dominates until single particle processes disrupt
the generation of spin squeezing. QND measurements operate
in the opposite regime: δ∗ = χ = 0 and 
 maximal. In the ab-
sence of γsc, the resulting evolution continuously projects the
system onto an Ŝz eigenstate, reducing the variance of Ŝz even
beyond the gaussian limit [see Fig. 1(d)]. However, the precise

L032037-2



TRADE-OFFS BETWEEN UNITARY AND MEASUREMENT … PHYSICAL REVIEW RESEARCH 6, L032037 (2024)

FIG. 2. (a) Squeezing (ξ 2) as a function of time for various NC in
the QND configuration. (b) QND squeezing vs state area (A) plotted
parametrically with time as a parameter. Circles are equally spaced
in s intervals of size 0.2.

eigenstate onto which the system is projected is stochastic and
must be estimated accurately using the measurement record.

Adiabatic elimination gives rise to Eq. (1) when � �
γ1,2, 2g1,2|α|, 2g1,2

√
N . These conditions guarantee that the

excited state is never appreciably populated and that the atom-
cavity interaction is dispersive.

Squeezing and state area. Equation (2) must be solved with
initial conditions vzz(0) = vyy(0) = 1 and vzy(0) = 0. Within
the gaussian regime, the evolution generates a noise distribu-
tion on the yz plane in the form of a ellipse whose axes have
minimum (maximum) length vmin (vmax) [29], and in terms of
which we define

ξ 2 = eγsctvmin, A = eγsct√vminvmax. (6)

The Wineland squeezing parameter ξ 2 [34] quantifies the
metrological enhancement of phase measurements compared
to uncorrelated atoms (SQL) and includes the effects of re-
duced contrast. The state area A measures the size of the
noise distribution, normalized to the length of the Bloch vector
squared. When γsc = 0 and η = 1 then A remains of order
1, but loss of information leads to an area that can be sub-
stantially larger. An increase in A reduces the metrological
utility of the generated squeezing since it limits the range of
phases that can be measured with some degree of quantum
enhancement [27].

Measurement limit. Here δ∗ = χ = 0 and 
 = Cγsc. As-
suming that NCη � 1, simple analytic solutions can be
written for the fluctuations and the estimator of 〈Ŝz〉 [29]. The
minimum-variance axis lies along z, giving rise to a Wineland
parameter of

ξ 2
t = vzz =

√
2p

NCη
, (7)

within the timescale τ = (NCηp)−1/2/(2γsc), while vyy grows
as 1 + NCγsct and vzy = 0. The subscript t in ξ 2

t indicates that
ξ 2 has been optimized over time. ξ 2 is depicted as a function
of s = γsct

√
NC/2 for different values of NC in Fig. 2(a).

Waiting for a few τ times gets ξ 2 closer to ξ 2
t , but waiting

for too long leads to uncontrolled growth of vyy and hence of
state area. We show this in Fig. 2(b), where we plot A vs ξ 2

parametrically as a function of time. The sharp upward turn in
the curve indicates that A is growing without any improve-
ment in ξ 2. Notice also that there are plateaus of constant
A = η−1/2, more visible at larger NC. In these plateaus spin
flips are not yet active, so the decrease in Ŝz variance is exactly
compensated by the increase in Ŝy variance.

FIG. 3. (a) Time optimized squeezing (ξ 2
t ) as a function of detun-

ing in the OAT configuration for various NC. (b) OAT squeezing vs
state area plotted parametrically using d as a parameter. Each filled
circle occurs at a value of d ten times bigger than the previous one.
(c) Squeezing optimized over time as a function of d at fixed p = 0.4
and NC = 105 for different η. Solid red is OAT (η = 0) and dashed
black is pure QND (Ŝz variance).

Unitary limit. Here η = 0 and δ∗ � κ . Equation (2) is now
linear and can be solved exactly, but we consider the effects
of γsc p on ξ 2 perturbatively. Assuming χNt � 1, this leads to
[29,35]

ξ 2 ≈ 1

χ2N2t2
+ 
/χ

χNt
+ 2

3
γsc pt . (8)

The first and second terms include the effects of interactions
(χ ) and collective dephasing (
), respectively. The third term
is due to spin flips and is the main obstruction for unitary spin
squeezing.

The behavior of ξ 2
t (time optimized squeezing) with d

depends on whether collective dephasing (
) is active at the
optimal squeezing time or not. If 
 is active, relevant for
smaller values of d , then ξ 2

t arises from the competition
between the second and third terms in Eq. (8), leading to
ξ 2

t = ξ 2
t,δ

√
1 + 1/d2, where

ξ 2
t,δ =

√
32p

3NC
(9)

is the best possible squeezing attainable in this region, ob-
tained roughly at d � 1. This leads to a very broad minimum
in ξ 2

t , depicted in Fig. 3(a) for various NC. This trend lasts
until d ≈ 1.7(CN/p)1/4, after which 
 is no longer active,
and ξ 2

t now arises from the competition between the first
and third terms in Eq. (8). Further increase in d worsens
ξ 2

t ∼ [pd/(NC)]2/3 (independent of κ) because interactions
get smaller than the spin flip rate. The optimal squeezing is
thus given by Eq. (9).

While the region of minimum ξ 2
t is very broad in Fig. 3(a),

the state area at each of these points is distinct. We show
this in Fig. 3(b), where ξ 2

t vs A is plotted parametrically
using d = 2δ∗/κ as a parameter for various NC. The leftmost
vertical sections of the curves indicate the optimal ξ 2

t,δ , but
the variation in A is quite dramatic. It is preferable to work
at larger values of d , potentially sacrificing a few dB of ξ 2

t in
exchange for a substantially smaller area, as has been pointed
out before [21,22].
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Measurement and unitary evolution. Here we analyze
whether a combination of measurements and unitary evolu-
tion, operating at some finite value of d for a given η �= 0,
can improve upon the two limiting situations described in the
previous sections.

In Fig. 3(c) we show the results of simulating numerically
Eq. (2), where at any given detuning d and η, squeezing
has been optimized over time within a time window of
s ∈ [0, 50] (this accounts for the fact that at δ∗ = 0 the
optimal is only reached asymptotically). From the curves
shown for different η, it can be observed that ξ 2

t is obtained
either purely through measurements at δ∗ = 0 or in the unitary
limit, where the value of η is irrelevant. Thus, the decision to
use measurements vs OAT is determined by the comparison
between Eqs. (7) and (9). They are equal when the efficiency
η has the value

ηc ≡ 3
16 = 0.1875. (10)

When η > ηc, measurements are efficient enough that
operating at δ∗ = 0 is preferable. When η < ηc, unitary
evolution will lead to a better ξ 2

t .
Absence of spin flips. In cycling transitions p is very close to

zero and the analysis based on Eq. (2) is no longer applicable
because the state evolves beyond the Gaussian regime and
gets distorted, thus introducing corrections (typically called
“finite-size” or “curvature” effects) that limit the attainable
spin squeezing. In the OAT setting (η = 0), this is remedied
by solving Eq. (2) with p = 0 and adding an extra curvature
term to the minimum variance [3,35,36],

ξ 2 ≈ eγsct

(
eγsct + 
Nt

χ2N2t2
+ χ4N4t4

6N2

)
. (11)

A comparison with the analytical solution of Eq. (1) for p = 0
indicates that Eq. (11) captures accurately the time optimized
ξ 2 [29]. Variations of N or C now have different effects on
ξ 2, whereas previously they only appeared in the combination
NC.

When p = 0, the time optimized ξ 2
t shows three distinct

behaviours as a function of detuning, depicted in Fig. 4(a). For
d < 2.3N1/3, collective dephasing is active, competes with the
curvature term, and leads to ξ 2

t ≈ 2N−2/5d−4/5 [36,37] and
A = 1.76N1/5/d3/5. When 2.3N1/3 < d < 0.4CN2/3, the op-
timal squeezing arises from unitary dynamics, leading to the
well-known OAT result ξ 2

t = 1.04N−2/3 [3] and A = √
1.5,

independent of d . For d > 0.4CN2/3, the exponential pref-
actors are the main obstruction to squeezing, and lead to
ξ 2

t ≈ 6.8d2/(N2C2) and A ≈ √
e. Furthermore, the existence

of the OAT minimum imposes a restriction on the coopera-
tivity: C > 6N−1/3. Otherwise, the center region in Fig. 4(a)
disappears.

As p is increased, the dependence of ξ 2
t on d will switch

from the one in Fig. 4(a) to the one in Fig. 3(a) at some specific
value pc1 . We can estimate pc1 by equating the exact OAT
result and Eq. (9):

pc1 = 0.1C

N1/3
. (12)

In the QND setup (d = 0) at p = 0, the system will approach
a state with no Ŝz variance in a timescale ∼(
η)−1, but
squeezing will be limited by loss of contrast. This is shown
in Fig. 4(b), which is obtained by solving semianalytically

FIG. 4. (a) Time optimized spin squeezing ξ 2
t as a function of d

when p = 0, η = 0, C = 102, and N = 106. (b) Time profile of ξ 2 for
two values of (η,C) averaged over measurement realizations. Shaded
areas indicate the dispersion of ξ 2 values over different individual
measurements. Dashed black is an analytical model, with 
 = Cγsc.
(c) Optimal spin squeezing for OAT and QND as a function of p for
different η. (d) Summary of results.

Eq. (1) [29] for p = d = 0, N = 100 and averaging ξ 2 over
different measurement trajectories. At the optimal time, the
average squeezing is

ξ 2
t ≈ e

Nη

(
1 + 1

C

)
, (13)

calculated using the model depicted in Fig. 4(b) [dashed
black] [29], which captures reasonably well the dynamics of
the average ξ 2, though individual measurement trajectories
may reach better values of ξ 2

t when C � 1 and η ≈ 1 [see
Fig 4(b), shaded area]. Equating Eqs. (13) and (7) indicates
that this minimum can be reached when p < pc2 = e2(C +
1)2/(2NCη).

Summary and conclusions. These results form a coherent
picture, summarized in terms of a few key statements, and
shown schematically in Figs. 4(c) and 4(d).

(i) η > 0.1875: QND is better than OAT for any value of
spin flip probability p.

(ii) η < 0.1875: OAT dominates over QND for p close to
1/2. As p is reduced OAT saturates to the curvature-limited
ideal minimum, but QND continues to improve according
to Eq. (7). QND will outperform OAT when p < pc3 =
0.54Cη/N1/3 [obtained by equating Eq. (7) and the squeezing
at the ideal OAT minimum] as long as η > 2.6(1 + C−1)/N1/3

[obtained by equating Eq. (13) and the ideal OAT minimum].
Otherwise OAT ourperforms QND for all p (not depicted in
Fig. 4).

In [29] we discuss how to use our results to set bounds
on the achievable squeezing in experiments where our anal-
ysis applies [17–21,38]. Future research will involve analysis
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of two-tone schemes [39], the consequences of parking the
cavity closer to atomic resonance [21,33], comparisons with
time-reversal based unitary protocols [28,40–42] and includ-
ing more complicated unitary dynamics (e.g., twist and turn,
two axis twisting) [43–45] using the stochastic equation
formalism.
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Xiao, and V. Vuletić, Entanglement on an optical atomic-clock
transition, Nature (London) 588, 414 (2020).

[6] J. M. Robinson, M. Miklos, Y. M. Tso, C. J. Kennedy, T.
Bothwell, D. Kedar, J. K. Thompson, and J. Ye, Direct com-
parison of two spin squeezed optical clocks below the quantum
projection noise limit, Nat. Phys. 20, 208 (2024).

[7] D. Budker and M. Romalis, Optical magnetometry, Nat. Phys.
3, 227 (2007).

[8] T. Thiele, Y. Lin, M. O. Brown, and C. A. Regal, Self-
calibrating vector atomic magnetometry through microwave
polarization reconstruction, Phys. Rev. Lett. 121, 153202
(2018).

[9] H. Zheng, Z. Sun, G. Chatzidrosos, C. Zhang, K. Nakamura, H.
Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, A. Wickenbrock,
and D. Budker, Microwave-free vector magnetometry with
nitrogen-vacancy centers along a single axis in diamond, Phys.
Rev. Appl. 13, 044023 (2020).

[10] M. Kasevich and S. Chu, Atomic interferometry using stimu-
lated Raman transitions, Phys. Rev. Lett. 67, 181 (1991).

[11] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and
interferometry with atoms and molecules, Rev. Mod. Phys. 81,
1051 (2009).

[12] G. P. Greve, C. Luo, B. Wu, and J. K. Thompson, Entanglement-
enhanced matter-wave interferometry in a high-finesse cavity,
Nature (London) 610, 472 (2022).

[13] A. Kuzmich, N. P. Bigelow, and L. Mandel, Atomic quantum
non-demolition measurements and squeezing, Europhys. Lett.
42, 481 (1998).

[14] W. Qin, Y.-H. Chen, X. Wang, A. Miranowicz, and F. Nori,
Strong spin squeezing induced by weak squeezing of light in-
side a cavity, Nanophotonics 9, 4853 (2020).

[15] W. Muessel, H. Strobel, D. Linnemann, D. B. Hume, and M. K.
Oberthaler, Scalable spin squeezing for quantum-enhanced
magnetometry with Bose-Einstein condensates, Phys. Rev. Lett.
113, 103004 (2014).

[16] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M.
Rey, M. Foss-Feig, and J. J. Bollinger, Quantum spin dynamics
and entanglement generation with hundreds of trapped ions,
Science 352, 1297 (2016).

[17] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, States of an
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