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Ultra-high-amplitude Peregrine solitons induced by helicoidal spin-orbit coupling
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In the framework of the model of a spatially nonuniform Bose-Einstein condensate with helicoidal spin-
orbit (SO) coupling, we find abnormal Peregrine solitons (PSs) on top of flat and periodic backgrounds, with
ultrahigh amplitudes. We explore the roles of the SO coupling strength and helicity pitch in the creation of these
anomalously tall PSs and find that their amplitude, normalized to the background height, attains indefinitely large
values. The investigation of the modulation instability (MI) in the same system demonstrates that these PSs exist
in a range of relatively weak MI, maintaining the feasibility of their experimental observation.
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Introduction. Rogue waves (RWs), first discovered as ex-
treme events in the ocean [1–6], have been widely studied,
due to their unique properties and potential applications in
nonlinear optics [7–10], plasmas [11], Bose-Einstein con-
densates (BECs) [12–14], magnetics [15], financial markets
[16], and various other settings [17–26]. A widely recognized
RW prototype is provided by the exact Peregrine-soliton (PS)
solution of the nonlinear Schrödinger equation (NLSE) [27],
whose characteristic features are the threefold peak amplitude
and spatiotemporal localization on top of the background
field [28]. Several landmark experiments have directly demon-
strated this remarkable phenomenon and its ramifications
[14,28–30].

Spin-orbit (SO) coupling in BECs have drawn much in-
terest since its experimental implementation [31–33], as it
offers the realization of the SO-coupling phenomenology in
the uniquely clean form [34,35] and make it possible to create
artificial vector gauge potentials [36,37]. Recently, models of
BECs with nonuniform SO coupling have been introduced, as
they provide high tunability of this effect, and enhance the role
of the intrinsic nonlinearity in the SO-coupled BECs [38–43].
In this context, soliton dynamics in the BEC with nonuniform
landscapes of the SO coupling has been investigated [44–47],
where, in particular, the helicoidal gauge potential may orig-
inate from the light propagation in a helical waveguide array
[48]. The propagation of matter-wave solitons in a BEC with
a random SO coupling was addressed, too [49].
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SO-coupled BECs are modeled by systems of two (or
several) coupled Gross-Pitaevskii equations (GPEs). In this
connection, it is relevant to stress that PSs exist in multicom-
ponent NLSE models, such as the famous Manakov system,
but, due to the energy transfer between different components,
the PS amplitude is no longer fixed, although it still does
not exceed the triple background height [24,50,52,53]. Nev-
ertheless, recent studies have shown that, under the action
of self-steepening effects, the amplitude of fundamental PSs
can exceed the threefold limit, reaching up to fivefold the
background height [54]. In particular, exceptional PSs, which
feature ultra-high peak amplitudes, have also been reported
in the vector derivative NLSEs, including the self-steepening
effect [55].

In this work, we focus on the following questions: can the
fundamental PS with an ultrahigh peak amplitude be excited
in other ways, besides using higher-order effects, such as self-
steepening, and to what extent is it possible to increase the PS
amplitude? To answer these questions, we first consider a BEC
model with nonuniform helicoidal SO coupling (cf. Ref. [44]),
which offers experimental feasibility. We construct its exact
fundamental PS solutions on top of flat, alias continuous-wave
(CW), and periodic backgrounds. Through the analysis of the
PS amplitude, we find that PS with ultrahigh peak amplitude,
reaching indefinitely large values (as normalized to the back-
ground height), can be created with the help of the helicoidal
SO coupling.

To explore the PS dynamics under the action of spatially
nonuniform gauge potentials, we consider the GPE for the
spinor wave function � = (�1, �2)T of an effectively one-
dimensional two-component BEC, including the helicoidal
SO coupling. In the scaled form (with M = h̄ = 1, where M
is the atomic mass), the GPE is [44,56,57]

i
∂�

∂t
= 1

2
Q2(x)� − (�†�)�, (1)
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where the helicoidally molded SO coupling is represented by
the generalized momentum operator,

Q(x) = −i∂x + ασ · n(x). (2)

Here α is the SO-coupling strength, which is tunable in the
experiment [39–41], σ = (σx, σy, σz ) is the vector of the Pauli
matrices, and the spatial modulation is represented by vector

n(x) = (cos(2κx), sin(2κx), 0), (3)

with κ < 0 and κ > 0 corresponding to the left- and right-
handed helicity, respectively [48,58,59]. As usual, it is
assumed that the inter and intraspecies attractive interactions
have equal strengths. Special forms of Eq. (1) include the
uniform Rashba-Dresselhaus SO coupling [36] when κ = 0,
and the canonical Manakov system [50] when α = 0.

Fundamental PS solutions. Equation (1) is made gauge
equivalent to the integrable Manakov system,

iut + 1
2 uxx + (u†u)u = 0, u = (u1, u2)T , (4)

by means of the transformation [49]

� =
(

ν+e−i(km+κ )x ν−ei(km−κ )x

ν−e−i(km−κ )x −ν+ei(km+κ )x

)
u, (5)

where km = √
α2 + κ2 is the effective momentum of the

lowest-energy states, and

ν+ = sgn(α)
√

(km − κ )/(2km), (6)

ν− = √
(km + κ )/(2km). (7)

Below, km plays a crucial role determining properties of PSs,
especially as concerns the amplification of their amplitudes.

The Manakov system (4) possesses the Lax pair [51] and
admits the solution by means of the Darboux dressing method
[24]. To begin with, we take the CW seed solution of Manakov
system (4), with components

u j0 = a exp[−i(k jx − ω jt )], j = 1, 2, (8)

which is determined by the amplitude (a), wavenumbers (k j),
and frequencies

ω j = 2a2 − k2
j /2. (9)

Making use of the Manakov system invariance with respect
to the rotation of the set of the two components, we choose
them in Eq. (8) with equal amplitudes a. Subsequent results
demonstrate that the helicoidal SO coupling makes PS heights
different in the two components �1,2 for the same background
amplitudes a, see Eqs. (13) and (15) below.

Utilizing the known PS solutions for Manakov system (4)
derived by means of the Darboux transform [24], and sub-
stitution (5), we obtain the following exact fundamental PS
solutions of the underlying Eq. (1):

�1 = ae−iκx

[
ν+

(
1 − R1

N1

)
eiθ1 + ν−

(
1 − R2

N2

)
eiθ2

]
,

�2 = aeiκx

[
ν−

(
1 − R1

N1

)
eiθ1 − ν+

(
1 − R2

N2

)
eiθ2

]
, (10)

θ1 = −(km + k1)x + ω1t, θ2 = (km − k2)x + ω2t,

where we define

N j =
[

(θ + μt )2 + ζ 2t2 + 4

ζ 2

]
{[δ + (−1) jμ]2 + ζ 2},

R j = 8i{ζ 2t − [μ + (−1) jδ](θ + μt )} + 16, (11)

μ = ±
√

2

2
[
√

δ2(8a2 + δ2) − 4a2 + δ2]1/2

in the case of |δ| � a, with δ ≡ k1 − k2, or

N j =
[
θ2 + (ζ + μ′)2t2 + 4

(ζ + μ′)2

]
(2a2 + ζμ′),

R1 = 4i(4a2 − δ2 + 2ζμ′)t − 4i(−1) jδθ + 8, (12)

μ′ = ± 1√
2

[4a2 − δ2 −
√

δ2(8a2 + δ2)]1/2

in the case of |δ| < a. In either case, we set θ ≡ 2x + (k1 +
k2)t and ζ ≡ (1/

√
2)[

√
δ2(8a2 + δ2) + 4a2 − δ2]1/2. Using

the translational symmetry, we shift the above solutions to the
origin, to produce compact expressions for them. Note that
these PS solutions are nonsingular ones in the entire parameter
range.

In addition to the same features which are demonstrated
by the conventional PSs, that exist in some multicomponent
systems, such as PSs of the bright-dark type, PS doublets,
etc., the helicoidal SO coupling can generate more intricate
PS structures, among which the most salient aspect is, as
shown below, the possibility of having PSs with uniquely large
heights.

The consideration of the exact solution (10) reveals that
the PS is generally located on top of a periodic background
formed by the superposition of two different CWs. The exact
solution for the periodic background is

∣∣�bg
1

∣∣ = a

√
1 + α

km
cos

[
(δ + 2km)x + k2

1 − k2
2

2
t

]
,

∣∣�bg
2

∣∣ = a

√
1 − α

km
cos

[
(δ + 2km)x + k2

1 − k2
2

2
t

]
. (13)

It is moving with speed v = (k2
2 − k2

1 )/[2(δ + 2km)], where
k1,2 are the same wavenumbers as in Eq. (8).

Note that, if wavenumbers k1,2 and the momentum mini-
mum km satisfy the following relationship,

k1 = −k2 = −km, (14)

the cos terms vanish in Eq. (13), i.e., the periodic back-
ground degenerates into a flat CW. Due to the presence of
the helicoidal SO coupling, the constraint (14) is different
from similar ones which provide for the flat background in
the coupled-NLSE system [24] and the multicomponent long-
wave-short-wave resonance model [60].

PS on the CW background. To reveal the amplification
effect of the helicoidal SO coupling on the PS amplitude, we
first address the PS solution on top of the flat CW background,
subject to constraint (14). The respective background ampli-
tude (13) amounts to

∣∣�cw
1

∣∣ = a

√
km + α

km
,

∣∣�cw
2

∣∣ = a

√
km − α

km
. (15)
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FIG. 1. (a1), (b1) An example of the fundamental PS, produced
by solution (10) under condition (14), with the exceptionally high
peak amplitude of the �1 component, for α = −1/2, κ = 2/5. (a2),
(b2) generic PS in the Manakov system, for α = 0. (a3), (b3) The PS
with the zero background in �1 at x = 0, for α = −1/2, κ = 0. The
initial amplitude a = 1.

Under the action of the SO coupling with strength α, the com-
ponents of the CW background (15) have different heights.

Taking into regard that the center of the PS solution (10)
is pinned to the origin, enhancement factor |Fj | of component
� j is defined as the peak-to-background ratio:

F1 = �1(0, 0)∣∣�cw
1

∣∣ = a
(
ν+ fu1 + ν− fu2

)∣∣�cw
1

∣∣ ,

F2 = �2(0, 0)∣∣�cw
2

∣∣ = a
(
ν− fu1 − ν+ fu2

)∣∣�cw
2

∣∣ , (16)

where |�cw
1,2| are given in Eq. (15), coefficients ν± are same as

in Eq. (6), and factors fu1 and fu2 are defined, for |δ| � a, as

fu1 = 1 − 4ζ 2

ζ 2 + (δ − μ)2
, fu2 = 1 − 4ζ 2

ζ 2 + (δ + μ)2
, (17)

and, for |δ| < a, as

fu1 = fu2 = 1 − 2(ζ + μ′)2

2a2 + ζμ′ . (18)

Characteristic examples of the PSs featuring large en-
hancement factors are presented in Fig. 1, which includes a
PS with nearly fivefold peak amplitude for the component
�1, with α = −1/2 and κ = 2/5, in Fig. 1(a1). For com-
parison, two special cases are presented too, viz., for α = 0
[Figs. 1(a2) and 1(b2)] and κ = 0 [Figs. 1(a3) and 1(b3)],
which correspond to the Manakov system limit and the uni-
form SO coupling, respectively. It is observed that, with α = 0,
the PS amplitudes are only twice as large as those of the

FIG. 2. Enhancement factors F1 and F2, as given by Eq. (16)
for the PS with the flat background vs the SO-coupling strength
α for a = 1, κ = 0.4, k1 = −k2 = −km. The red and green curves
correspond to μ and μ′ taking signs + or − in Eqs. (11) and (12), re-
spectively. The cyan dashed curves show the CW background values
|�cw

j |, as given by Eq. (15). The insets exhibit the corresponding PSs
at α = −1.

background (in fact, for the Manakov system the peak ampli-
tude cannot exceed three times the background value [24]). In
addition, for κ = 0 the PS with zero background in component
�1 or �2 is produced by Eq. (15), depending on the sign of α.
Thus, the helicoidal SO coupling makes it possible to elevate
the amplitude of one component to an exceptional level, while
suppressing the other component.

To further unveil the specific role of the helicoidal SO cou-
pling in generating PSs with exceptionally high amplitudes,
we display the dependence of enhancement factors Fj on the
SO-coupling strength α and rotation frequency κ in Figs. 2
and 3, respectively. They exhibit an indefinitely large (diverg-
ing) enhancement factor for component �1 or �2 at |α| → ∞
or κ → 0. In particular, the insets to these figures feature the

FIG. 3. Enhancement factors F1 and F2, as given by Eq. (16), vs.
rotation frequency κ [see Eq. (3)] for a = 1, α = 0.6, k1 = −k2 =
−km. The red and green curves correspond to μ and μ′ taking signs
+ or − in Eqs. (11) and (12), respectively. The cyan dashed curves
show the CW background values |�cw

j |, as given by Eq. (15). The
insets exhibit the corresponding PSs at κ = −0.6.
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FIG. 4. The PS solution (10) built on top of the periodic back-
ground. It exceeds the exceeding threefold enhancement limit, with
k1 = −km and k2 = km − 3/2. The other parameters are a = 1,

α = −1, κ = 0.4.

enhancement factor |F1| with values close to ten at α = −1
and κ = 0.4, and |F2| close to five at α = 0.6 and κ = −0.6.
A caveat is that the enhancement factor is diverging when the
background amplitude |�CW

j | is vanishing, as shown by the
cyan dashed curves in Figs. 2 and 3. The absolute values of
the PS peak amplitude may be increased by taking values of
amplitude a > 1 in Eq. (8) (recall it is currently fixed as a ≡ 1,
by means of scaling).

PSs on top of the periodic background. If the constraint
(14) does not hold, the above solution (10) produces the PS
built on top of the periodic background. Similar to the case
of the flat CW background considered above, we define the
enhancement factor to analyze the effect of the helicoidal SO
coupling on the PSs. In Fig. 4 we demonstrate a characteristic
example exceeding the threefold contrast between the peak
amplitude and periodic background in component �2, for
k1 = −km, k2 = km − 3/2.

Next, we address the modulation instability (MI) of the CW
field, � j0 = a jeiμt with μ = a2

1 + a2
2, where a1 and a2 are the

uniform amplitudes and μ is the chemical potential, in the
presence of the helicoidal SO-coupled BECs. To this end, we
add small perturbations to the CW fields, viz., � j = � j0{1 +
p j exp[−i(βx − t )] + q∗

j exp[i(βx − ∗t )]}, where β and 

are, respectively, the real and complex parameters, pj and q j

being small complex amplitudes. Linearizing the correspond-
ing Eq. (1) with respect to p j and q j , we derive a quartic
equation for the perturbation eigenfrequency , which deter-
mines the MI gain as γh = |Im()|max. In Fig. 5, we display
heatmaps for the so found value of γh in the (β, α) and (β, κ )
parameter planes. The plots reveal that the MI-gain spectra
are symmetrically distributed in broad regions of α and κ ,
which can give rise to the anomalous PS behavior in a broad
range of parameters, in comparison to the usual situation
underlain by the baseband-MI analysis [61,62]. For instance,
Figs. 5(a2) and 5(b2) demonstrate, respectively, that the gain
maximum, γh ≈ 1.91 at α = −1 and κ = 0.4, corresponds to
the enhancement factor |F1| ≈ 10 in Fig. 2, and the maximum
γh ≈ 1.65, at α = 0.6 and κ = −0.6, corresponds to |F2| ≈ 5
in Fig. 3. Such relatively small values of the MI gain, cor-
responding to the ultrahigh PS peak amplitudes, suggest that
these large amplitude values may be relatively easy to attain
in the experiment, as the background will not be vulnerable
to the quick destruction of the MI-driven blowup, hence these
PSs are rather robust modes.

To test the expected robustness of the PSs in the present
setting, in Fig. 6 we display results of the numerically simu-
lated evolution of the PSs from Figs. 1(a1) and 1(b1)) under

(a1)

(b2)

(a2)

(b1)

FIG. 5. Heatmaps of the MI gain γh in the (β, α) plane (a1)
for κ = 0.4, and in the (β, κ ) plane (b1) for α = 0.6. Panels (a2)
and (b2) exhibit, respectively, the gain profile γh at α = −1 and
κ = −0.6, with the maximum gain marked by black dots. The am-
plitudes of the underlying CW state are a1 = a2 = 1.

the action of 2% random disturbances. It is observed that the
PSs with the ultrahigh amplitudes indeed demonstrate robust
propagation.

Conclusion. We have reported the occurrence of abnormal
fundamental PSs (Peregrine solitons) with ultrahigh peak am-
plitudes in the integrable system of GPEs (Gross-Pitaevskii
equations), including the helicoidally modulated SO (spin-
orbit) coupling, which is a gauge isomer of the Manakov
system. The PS solutions are found on top of both the flat
and periodic-wave backgrounds. The results demonstrate the
existence of RWs [rogue waves with the ultrahigh amplitude
in the context of matter waves (BEC)], while previously this
was reported in models of nonlinear optics [54,55]. The he-
licoidal SO coupling is crucially important for generating
this abnormal PSs, and the controllable nature of the SO
coupling makes the predicted phenomenology experimentally
feasible. The MI (modulational instability) is also studied in
the system, demonstrating that the high-amplitude PSs readily
coexist with moderate MI, thus preventing a strong back-
ground instability and improving chances for the experimental
creation of the predicted tall rogue waves.

FIG. 6. The result of the numerical simulations of the fundamen-
tal PSs from Figs. 1(a1) and 1(b1) under the action of the 2% noise.
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