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Moiré patterns of space-filling curves
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It is shown on the examples of Moore and Gosper curves that two spatially shifted or twisted, preasymptotic
space-filling curves can produce large-scale superstructures akin to moiré patterns. To study physical phenomena
emerging from these patterns, a geometrical coupling coefficient based on the Neumann integral is introduced.
It is found that moiré patterns appear most defined at the peaks of those coefficients. A physical interpretation
of these coefficients as a measure for inductive coupling between radiofrequency resonators leads to a design
principle for strongly overlapping resonators with vanishing mutual inductance, which might be interesting for
applications in MRI. These findings are demonstrated in graphical, numerical, and physical experiments.

DOI: 10.1103/PhysRevResearch.6.L032035

I. INTRODUCTION

Moiré patterns are interference patterns generated by the
overlay of a ruled pattern with transparent gaps on another
similar pattern. The spatial scale of a moiré pattern is related
to differences of the wave vectors defining the individual
patterns and is thus generally larger than that of the individual
patterns [1]. The ruled patterns are not necessarily periodic
[2], and an averaging process is needed for the accurate iden-
tification of a moiré pattern [3]. Two-dimensional space-filling
curves were first discovered in 1890 by Peano [4] and are
typically ruled patterns. For example, the plane-filling Hilbert
curve can be described by very simple iterative rules [5].
Hilbert pointed out that space-filling curves also define a
direction of “motion”, forward and backward, in each point
of the plane. If one thinks of this motion as a current that
flows either way, and connects the two endpoints of such a
curve, this defines a magnetic flux through the area enclosed
by the curve. In this paper we investigate if pairs of overlaid
preasymptotic plane-filling curves exhibit a moiré effect, and
what influence the emerging large-scale structures have on the
flux coupling between the curves.

The original interest in this work arose from the recently
emerging importance of moiré patterns in the electrical prop-
erties of twisted graphene bilayers [6] and potential translation
into the classical domain. Whereas the present scenario is
different, as the moiré patterns emerge from a shift or twist
between aperiodic structures with only approximative trans-
lational or rotational symmetry, we suggest that the present
study can provide insights for the design of interesting
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properties of flux-coupled structures, for example in appli-
cations such as magnetic resonance imaging (MRI). MRI
sensors are quite generally made of electromagnetic resonator
arrays confined to a surface, and the understanding of elec-
tromagnetic coupling between array elements plays a crucial
role in their engineering [7–11]. Notably, the recently discov-
ered concept of topological modes can arise both in coupled
resonator systems [12] as well as in twisted bilayers [13].

The organization of this article is as follows: First, the
moiré effect is demonstrated in two different space-filling
curves: Spatially shifted Moore curves, and twisted Gosper
curves. These two examples represent curves with approx-
imate translational and rotational symmetry, respectively.
Next, the Neumann integral is introduced as a geometric mea-
sure of distance in space-filling curves, and it is shown that
its value peaks at those shifts or twists with the most defined
moiré effect. We then demonstrate in a physical experiment
that the interpretation of the Neumann integral as a measure
for inductive coupling in radiofrequency resonators leads to
design rules for strongly overlapping space-filling resonators
with vanishing mutual inductance. Finally, limitations of the
Neumann integral formulation and potential applications are
discussed.

II. GRAPHICAL EXPERIMENTS: MOIRÉ PATTERNS
OF THE MOORE AND GOSPER CURVES

In the first graphical experiment, we investigate the large-
scale structures emerging from preasymptotic Moore curves
[Fig. 1(a)]. The Moore curve is a generalization of the Hilbert
curve. In the Hilbert curve, the start and end points are at
different corners, and the Moore curve brings them next to
each other by stitching four Hilbert curves together. Connect-
ing start and end points then forms a closed loop, such that
current passing through it will induce a magnetic flux.

Moore curves were generated with MATLAB (The Math-
works, version R2023a), using a Lindenmayer algorithm
[14,15]. MATLAB code used to generate this and the
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FIG. 1. Space filling curves and Neumann integrals. (a) The first
four iterations of the Moore curve. (b) The first four iterations of
the Gosper “snowflake” curve. (c) The Neumann integral for shifted
squares (� = 0.001). Square resonators have vanishing inductive
coupling at a relative shift of about 0.92. (d) The Neumann integral
for shifted Moore curves with Ni = 2 (� = 0.01). Moore resonators
with Ni = 2 have vanishing inductive coupling at relative shifts of
0.52, 0.61, and 0.97.

following figures is available on request from the authors.
The number of iterations of the Lindenmayer system was
Ni = 7. Figure 2 shows examples of the moiré effect in these
curves. For certain shifts, superstructures emerge, consisting
of relatively bright parts that locally resemble the original
Moore curves and darker parts that appear more complex.
This is being emphasized in the magnified insets. The down-
sampling of the pattern to publication resolution here acted as
an averaging filter, and no additional averaging was necessary.

The second example demonstrates the moiré effect
in space-filling curves exhibiting approximate rotational
rather than translational symmetry. We chose the Gosper
“snowflake” curve [Fig. 1(b)] [16], which has 30◦ and 60◦
intrinsic angles that follow from the curve’s construction by
connecting nodes of a hexagonal lattice. In this case of ro-
tational symmetry, it is natural to anticipate twisted moiré
patterns. Figure 3 shows examples for the moiré effect in
Gosper curves with Ni = 6 for selected twist angles. This
visualization required additional averaging; the patterns were
smoothed with a disk-shaped “pillbox” averaging filter, and
the display range was adjusted for enhanced contrast. For
certain angles, superstructures with approximate sixfold and
threefold symmetries emerge.

III. NUMERICAL EXPERIMENTS: COUPLING ANALYSIS
OF MOIRÉ PATTERNS

The Neumann integral [17] is a geometric measure [18]
of distance between curves with the property that the

FIG. 2. Moiré effect in space-filling Moore curves. The relative
spatial shifts of the two Moore curves are (a) 3.1%, (b) 6.3%, (c)
9.4%, (d) 13%, (e) 19%, (f) 25%. Each curve is shown with a
magnified inset to reveal its details.

FIG. 3. Moiré effect in space-filling Gosper curves for selected
rotation angles.
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FIG. 4. Coupling coefficients of two shifted Moore curves for the fifth iteration towards the space-filing curve, as a function of the relative
spatial shift. In addition, some of the resulting patterns are shown. The moiré effect appears most defined at the peaks of the coupling
coefficients. For the framed pattern, located in-between two peaks, large scale structures are not clearly as discernible anymore.

directionality of the curve is taken into account. This property
corresponds to the aforementioned “motion” directionality in
space-filling curves by Hilbert. With proper physical scaling,
the Neumann integral approximates the mutual inductance
between two closed loops made of thin wires with radius neg-
ligible compared to their lengths. The normalized Neumann
integral provides a direct estimate of the inductive cou-
pling coefficient, a dimensionless quantity that will be used
here.

The normalized Neumann integral for our application of
two spatially offset in-plane curves is defined as

ζα = 1

N0

∮
C1

∮
C2(α)

dr1 · dr2

|r1 − r2| , (1)

where C1 and C2 are the curves defined by the conductors, α

is the shift distance or twist angle between the two curves, and
dr1 and dr2 are the infinitesimal increments of vectors r1 and
r2 defining the curves. It is assumed that the two curves have
a small, constant offset � perpendicular to the plane to avoid
divergence for α = 0 and to provide a realistic approximation
for conductors on a substrate with finite thickness. The nor-
malization constant N0 is obtained by the same double line
integral for α = 0.

The notion of the Neuman integral as a geometric distance
measure is illustrated here on two identical square loops in
the plane, of which one of them has a small spatial offset
�. Neumann integrals were computed with MATLAB by divid-
ing the loops into line elements and estimating the integral
as the sum over the resulting piecewise-linear integrands.
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FIG. 5. Coupling coefficients of two twisted Gosper curves for
the fourth iteration towards the space-filing curve, as a function of the
rotation angle from 5◦ to 190◦. In addition, some resulting patterns,
including moiré patterns, are shown.

Computation was accelerated by parallel computation using
ten cores. If the square loops are overlapping completely (α =
0), the normalized Neumann integral ζα is one. It decreases for
larger α and vanishes once it reaches a point of little overlap
at a relative shift of α = 0.92, before it becomes negative
[Fig. 1(c)]. For larger α, it asymptotically vanishes again.
The physical interpretation of this graph is as follows. If the
two squares define wires (of inductance L) with an inserted
capacitor (of capacitance C), they model two individual LC
resonators that are inductively coupled to each other. Gener-
ally, if the two resonators are facing each other in a solenoidal
configuration, their coupling (or mutual inductance entering
the Kirchhoff equations, including its sign) is positive. If they
are oriented in the same plane as in the figure without overlap,
their coupling is negative. Upon bringing the loops closer
together their coupling first increases in magnitude but finally
decreases until it vanishes at α = 0.92 [7]. To understand this
behavior, one can simply consider magnetic flux lines ema-
nating from the left loop upwards; if there is a large overlap of
the two loops, most flux lines enter the right loop in upward
direction, too. For larger shift, or decreasing overlap, the flux
lines from the left loop ultimately reverse sign, now entering
the right loop from above. These two cases are modeled by
a positive and negative coupling coefficient, respectively. The
Neumann integrals for two shifted Moore curves are markedly
different from the case of two shifted squares [Fig. 1(d)]. This
will be explored in the following.

Figure 4 shows the computed coupling coefficient of two
spatially shifted Moore curves (Ni = 5, � = 0.01) as a func-
tion of the relative shift α. The Neumann integral or coupling
coefficients attain both positive and negative values, and their

graph has pronounced peaks. The insets depict selected moiré
patterns of the two overlaid Moore curves, after smoothing
with a box averaging filter and contrast enhancement. Most
pronounced moiré effects occur at the peaks of the coupling.

Figure 5 shows the computed coupling coefficient of two
twisted Gosper curves (Ni = 4, � = 0.001) as a function of
the twist angle α, with some selected moiré patterns. The
coupling is symmetric around α = 180◦, and values for α >

190◦ are not shown. The rotation center was chosen such
that for α = 120◦ maximum congruence of the two curves
was achieved. Except for the pattern at 120◦ rotation angle,
which does not show a moiré effect, the moiré patterns were
smoothed with a pillbox averaging filter. Overall, the coupling
coefficients change in a more complex way with α than in
the Moore curve. It was also observed that the curve depends
more sensitively on the value of the distance �.

IV. PHYSICAL EXPERIMENT: COUPLED RESONATORS

For experimental testing of the preceding model simula-
tions, the Moore curve was chosen due to its simpler coupling
coefficient behavior under changing spatial shift compared to
the more complex Gosper curve’s behavior under changing
twist angle.

Two Moore radiofrequency resonators with Ni = 3 and
dimension 7.5 × 7.5 cm were fabricated on a printed circuit
board with 1.7-mm thickness and an insulation layer above
the copper traces [Fig. 6(a)]. A 10 pF-capacitor (measured
value 11.7 pF) was inserted serially into one of the corners
of the first Moore curve, and a variable capacitor of 20 pF into
the second Moore curve. On the first circuit, the measured re-
sistance was 0.63 �, and the resonance frequency 55.0 MHz.
The second circuit’s resonance frequency was matched to
the one of the first circuit. The two circuit boards were then
aligned while facing each other (� = 0.2 mm). The S11 re-
flection coefficient spectrum of the coupled Moore resonators
was measured with a network analyzer (NanoVNA H2/H4,
Taobao, Hangzhou, China) for shifts from 17% to 110%, using
an inductively coupled pickup loop of about the same size as
the resonators. Mode splitting of two coupled LC radiofre-
quency resonators is expected to be ω1,2 = √

(1 ∓ κ )LC
−1

,

from which the coupling coefficient follows as κ = ω2
1−ω2

2

ω2
1+ω2

2
.

Due to resistance, modes have a finite linewidth, here found
to be Q = ω/�ω = 55, and zero-coupling shifts were defined
as those for which a visible split of resonances could not be
observed.

The numerically estimated Moore curve coupling coeffi-
cients are shown in Fig. 6(b), black graph. Experimentally, the
shift between the two boards was gradually increased, and the
resonance frequencies were obtained from the S11 spectrum.
From the resonance frequencies, the coupling coefficients κ

were computed [Fig. 6(b), red graph]. When the two reso-
nances could not be isolated, the κ = 0 condition is satisfied.
This is demonstrated in the first and third insets, which show
S11 spectra with only one resonance. The second and fourth
insets provide examples for S11 spectra with split resonances
due to nonzero coupling. Overall, the measurements are in
good agreement with the numerical values. Experimental fac-
tors such as finite copper trace widths, finite line widths due to
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FIG. 6. Physical experiment of coupling in Moore resonators. (a)
The copper layers on two printed circuit boards define two Moore
curves with Ni = 3. After the addition of a capacitor (not shown)
they become radiofrequency resonators. (b) Observed coupling co-
efficients (red) vs Neumann integral simulation (black) for shifted
circuit boards. The insets provide examples for single resonances, or
zero coupling (first and third inset), and resonance splitting due to
inductive coupling (second and fourth inset).

resistance, and finite measurement resolution of the network
analyzer might contribute to remaining deviations from the-
ory. The near-zero coupling point at relative shifts of about
0.47 could not be isolated with this experiment. In summary,
approximate zero coupling could be achieved for significantly
overlapping Moore resonators at multiple shift values.

V. DISCUSSION

Space-filling curves are not only of mathematical interest
but have found application in various fields of science and
engineering. For example, they have been utilized for decades
to study the folding principles of proteins and polymers [19].

Hilbert and Moore curves have been suggested as solutions
to build miniature antennas by compressing long wires into
small areas [20,21]. Our interest is in potential applications
as radiofrequency resonators. Radiofrequency resonator ar-
rays are the main component of MRI phased arrays [7], for
which one usually tries to minimize coupling. In phased ar-
rays, it is important to understand the effects of coupling on
the resonance spectra and eigenmodes of the arrays. Some-
times, inductive coupling is even desired in MRI coils such
as high-pass surface resonator arrays [9]. The Neumann inte-
gral approximates the mutual inductance between closed wire
loops under certain conditions, such as thin wires, smooth-
ness, no concave areas, and low frequencies [18]. These
conditions are only partially fulfilled in space-filling curve ge-
ometries [22,23] and MRI applications, and would introduce
systematic errors in estimates of mutual inductance. Neverthe-
less, this does not affect the use of the Neumann integral as a
geometric distance measure; as we have shown, the Neumann
integral peaks at the emergence of moiré patterns, and if
used as an estimate of mutual inductance, can indeed predict
vanishing inductive coupling configurations of space-filling
radiofrequency resonators.

VI. SUMMARY

It has been demonstrated that preasymptotic space-filling
curves naturally lead to moiré patterns. Moiré patterns emerge
in shifted space-filling curves with approximate translational
symmetry as well as in twisted space-filling curves with ap-
proximate rotational symmetry. The Neumann integral was
used as a geometric distance measure between two space-
filling curves, and it was shown that it peaks at those shifts
or twists that cause a pronounced moiré effect. Furthermore,
if interpreted as a measure of inductive coupling, the Neu-
mann integral also predicts zero-coupling configurations of
space-filling radiofrequency resonators, an important design
criterion for potential MRI applications.
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