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Topological order in higher composites
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We introduce the concept of composite topological order in multicomponent systems. In such a state topo-
logical order appears only in higher-than-usual composites, with no topological order in elementary fields. We
propose that such a state can be realized in Bose-Fermi mixtures in ultracold atoms.
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The goal of this paper is to discuss topological or-
der; nonetheless, let us first overview certain concepts in
symmetry-breaking condensates. In condensed matter, the
standard symmetry-breaking condensates appear as con-
densation of bosons or fermion pairs. The recent extensive
experiments that combined multiple probes [1,2] generated
significant interest in electron quadruplets condensation and
symmetry breaking appearing in “higher-order” composite
fields in the absence of symmetry breaking in individual
fields. The experiments [1,2] reported the states principally
different from superconductors. It is a system of multiple
species of electrons, distinguished, e.g., by band index i, j.
The corresponding creation operator can be denoted as c†

σ i
where σ is the spin or pseudospin index. In this state,
there is no order in fields composed of a pair of elec-
trons 〈cσ icαi〉; however, there is a symmetry-breaking order
in higher composites such as 〈cσ icαic

†
δ jc

†
γ j〉. The theoret-

ical mechanism for that is the proliferation of composite
topological defects without the proliferation of elementary
topological defects in a system with a superconducting ground
state (see e.g., [3–10]). Similarly, such fluctuations-based
mechanisms can be used to stabilize charge-4e supercon-
ductivity with the order parameter 〈cσ icαicσ jcα j〉. This was
proposed to occur under certain conditions such as the melt-
ing of pair-density-wave orders [11–13] or in the presence
of thermal fluctuations and other broken symmetries [14].
Fluctuations-induced composite-order phases were also dis-
cussed in [6,9,15,16] in the context of the discussion of
superconductor-like gauge theories associated with deconfine-
ment transitions [17]. Discussions related to the suppression
of fermion bilinear condensation appeared also in other con-
texts [18] (cf Ref. [19]).

Such superfluid composite orders can arise also at zero
temperature via a quantum phase transition. The important
mechanism for that is the proximity to multicomponent Mott
insulating state shown in the theoretical studies [20–22].
In particular, as numerically verified in two-component
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Bose-Hubbard model [23], there could be orders of the kind
〈bib j〉 �= 0 or 〈bib

†
j〉 �= 0 in the absence of condensation of

individual Bose species 〈bi〉 = 〈b j〉 = 0. The microscopic
mechanism of the formation of 〈bib

†
j〉 order, in that case, is

rooted in interaction effects on a lattice arresting total current,
allowing only exchange of positions of particles of different
kinds, leading to the appearance of counterflow order param-
eter 〈bib

†
j〉 �= 0 when 〈bi〉 = 〈b j〉 = 0. The first experiment

realizing such arresting the individual flows of a bosonic mix-
ture on a lattice, without arresting counter-flow was reported
in Ref. [24].

Note that in a “trivial” sense, order parameters of many
“conventional super states of matter” are composites of more
than two fermionic fields. That is, atoms forming condensate
of He4 are composites of two electronic and two protonic
and neutronic fields or can be written in terms of even more
quark fields. Hence, it is important to emphasize that the
composite order discussed here is not associated with the
direct formation of four-fermion bound states. Hence, it is
principally different also from α-particles condensation [25]
and from the generalization of exciton condensates (direct
bound states of electrons and holes). Here, we are dealing
with more subtle statistical correlations of particles that are
not physically bound. An example that arises already in the
two-component case is associated with how the system cou-
ples to the magnetic field. Due to the lack of direct binding
of particles, the relative density variation causes the system’s
coupling to the magnetic field. The resulting effective model is
similar to a Skyrme model [1,26] in contrast to the direct cou-
pling of vector potential to phase gradient in superconductors
or to (at most) dipolar coupling in systems with direct bind-
ing of electrons and holes. However, the difference becomes
especially clear when there are more than two components.
In three-component case with the order parameter 〈bib

†
j〉 �= 0

when 〈bi〉 = 〈b j〉 = 0 [27,28] there are only two indepen-
dent superfluid modes, but there are three phase difference
variables and three types of vortices, i.e., superflows, are
clearly not presentable as transport of locally bound parti-
cles of one component and holes in another component. An
illustrative case arises in the presence of a thermal gradient.
That is, consider N-component fermions labeled by index
i forming at low temperature a superconducting state with
multiple gaps |�i|eiφi . Consider intercomponent Josephson
coupling breaking symmetry down to U (1) × Z2 [29,30]. The
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additional Z2 symmetry breaking is caused by frustrated
Josephson coupling terms |�i||� j | cos(φi − φ j ) that produce
two energetically equivalent ground-state phase-difference
locking (φi − φ j ) �= 0, π . This arises when the prefactors of
Josephson terms are positive. Under certain conditions, at el-
evated temperatures, the system undergoes a phase transition
into fermion quadrupling condensate characterized by the or-
der only in the phase differences but not in individual phases,
described by the order parameter 〈cσ icαic

†
σ jc

†
α j〉 [1,2,7,8].

Because of the intercomponent Josephson coupling in that
state, there is no DC dissipationless charge transfer. In a
conventional sense, it is dissipative. However, it has other
types of “dissipationless” phenomena. First, inhomogeneities
create macroscopic persistent local currents [26] observation
of which in a state with dissipative DC current was reported
in [1]. Another effect we can point to is the dissipationless
current arising as a reaction to a thermal gradient. Namely, the
intercomponent phase difference (φi − φ j ) in this state is in
general temperature dependent [29,31,32]. Hence, in response
to a stationary thermal gradient, there will be a stationary
gradient of the phase differences ∇(φi − φ j ). This means that
there is a persistent counter flow of components. Consider
the counterflow in x direction, defined as some components
flowing in positive x̂ direction and some counterflowing in the
opposite −x̂ direction. Adding a magnetic field in −ẑ direc-
tion results in opposite drifts of counterflowing components:
drifting in ŷ and drifting in −ŷ. Hence, that can be viewed as a
“color” Hall-like effect with carriers in different bands drifting
in opposite transverse to the thermal gradient directions.

The above review highlights that there are many interesting
properties in condensates where there is no algebraic order
and no broken symmetry [33] arising at the level of the sim-
plest possible fields, made of bosons or pairs of fermions
but there is order in higher composites, such as four-electron
fields. These findings motivate posing the question: What are
the possible closest counterparts of that for topological sys-
tems? Which orders are possible in multicomponent systems
where “elementary fields” do not form topological order, but
in higher composite fields do (without forming “direct” bound
states such as excitons [35], or topological order in certain
spin systems [36,37]).

As the simplest case, consider, for example, N-component
mixture of bosons and fermions, forming “Borromean” coun-
tercurrent order: i.e., where codirected flows are arrested, but
counterflows are possible; for a superfluid counterpart of this
order, see [27]. Then, a quantum Hall effect is possible for the
fermionic mode corresponding to the counterpropagation of
electrons and bosons [38].

For another example, consider a generalization of the
Su-Schrieffer-Heeger (SSH) model for the case of an
N-component mixture of bosons and fermions in one-
dimensional elastic lattice with spacing a.

To generalize the SSH model, we start with an interacting
multicomponent Hamiltonian

H0 = −t
∑

〈i j〉lσ
(a†

ilσ a jlσ + H.c.)

+ 1

2

∑

i jσσ ′lk

Vσσ ′lk (ri − r j )nilσ n jkσ ′ . (1)

FIG. 1. Schematic depiction of a state with multiple species of
particles denoted by different colors, residing in a lattice poten-
tial and having different inter- and interparticle interactions. The
state is a Mott insulator for total current but still permits the
exchanges of particle’s positions: i.e., relative motion degrees of
freedom are not arrested by interparticle interactions. Here we are
primarily interested in counterpropogating bosons and fermions; for
superfluid examples of bosonic counterflows near Mott transition
see [20–23,28,40].

Here l, σ are the component and soon indices nli = a†
liali The

inter- and intracomponent interaction can be chosen to make
the system a Mott insulator with respect to total currents,
still permitting relative currents [20,21]. Here, we are inter-
ested in a topological counterpart of N-component Borromean
systems [27,28]. We consider the case where the underlying
lattice arrests the total flow (see Fig. 1) that motivates an
effective model having only the relative motion (compare with
the discussion in superfluid context [27], where the arrest
of total current can be described in terms of special gauge
invariance). To that end we write [41]

H =
∑

l �=k

εlk (qla − qka)σx. (2)

When the lattice is “elastic,” the system has instability
similar to the dimerization of the original SSH model. Then
one has hopping matrix elements become alternating t1,2 =
t ± δt . In this case a gap opens for the relative-motion modes,
yielding the spectrum

εlk± = ±
√

v2(pl − pk )2 + m2 (3)

and the system is topological with respect to composite
modes, and has topologically nontrivial soliton states.

For a different type of example, we propose a general-
ization of the Haldane-Hubbard model for several species of
particles (that can include both fermions and bosons) labeled
by the index l (for the phase diagram of single-component
Haldane-Hubbard model, see [42–44])

H0 = −t1
∑

〈ij〉lσ
(a†

ilσ djlσ + H.c.)

− t2eiηi jφ
∑

〈〈ij〉〉lσ
(a†

ilσ ajlσ + d†
ilσ djlσ + H.c.)

+ Dl

∑

iσ

ξ (i)nilσ −
∑

iσ

μlσ nilσ

+ 1

2

∑

ijσσ ′lk

Vσσ ′lk (ri − rj)nilσ njkσ ′ (4)

Here the two sublattices are labeled by A and B ξ (i ∈ A) =
+1, ξ (i ∈ B) = −1 (see Fig. 1), μlσ is chemical potential
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FIG. 2. Schematic depiction of the two sublattice and phase dia-
gram of single-component Haldane-Hubbard model [42–44].

for a given spin component. The terms with prefactors t1
and t2 correspond to the nearest- and next-nearest-neighbor
hopping. The last term corresponds to inter- and intraspecies
interactions.

In a single-component Haldane Hubbard a significantly
large interspecies interaction drives the system to a non-
topological Mott insulator state as schematically shown on
Fig. 2 [42–44].

Again, our primary interest is Borromean systems [27,28].
When there is no intercomponent interaction Vσσ ′lk =
0, (k �= l ) the model represents N replicas of decoupled
Haldane-Hubbard models. However, new phases arise with
nonzero intercomponent coupling Vσσ ′lk �=l �= 0. As demon-
strated numerically in [28], by tuning the inter- and intracom-
ponent interaction, one can make a system with more than two
components a Mott insulator with respect to the total current
but still retain the relative motion of different particles as
schematically shown on Fig. 1. In the generalized model that

we propose, this results in a topological state in terms of the
relative motion of l and k �= l components. This constitutes a
topological counterpart of the composite superfluid order.

Importantly, this results in a particular type of fraction-
alization. That is, consider e.g. a multicomponent boson-
fermion mixture. Then, a fermion can take part in a normal or
superfluid counterflow with different species of fermion and
also be a part of a topological boundary mode, correspond-
ing to topological counterflow associated with exchanging
positions with bosons. Likewise, for a counterfluid mixture
of two species of bosons and fermions, a boson can par-
ticipate in a counterflow superfluidity in the bulk and in a
topological counterflowing mode with fermion on a boundary.
In a coarse-grained sense, the boundary mode is composed
of counterflowing fermions and two fractions of different
bosons.

Finally, we note that component indexes can have different
origins. The most straightforward case is a mixture of different
species of fermions or bosons. The realization of the ordinary
topological systems in ultracold atoms has attracted atten-
tion [45], while there is great control over Mott transitions
and preparation of various mixtures [46–48]. The recent study
reported realizing the counterflow-only mixture of ultracold
atoms [24], which opens up the possibility of realizing the
states we discuss in this paper by creating the proposed optical
lattices. Similarly, it can represent other quantum numbers,
e.g., originating from multiple electronic bands.
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