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Chaos-assisted turbulence in spinor Bose-Einstein condensates
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We present a turbulence-sustaining mechanism in a spinor Bose-Einstein condensate, which is based on the
chaotic nature of internal spin dynamics. Magnetic driving induces a complete chaotic evolution of the local spin
state, thereby continuously randomizing the spin texture of the condensate to maintain the turbulent state. We
experimentally demonstrate the onset of turbulence in the driven condensate as the driving frequency changes
and show that it is consistent with the regular-to-chaotic transition of the local spin dynamics. This chaos-assisted
turbulence establishes the spin-driven spinor condensate as an intriguing platform for exploring quantum chaos
and related superfluid turbulence phenomena.
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Turbulence, a ubiquitous phenomenon in fluids, poses a
major challenge in physics owing to its complexity [1]. To
effectively investigate this phenomenon, it is essential to
generate turbulence in a controlled manner. Various existing
methods, such as moving grids [2–4], impinging jets [5,6],
and rotating drums [7–9], have provided valuable insights
into the different aspects of turbulent states, highlighting the
strong connection between the generation method and flow
dynamics. However, these approaches are primarily based
on local or anisotropic external forces and inertial energy
cascades [10–12], which might limit the possibilities of ex-
ploring novel properties of turbulent states. Here, we propose
an alternative approach to generate turbulence by harnessing
the intrinsic chaos within the fluid itself. By utilizing the
unpredictable and sensitive nature of chaotic systems, this
method introduces energy directly into the flow through self-
amplifying mechanisms similar to the stretching and folding
of fluid elements [13]. This chaos-based method holds the
potential for improved mixing and homogeneous, isotropic
energy injection, thereby offering the opportunity to explore
previously uncharted turbulent behaviors.

In this Letter, we present a case study of chaos-assisted
turbulence with spin-1 atomic Bose-Einstein condensates
(BECs). This system is a superfluid with internal spin degrees
of freedom that presents a departure from conventional super-
fluid dynamics. The order parameter of the superfluid can be
expressed as � = √

neiϕζ, where n is the superfluid density,
ϕ is the superfluid phase, and ζ is the spinor for the spin state.
Due to the intricate relation between the superfluid phase and
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the spin rotation [14], mass superflow is associated not only
with the spatial variations of ϕ but also with those of ζ, i.e.,
with the spin texture. The superfluid velocity and its vorticity
are given by

vs = h̄

m
(∇ϕ − iζ†∇ζ),

∇ × vs = − ih̄

m
∇ζ† × ∇ζ, (1)

where m is the particle mass and h̄ is the reduced Planck
constant, h/2π . Therefore, a mass superflow can be generated
by manipulating the spin texture in space.

The situation considered in this Letter is that the local
dynamics of ζ is in a classically chaotic regime. Then, because
of the hypersensitivity on initial conditions, small spatial fluc-
tuations in a superfluid, even starting with a uniform spin
texture, would develop into complex spatial variations of the
spin states over time evolution, leading to an irregular spin tex-
ture. If the spin texture is kept irregular because of the chaotic
nature of the local spin dynamics, the resulting turbulent flow
in the superfluid would be sustained. This is a scenario of the
aforementioned chaos-assisted turbulence generation.

Recently, stationary turbulent states have been observed
in a spin-1 BEC when it is subjected to continuous radio-
frequency (rf) magnetic fields [15,16]. Under specific driving
conditions, the turbulence attains its maximum intensity, ac-
companied by an isotropic spin composition. Although the
rf magnetic field, aided by field noise, has been identified as
the driving force, the mechanism that sustains the generated
turbulence while maintaining the isotropic spin nature has re-
mained unclear. In this Letter, through numerical simulations
and experimental validation, we demonstrate that the applied
magnetic field induces chaotic motion within local spin states,
thus sustaining the turbulent state. This finding concretizes the
notion of chaos-assisted turbulence generation, particularly in
a superfluid system, paving the way for a deeper understand-
ing and control of this complex and fascinating phenomenon.
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Our superfluid system is a BEC of 23Na atoms in the F = 1
hyperfine state with antiferromagnetic interactions [17,18].
A uniform external magnetic field of Bz is applied along ẑ,
and for spin driving, an rf magnetic field with oscillating
frequency of ω is applied along the transverse direction. In
a mean-field description, neglecting the spatial modes of the
BEC and taking the rotating-wave approximation, the local
dynamics of the spin state ζ = (ζ+1, ζ0, ζ−1)T is described by
the following Hamiltonian per particle,

Hs = h̄δ fz − h̄� fx + qζ†f2
z ζ + εs| f |2, (2)

where f = (fx, fy, fz ) are the spin operators of the spin-1 sys-
tem and f = ζ†fζ is the spin vector with fx,y,z representing
the magnetizations in the x, y, and z directions, respectively.
δ = ω − ω0 is the frequency detuning of the rf magnetic field
from the Larmor frequency ω0 = 1

2μBBz/h̄ with μB being the
Bohr magneton, � is the Rabi frequency of the rf field, and q
denotes the quadratic Zeeman energy. The last term represents
the energy of spin interaction, which introduces nonlinearity
to the system.

When the energy scales of εs, q, and h̄� are compara-
ble and δ = 0, it is known that the spin dynamics of the
Hamiltonian Hs becomes chaotic [19,20]. Here, we investi-
gate a magnetic driving scheme where the external magnetic
field Bz is modulated such that δ(t ) = δ0 + D sin (2πνt + φ)
[Fig. 1(a)]. This field modulation breaks the energy conser-
vation constraint, possibly enhancing the chaoticity of the
system and facilitating complete randomization of the spin
state [21,22].

To demonstrate the chaotic behavior of the spin system,
we numerically investigate the time evolution of an ensemble
of spin states, E , and characterize it in the coordinate space
of magnetization f . The ensemble E consists of 1282 spin
states, whose initial states are constructed from the mF =
0 state [ζ = (0, 1, 0)T] with small Gaussian random noise
added [23], so f ≈ 0. The system parameters are set to εs/h =
45 Hz, q/h = 47 Hz, �/2π = 200 Hz, and ν = 60 Hz. Fig-
ure 1(b) shows the f distributions of the ensemble after the
evolution of 1 s for various sets of driving parameters {δ0, D}.
Without field modulation (D = 0) and for small δ0 (case I),
the magnetization is dispersed on the plane perpendicular
to the linear Zeeman field, but far from fully randomized.
Meanwhile, when subjected to the field modulation, the en-
semble spreads over a broader region of the magnetization
space (cases II and III), implying the enhanced spin mixing
of the system [23]. For large δ0 (case IV), the spin dynamics
is observed to be regular.

As a proxy of the randomness of the spin states in E , we
estimate a trace distance,

�(2) ≡ 1
2

∣
∣
∣
∣ρ (2)

E − ρ
(2)
Haar

∣
∣
∣
∣
1, (3)

where ρ
(2)
E = ∑

ζ∼E (ζζ†)
⊗2

is the second momentum of the

ensemble [24], and ρ
(2)
Haar is that of the Haar random ensemble

EHaar, which is a unitarily invariant, maximally randomized
ensemble of the spin-1 system [22,25,26]. Here, || · ||1 de-
notes the trace norm, and 0 � �(2) � 1 represents how much
different the ensemble E is from EHaar, i.e., a smaller �(2)

indicates that E is more randomized. Figure 1(c) shows the
evolution curves of �(2) for the different driving parameters.

FIG. 1. Chaotic spin dynamics in a spinor Bose-Einstein conden-
sate under magnetic field modulations. (a) The linear Zeeman field
in Eq. (2) oscillates as �x̂ − δ(t )ẑ with δ(t ) = δ0 + D sin(2πνt + φ)
and ν = 60 Hz. (b) Magnetization, f = ( fx, fy, fz ), distributions of
a spin state ensemble after 1-s spin driving for four different sets of
driving parameters: (I) {δ0, D}/2π = {250, 0}, (II) {250, 700}, (III)
{750, 700}, and (IV) {1000, 700} Hz. The ensemble consists of 1282

spin states, which initially have f ≈ 0 (see text for details). Pink
points show the projections of f along the xy, yz, and zx planes.
(c) Time evolution of the second-momentum trace distances �(2)

between the spin state ensemble and the Haar random ensemble for
(I)–(IV). The dashed line represents the expectation value for a set of
1282 spin states sampled from the Haar ensemble. (d) �(2) after 1-s
spin driving as a function of δ0 and D.

In a specific driving condition, E becomes fully randomized
as �(2) � 0. In Fig. 1(d), the value of �(2) after 1 s of spin
driving is displayed in the plane of δ0 and D. Interestingly, the
dynamic behavior of the system exhibits a sudden transition
from chaotic to regular as δ0 exceeds a threshold value δth. The
value of δth is found to be linearly proportional to the magni-
tude of field modulation as δth � D, highlighting the role of
field modulation in the randomization of the spin state. This
also shows that, as the direction of the linear Zeeman field
varies significantly during the driving [Fig. 1(a)], meeting the
resonance condition of δ = 0 is important to be chaotic. The
nature of the sudden transition warrants further investigation.

We extend our discussion to the dynamics of a BEC
with spatial extent, e.g., in two dimensions. Here, the spinor
condensate can be viewed as the spatial array of the local
nonlinear spin subsystems that are coupled to their neighbors.
We numerically calculate the system’s evolution using spin-1
Gross-Pitaevskii equations (GPEs) [23,27]. The condensate is
initially prepared in the mF = 0 state with quantum noise,
where the noise is determined in accordance with the trun-
cated Wigner approximation [23,28]. An irregular spin texture
develops under spin driving, e.g., with δ0/2π = 500 Hz and
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FIG. 2. Turbulence generation in a spinor BEC by spin driv-
ing. (a) Magnetization Fz and (b) vorticity ∇ × vs distributions in
a two-dimensional BEC after 1-s spin driving for three different
driving conditions: (A) {δ0, D}/2π = {0, 0}, (B) {500, 800}, and (C)
{1250, 500} Hz. Fz = n fz is the density of magnetization along the
z direction and vs is the superflow velocity. n0 is the mean particle
density, εs denotes the spin interaction energy scale, and ξs is the
spin healing length. (c) �(2) and (d) kinetic energy K , as functions of
δ0 and D. N is the total particle number and μ denotes the chemical
potential of the BEC.

D/2π = 800 Hz [Fig. 2(a), case B]. The irregular spin texture
implies turbulent superflow in the spinor BEC, as verified
by the vorticity distribution of the superfluid velocity in
Fig. 2(b).

The range of driving parameters for the generation of
turbulence is well aligned with that for the chaotic spin dy-
namics. In Figs. 2(c) and 2(d), we plot the trace distance
�(2) and the kinetic energy K of the system in the δ0-D
plane, respectively. Here, �(2) is measured from the spin state
ensemble E obtained by position projection of the conden-
sate, such that each spin state of the ensemble is associated
with a local position and weighted by the density at the
position [16], and the kinetic energy is calculated as K =∫

d2r�†(− h̄2

2m ∇2)�. The relationship of δth � D is still ob-
served as in Fig. 1(d), which clearly demonstrates that the
turbulence generation originates from chaotic spin dynamics.
Meanwhile, the value of �(2) for turbulent BEC appears to be
relatively higher than the corresponding value in Fig. 1(d). It is
attributed to the energy dissipation process through spin-wave
relaxation [15], which would homogenize the spin texture.
Further characterization of the velocity fields of the turbulent
BEC is provided in [23], where a −5/3 power-law scaling was
observed in the incompressible part of the kinetic energy [29].

Next, we conduct an experimental verification of the
turbulence generation mechanism assisted by chaotic spin

FIG. 3. Observation of the turbulence onset in a driven spinor
BEC. (a)–(c) Time-of-flight images of BECs after spin driving for
2 s with δ0 = 0, D/2π = 950 Hz, ν = 60 Hz, and φ = 0. Turbulence
appears as irregular density patterns in the freely expanding BECs.
A magnetic field gradient B′ was applied along the x′ direction
during spin driving. (d) Image after Stern-Gerlach spin separation for
B′ = 0.17 G/cm. The deformation of the clouds due to separation
is compensated by perspective transformation [23]. (e) Integrated
density profiles of the three spin components. The width w of the
spin turbulence region was determined from the density distribution
of the mF = 0 component. (f) 1/w as a function of B′. Each data
point was obtained from the 20–30 measurements and its error bar
indicates their standard deviation. The solid line is a linear line of
w−1 = αB′ with α = 3.7 × 104/G, fit to the data. The inset shows
the values of δth = μB

4h̄ B′w. The horizontal line and the shaded region
indicate their mean and standard deviation, respectively.

dynamics. We prepare a BEC consisting of about 3.5 ×
106 23Na atoms in the |F = 1, mF = 0〉 state. The BEC is
trapped in an optical dipole trap of highly oblate geom-
etry and its Thomas-Fermi (TF) radii are (Rx′ , Ry′ , Rz′ ) ≈
(160, 75, 1.6) µm, where x′, y′, and z′ denote spatial coor-
dinates. For the peak atomic density at the trap center, the
spin interaction energy is εs ≈ h × 53 Hz [30] and the spin
healing length ξs = h̄/

√
2mεs ≈ 2.0 µm, comparable to the

thickness of the sample. A uniform external magnetic field
of Bz ≈ 0.41 G is applied along ẑ = (−x̂′ + ŷ′)/

√
2, giving

ω0 ≈ 2π × 291 kHz and q ≈ h × 47 Hz. An rf magnetic field
is applied along ŷ′ with � = 2π × 150 Hz. The external mag-
netic field Bz is sinusoidally modulated at ν = 60 Hz with a
variable magnitude of less than a few mG.

Figure 3(a) shows an optical density (OD) image of a
BEC, taken along the ẑ′ direction after a 18-ms time of
flight [31]. The BEC was spin driven for 2 s with δ0 = 0 and
D/2π = 950 Hz. A stationary turbulent state appears in the
driven BEC, manifested by an irregular density distribution

L032030-3



KIM, JUNG, LEE, HONG, AND SHIN PHYSICAL REVIEW RESEARCH 6, L032030 (2024)

that arises after free expansion from the chaotic velocity field
of the driven condensate. Furthermore, the turbulent BEC
exhibits equal populations in all three spin states. The spin
isotropy of the turbulent BEC was demonstrated in Ref. [15]
by showing that the populations of the three spin states are
equal regardless of the quantization axis.

We investigate how the frequency detuning δ0 of the rf
driving field affects turbulence generation by conducting a
similar experiment with an additional magnetic field gradient
B′ applied along the long axis of the condensate. This field
gradient renders the frequency detuning of the rf driving spa-
tially varying across the condensate as δ0(x′) = ( 1

2μBB′x′)/h̄.
We observe that spin-isotropic turbulence occurs within a
central region of the condensate [Figs. 3(b) and 3(c)], whose
spatial extent decreases as B′ increases, implying the ex-
istence of a range of δ0 effective for the generation of
turbulence.

The image obtained after Stern-Gerlach spin separation
reveals that the turbulent region is positioned between two fer-
romagnetic domains with opposite magnetizations [Fig. 3(d)].
For high |δ|, the ground state of the driven BEC is ferro-
magnetic owing to the large Zeeman energy. As the BEC is
driven, the ferromagnetic domains gradually appear at both
ends of the condensate and reach saturation in the steady state,
containing vortices [23]. The interface between the turbu-
lent region and the ferromagnetic domains is clearly defined,
showing sudden changes in density for the different spin
components [Figs. 3(d) and 3(e)]. This allows us to reliably
determine the turbulent region from the density distribution of
the mF = 0 component.

We measure the spatial extent w of the spin-isotropic tur-
bulent region along the direction of the field gradient, and
find that its inverse is proportional to the magnitude of the
field gradient [Fig. 3(f)]. This means that the threshold value
of δ0 for turbulence generation is consistently determined as
δth = δ0( w

2 ) = μBB′w/4h̄. The presence of such a threshold
detuning is in excellent agreement with the numerical results
shown in Fig. 2, providing clear evidence of the regular-to-
chaotic transition in the driven spinor BEC system.

The relationship of δth and the magnitude D of the field
modulations is investigated (Fig. 4). As D increases, in gen-
eral, δth increases, which is consistent with the expected
behavior of the spin dynamics. However, we observe that a
turbulent region is formed even in the absence of field modu-
lations, indicating a threshold detuning of δth,0 = 0.74(9) kHz
for D = 0. We find that it is caused by ambient magnetic field
fluctuations, which amounts to about 1 mG [15]. Magnetic
field noises are likely generated by current ripples in the mag-
netic coils that leak from the 60-Hz ac power line. In fact, for
ν = 60 Hz, δth shows a sinusoidal dependence on the phase φ

of the external field modulation [Fig. 4(c)], and it arises from
interference with the background field component oscillating
at the same frequency.

Taking into account such ambient field fluctuation effects,
we present an empirical model of the threshold detuning
as

δ2
th = β2

ν [D2 + 2DDν cos(φ − φν )] + δ2
th,0, (4)

where Dν and φν represent the amplitude and phase, respec-
tively, of the background field component that coherently

FIG. 4. Threshold detuning δth of the spin driving for turbulence
generation. Dependence of δth on the driving amplitude D for (a) ν =
60 Hz, (b) 200 Hz and 1 kHz. The gray horizontal lines indicate the
threshold detuning value of δth,0/2π = 0.74(9) kHz due to ambient
field noise. Corresponding δth data for different modulation phases φ

with D/2π = 1 kHz for (c) ν = 60 Hz, (d) 200 Hz and 1 kHz. Each
data point indicates the mean value of 10–20 measurements, and its
error bar is the standard deviation of the measurements. The solid
lines in (a) and (c) are the model curves of Eq. (4) with the parameter
values of {βν, Dν/2π, φν} = {1.05, 0.39 kHz, 0.86π}, which were
determined from a model fit to the data in (c). The solid lines in
(b) are model curves fit to the data with Dν = 0. The dashed lines
indicate the corresponding model curves with δth,0 = 0.

oscillates at frequency ν, and βν denotes the proportional-
ity of δth to the field modulation [23]. Our measurement
results of δth for various D and φ are well described by
the model [Fig. 4(a)], suggesting Dν/2π = 0.39(5) kHz and
βν = 1.05(6) for ν = 60 Hz. In Fig. 4(b), we show additional
measurement data of δth for ν = 200 Hz and 1 kHz, where
the model curve fitting to the data provides Dν ≈ 0 and βν =
1.15(4) and 0.59(4), respectively. It is evident that when the
modulation frequency surpasses the energy scales relevant to
the system, the efficiency of the mixing caused by the external
field modulation is reduced.

In conclusion, we have presented a turbulence genera-
tion mechanism based on chaos and demonstrated it with
the spinor BEC system under magnetic field driving. The
presence of the threshold frequency detuning δth and its
linear relationship with D were demonstrated, in excellent
agreement with the predicted regular-to-chaotic transition.
The stationary turbulence state of the spinor BEC provides
interesting opportunities to explore nonequilibrium super-
fluid dynamics. An important next step is to compare this
chaos-assisted turbulence with conventional hydrodynamic
turbulence, where energy is injected on a certain length scale
and an inertial energy cascade follows [10–12,23]. The im-
mediate extension of this work would be to quantify the spin
texture [32,33] and the mechanisms of energy transfer and
dissipation [29,34] of the turbulent BEC. Given that our driven
system exhibits spatiotemporally chaotic flow induced by its

L032030-4



CHAOS-ASSISTED TURBULENCE IN SPINOR … PHYSICAL REVIEW RESEARCH 6, L032030 (2024)

internal spin dynamics, it would be interesting to explore its
possible connection to active turbulence [35,36], which is
self-driven turbulence by spontaneous flow instability.

This work was supported by the National Research Foun-
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No. NRF-2023M3K5A1094811).

[1] R. P. Feynmann, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics (Addison-Wesley, Reading, MA, 1971),
Vol. I.

[2] M. Hideharu, Realization of a large-scale turbulence field in a
small wind tunnel, Fluid Dyn. Res. 8, 53 (1991).

[3] L. Mydlarski and Z. Warhaft, On the onset of high-Reynolds-
number grid-generated wind tunnel turbulence, J. Fluid Mech.
320, 331 (1996).

[4] M. R. Smith, R. J. Donnelly, N. Goldenfeld, and W. F. Vinen,
Decay of vorticity in homogeneous turbulence, Phys. Rev. Lett.
71, 2583 (1993).

[5] D. Cooper, D. C. Jackson, B. E. Launder, and G. X. Liao,
Impinging jet studies for turbulence model assessment—I.
Flow-field experiments, Int. J. Heat Mass Transfer 36, 2675
(1993).

[6] M. Kim, D. Schanz, M. Novara, P. Godbersen, E. Yeom, and
A. Schröder, Experimental study on flow and turbulence char-
acteristics of jet impinging on cylinder using three-dimensional
Lagrangian particle tracking velocimetry, Sci. Rep. 13, 10929
(2023).

[7] G. Seiden and P. J. Thomas, Complexity, segregation, and pat-
tern formation in rotating-drum flows, Rev. Mod. Phys. 83,
1323 (2011).

[8] V. Eltsov, R. de Graaf, R. Hanninen, M. Krusius, R. Solntsev,
V. L’vov, A. Golov, and P. Walmsley, Turbulent dynamics in
rotating helium superfluids, Prog. Low Temp. Phys. 16, 45
(2009).

[9] M. Brunet, B. Gallet, and P.-P. Cortet, Shortcut to geostrophy in
wave-driven rotating turbulence: The quartetic instability, Phys.
Rev. Lett. 124, 124501 (2020).

[10] W. F. Vinen and J. J. Niemela, Quantum turbulence, J. Low
Temp. Phys. 128, 167 (2002).

[11] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Emer-
gence of a turbulent cascade in a quantum gas, Nature (London)
539, 72 (2016).

[12] A. Alexakis and L. Biferale, Cascades and transitions in turbu-
lent flows, Phys. Rep. 767-769, 1 (2018).

[13] L. E. Reichl, The Transition to Chaos: Conservative Classical
Systems and Quantum Manifestations, 2nd ed. (Springer, New
York, 2004).

[14] Y. Kawaguchi and M. Ueda, Spinor Bose–Einstein condensates,
Phys. Rep. 520, 253 (2012).

[15] D. Hong, J. Lee, J. Kim, J. H. Jung, K. Lee, S. Kang,
and Y. Shin, Spin-driven stationary turbulence in spinor
Bose-Einstein condensates, Phys. Rev. A 108, 013318
(2023).

[16] J. H. Jung, J. Lee, J. Kim, and Y. Shin, Random spin textures in
turbulent spinor Bose-Einstein condensate, Phys. Rev. A 108,
043309 (2023).

[17] F. Zhou, Quantum spin nematic states in Bose–Einstein conden-
sates, Int. J. Mod. Phys. B 17, 2643 (2003).

[18] S. W. Seo, S. Kang, W. J. Kwon, and Y. I. Shin, Half-quantum
vortices in an antiferromagnetic spinor Bose-Einstein conden-
sate, Phys. Rev. Lett. 115, 015301 (2015).

[19] M. Rautenberg and M. Gärttner, Classical and quantum chaos in
a three-mode bosonic system, Phys. Rev. A 101, 053604 (2020).

[20] B. Evrard, A. Qu, J. Dalibard, and F. Gerbier, From many-body
oscillations to thermalization in an isolated spinor gas, Phys.
Rev. Lett. 126, 063401 (2021).

[21] J. Choi, A. L. Shaw, I. S. Madjarov, X. Xie, R. Finkelstein,
J. P. Covey, J. S. Cotler, D. K. Mark, H.-Y. Huang, A. Kale
et al., Preparing random states and benchmarking with many-
body quantum chaos, Nature (London) 613, 468 (2023).

[22] J. S. Cotler, D. K. Mark, H.-Y. Huang, F. Hernández, J. Choi,
A. L. Shaw, M. Endres, and S. Choi, Emergent quantum
state designs from individual many-body wave functions, PRX
Quantum 4, 010311 (2023).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.L032030 for details of the numer-
ical simulations [28,37,38], the spin state ensemble at various
rf driving times, analysis of power-law scaling in the superfluid
velocity field [29], the process of magnetic domain formation,
and the model of δth(D).

[24] The second moment of any arbitrary observable O can be esti-
mated with ρ

(2)
E as O(2) = ∑

ζ∼E (ζ†Oζ)2 = tr(ρ (2)
E O⊗2).

[25] W. W. Ho and S. Choi, Exact emergent quantum state designs
from quantum chaotic dynamics, Phys. Rev. Lett. 128, 060601
(2022).

[26] M. Ippoliti and W. W. Ho, Dynamical purification and the emer-
gence of quantum state designs from the projected ensemble,
PRX Quantum 4, 030322 (2023).

[27] The size of the system is 160ξs × 160ξs, covered by a 256 ×
256 grid of equally spaced points, where ξs � 2.3 µm. See Sup-
plemental Material [23] for details.

[28] P. B. Blakie, A. Bradley, M. Davis, R. Ballagh, and C. Gardiner,
Dynamics and statistical mechanics of ultra-cold Bose gases
using c-field techniques, Adv. Phys. 57, 363 (2008).

[29] K. Fujimoto and M. Tsubota, Spin-superflow turbulence in
spin-1 ferromagnetic spinor Bose-Einstein condensates, Phys.
Rev. A 90, 013629 (2014).

[30] S. Knoop, T. Schuster, R. Scelle, A. Trautmann, J. Appmeier,
M. K. Oberthaler, E. Tiesinga, and E. Tiemann, Feshbach spec-
troscopy and analysis of the interaction potentials of ultracold
sodium, Phys. Rev. A 83, 042704 (2011).

[31] In the imaging, the spin axis ẑ was adiabatically rotated to the
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