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Bloch oscillations of atoms in optical lattices are a powerful technique that can dramatically boost the
sensitivity of atom interferometers to a wide range of signals by large momentum transfer. To leverage this
method to its full potential, an accurate theoretical description of losses and phases is required, going beyond
existing treatments. Here, we present a comprehensive theoretical framework for Bloch-oscillation-enhanced
atom interferometry and verify its accuracy through comparison with a numerical solution of the Schrödinger
equation. Our approach establishes design criteria to reach the fundamental efficiency and accuracy limits of
large momentum transfer using Bloch oscillations and allows us, in a broader context, to define the fundamental
efficiency limit of the transport of neutral atoms using optical lattices. We compare these limits to the capabilities
of current state-of-the-art experiments and make projections for the next generation of quantum sensors.
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Large-momentum-transfer (LMT) techniques are essential
tools to enhance the sensitivity of atom interferometers, which
are versatile quantum sensors capable of highly accurate and
precise measurements with numerous applications. These in-
clude the determination of fundamental constants like the
fine-structure [1,2] and gravitational constants [3], tests of
general relativity [4,5], as well as applications in geophysics
[6] and inertial navigation [6–9]. Bloch oscillations (BOs) of
atoms in optical lattices [10,11] are a frequently utilized LMT
technique in state-of-the-art experiments to generate momen-
tum changes of 100–1000 photon recoils to either measure the
fine-structure constant [1,2], hold atoms against gravity [12],
or realize large spatial separations [13,14], as illustrated in
Fig. 1(a). In these implementations, highly symmetric geome-
tries or differential measurement techniques were required
to suppress systematic phase uncertainties. Operating atom
interferometers beyond momentum changes of 1000 photon
recoils is a critical requirement for the detection of gravita-
tional waves in the mid-frequency band and the exploration
of ultralight dark matter and dark energy [15–20], as well as
in advancing our understanding of the fine-structure constant
measurement discrepancies [2]. For the continued progress of
these fields it is essential to develop a model that accurately
predicts losses and phase uncertainties for LMT sequences
of BOs. So far, control of the systematic phase uncertainty
is lacking due to the absence of a theory of the phase build-up
during BOs.
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The description of BOs is commonly based on the adiabatic
theorem using instantaneous Bloch states [21,22]. Figure 1(b)
illustrates an atomic wave packet localized in the fundamen-
tal Bloch band and adiabatically following the instantaneous
eigenenergies for a nonvanishing lattice acceleration. The loss
probability to neighboring Bloch bands at avoided crossings is
calculated using the Landau-Zener (LZ) formula [22,23]. The
inaccuracies of this model are well known [24–27], especially
considering deep lattice depths V0 � 20 Er . It is, however, in
this regime that one would need to operate to realize sizable
LMT processes. As V0 increases the Bloch bands become
increasingly flat, which violates the applicability of the LZ
formula. As we will show, the losses for a momentum transfer
of 1000 photon recoils based on the widely used LZ formula
differs by orders of magnitude from the numerical solution.
In this article we develop a theoretical framework for BO-
enhanced atom interferometers and establish design criteria
for LMT Bloch pulses, reaching their fundamental efficiency
limit. We use our model to confirm systematic limitations of
state-of-the-art experiments and verify its accuracy through
comparison with a numerical integration of Schrödinger’s
equation.

We consider an atom with mass m interacting with a
pair of two counterpropagating light fields of adjustable
intensity and frequency difference giving rise to an opti-
cal lattice with lattice constant d and wave number kL =
π/d . In a lattice-comoving reference frame, the Hamiltonian
reads [23]

H (t ) = p̂2

2m
+ V0(t ) cos2(kLx̂) + maL(t )x̂. (1)

The lattice depth is expressed by the two-photon Rabi fre-
quency V0(t ) = 2h̄�(t ). The lattice acceleration is set by the
frequency difference of the light fields aL(t ) = π

kL
∂t�ν(t )

[24]. An LMT Bloch pulse consists of three separate pro-
cesses, as illustrated in Fig. 1(d): First, during τload atoms
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FIG. 1. (a) Space-time diagram of a Mach-Zehnder LMT atom
interferometer consisting of two beam-splitter pulses (blue, BS) and
one mirror pulse (blue, M). Four sequences of BOs (orange, Bloch)
are used to sequentially accelerate and decelerate the arms of the
interferometer. (b) Pictorial representation of LMT Bloch pulse in
Bloch basis. (c) Pictorial representation of WS states |�α=0, 
=1〉
(filled blue) and |�α=1, 
=0〉 (filled orange) in tilted lattice potential
[see Eq. (1)]. (d) Lattice depth V0(t ) and acceleration aL (t ) vs time t
for an LMT Bloch pulse.

are adiabatically loaded into the comoving optical lattice with
peak lattice depth V0. Second, atoms and lattice undergo an
acceleration phase of duration T characterized by a peak
acceleration aL and a ramping time τramp. Finally, atoms are
unloaded from the optical lattice and will have experienced a
total momentum transfer of 2N h̄kL proportional to the num-
ber of BOs N = T/TB [28], where TB = 2h̄kL/maL denotes
the Bloch period.

We base our theoretical description on so-called Wannier-
Stark (WS) states |�α,
〉, which are (quasi-)bound eigenstates
of H (t ) [29,30],

H (t )|�α,
(t )〉 = [Eα,0(t ) + d
maL(t ) − i�α (t )/2]|�α,
(t )〉,
(2)

where 
 denotes the lattice-site quantum number and α the
quantum number labeling the so-called αth WS ladder. The
eigenvalues are complex energies that depend on V0(t ) and
aL(t ). Their imaginary part �α (t ) represents a linewidth for
the αth WS ladder and describes tunneling losses [30]. As
illustrated in Fig. 1(c), atoms that are localized in the tilted
potential [see Eq. (1)] can undergo tunneling events until they
escape from the optical lattice. In this case they behave like
free particles represented by the infinite tail of WS states in
opposite direction of motion of the optical lattice. To compute
the complex WS energies in Eq. (2), a numerical routine
closely related to Floquet theory is required [27,31]. We gen-
eralize this method to incorporate the treatment of adiabatic
acceleration pulses, as depicted in Fig. 1(d), by developing an
energy-sorting algorithm based on an analytical approxima-
tion for WS energies Eα,l [23]. Figure 2(d) displays that �α (t )
depends nontrivially on aL(t ), exhibiting tunneling resonances
[30]. In contrast, the loss rate �B based on the LZ formula
shows a monotonous behavior, differing dramatically from
�0. The position of the tunneling resonances can be explained
by identifying crossings of the real part of the WS energies
between different WS ladders, as shown in Figs. 2(a)–2(c). In
the past, the properties and existence of the WS spectrum were
controversially discussed [29,32–34], and only after decades
of research efforts could a rigorous justification of the spectral

FIG. 2. (a)–(c) Tilted potential [see Eq. (1)] for accelerations
indicated in (d) and a lattice depth of V0 = 20 Er , including WS en-
ergies. Red arrows represent process of resonant tunneling between
different WS ladders. (d) Linewidth of WS ladders for V0 = 20 Er vs
peak acceleration aL . Solid lines show linewidths for the first three
WS ladders. Dashed line shows the linewidth for the fundamental
WS ladder predicted by the LZ formula [23].

properties of H (t ) be achieved [30]. Since then, WS states
have been used to analyze experiments of cold atoms in
accelerated optical lattices [11,26,27,31]. We advocate that
a model based on WS states is the adequate picture to de-
vise LMT Bloch pulses reaching their fundamental efficiency
limit.

To realize optimal LMT Bloch pulses we propose adia-
batic control of atoms in WS eigenstates. We first focus on
the dynamics under the adiabatic approximation. Figure 2(d)
demonstrates that due to the generally narrower linewidth, it is
advantageous to drive LMT Bloch pulses in the fundamental
WS ladder [35]. This observation holds for arbitrary lattice
depths [23] and has direct implications for the process of
loading atoms into the optical lattice, which we infer from
the properties of WS states for vanishing accelerations. In
this limit we make use of the single-band approximation
and neglect hopping processes to neighboring lattice sites,
resulting in |�α,
〉|aL=0 = |wα,
〉, where |wα,
〉 are Wannier
states of the Bloch band α localized at lattice site 
. Con-
sequently, only atoms loaded into the fundamental Bloch
band serve as a suitable initial condition for the acceleration
phase to minimize tunneling losses. This is achieved for an
atomic momentum distribution ϕ(p) that vanishes outside
the Brillouin zone [−h̄kL, h̄kL] and sufficiently long load-
ing times τload, as is common in state-of-the-art experiments
[1,2,12–14]. If these requirements are violated, atoms will
populate excited WS ladders and experience increased tun-
neling losses, as seen in Fig. 2(d). We apply the adiabatic
approximation during τload and find |ψ (τload )〉 = ∑


 g
|w0,
〉
with

g
 =
∫ h̄kL

−h̄kL

dpϕ(p) e−i
∫ τload

0 dt ′E0[V0(t ′ ), p]/h̄eipd
/h̄, (3)

where E0(V0, p) are Bloch eigenenergies of H (t ) for vanishing
acceleration with a fixed lattice depth V0 and quasimomentum
p ∈ [−h̄kL, h̄kL]. Based on Eq. (2), we apply the adiabatic
approximation during the time T for Hamiltonians with a
discrete and nondegenerate complex spectrum [36–38]. As
long as there exists a finite complex energy gap between the
fundamental and excited WS states and for sufficiently small
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FIG. 3. Losses for an adiabatic 1000 h̄kL LMT Bloch pulse vs
peak acceleration aL for a given lattice depth V0 and ramping time of
τramp = 1 ms. The upper axis shows the corresponding acceleration
time T [see Fig. 1(b)]. Solid lines represent losses based on the WS
model [see Eq. (4)]. Dots show the numerical solution. Dashed lines
show the predicted losses based on the LZ formula [23].

changes of aL(t ), we write

|ψ (t )〉 =
∑




e−i
∫ t

0 dt ′E0,0(t ′ )/h̄e−id
pL (t )/h̄

× e− ∫ t
0 dt ′�0(t ′ )/2h̄ g
|�0,
(t )〉, (4)

where the time-dependent WS eigenvalue E0,0(t ′) − i�0(t ′)/2
is defined in Eq. (2) and the velocity of the optical lattice
as pL(t )/m = ∫ t

0 dt ′aL(t ′). Equation (4) describes phases and
losses of the atomic wave packet with a momentum distribu-
tion ϕ(p) undergoing an adiabatic LMT Bloch pulse.

The finite lifetime of WS states has important implications
when designing LMT Bloch pulses. Figure 3 shows that for
adiabatic LMT Bloch pulses the fundamental and dominant
loss mechanism is given by tunneling losses. This is demon-
strated by the excellent agreement between the adiabatic WS
model in Eq. (4) and a numerical solution, where we solve
Schrödinger’s equation for the Hamiltonian in Eq. (1) using
the split-step Fourier method [39,40]. We identify combina-
tions of optimal lattice depths and accelerations to minimize
losses for LMT Bloch pulses. They are directly connected
to �0 and the occurrence of resonant tunneling. In contrast,
the losses predicted by the LZ formula [21,22] deviate dra-
matically from the numerical solution for the entire range of
parameters shown.

We proceed to discuss nonadiabatic deviations from the
predictions of Eq. (4). At tunneling resonances the complex
energy gap can become very small and hence the tunneling
probability from the fundamental to excited WS ladders in-
creases when passing through them, leading to nonadiabatic
losses. Once atoms are localized in an excited WS ladder,
they are subject to increased tunneling losses quantified by
�α , as shown in Fig. 2(d), resulting in reduced fidelities.
Atoms that remain in excited WS ladders until aL(t ) is turned
off are localized in excited Bloch bands, as evident from
|�α,
〉|aL=0 = |wα,
〉. During the adiabatic unloading from the
optical lattice, these atoms are mapped to momenta that differ,
depending on the band number α, by multiples of ±2 h̄kL from
the target momentum 2N h̄kL. For constant accelerations the
Hamiltonian H (t ) ≡ H in Eq. (1) will be time-independent
and nonadiabatic losses cannot occur. The adiabaticity of an
LMT Bloch pulse can be controlled by adjusting the acceler-
ation ramp time τramp [41]. In Fig. 4 we numerically analyze

FIG. 4. Losses for a 1000 h̄kL LMT Bloch pulse vs acceleration
ramp time τramp for a peak lattice depth of V0 = 20 Er . Red solid line
represents losses based on the WS model. Dots show the results of
numerical solutions, distinguishing between total losses from the WS
ladder α = 0 (blue dots), losses to the WS ladder α = 1 (orange
dots), and tunneling losses (green dots). Solid purple line shows
spontaneous emission losses [23]. The peak acceleration is optimally
chosen at aL = 393.5 m/s2, as determined from Fig. 3.

tunneling and nonadiabatic losses for a 1000 h̄kL LMT Bloch
pulse. For small times τramp, the flat-top pulse, as depicted
in Fig. 1(d), resembles a box pulse causing a large fraction
of atoms to tunnel to excited WS ladders. This results in
an increased amount of tunneling losses with contributions
from all WS ladders that were populated during the pulse,
as shown in Fig. 4. For larger times τramp nonadiabatic tun-
neling to excited WS ladders is significantly reduced and the
total losses can be accurately computed using Eq. (4). For
increasingly larger times τramp we observe a slight increase
of nonadiabatic excitations due to the prolonged time atoms
spend at tunneling resonances. This gives rise to an optimal
acceleration ramp time τramp with minimal losses, accurately
determined by Eq. (4).

Moreover, our model establishes a general result for neu-
tral atom transport via optical lattices. Since the generic WS
spectrum in Eq. (2) obeys the property �0 � �α>0, the fun-
damental efficiency limit for a generalized LMT Bloch pulse,
defined by arbitrary lattice depth and acceleration ramps, is
determined by tunneling losses of the fundamental WS ladder
Pfundamental = e− ∫ t

0 dt ′ �0[V0(t ′ ),aL (t ′ )]/h̄. This limit equally applies
to nonadiabatic transport schemes that are, for instance, pro-
posed by quantum optimal control theory [42–47].

Apart from tunneling and nonadiabatic losses, atoms will
also experience losses due to spontaneous emission. We es-
timate this additional loss channel based on a laser system
used in a state-of-the-art experiment [13] for an optimal LMT
Bloch pulse with minimal losses at peak lattice depth V0 =
20 Er and peak acceleration aL = 393.5 m/s2, as determined
from Fig. 3. In this setting losses due to spontaneous emission
are three times larger than tunneling losses [23], highlighting
the need for more powerful laser systems to operate efficient
LMT Bloch pulses. However, considering a recently devel-
oped laser system for atom interferometry [48] losses due to
spontaneous emission are orders of magnitude smaller than
tunneling losses for moderate lattice depths V0 � 35 Er [23],
as shown in Fig. 4 for V0 = 20 Er .

The excellent agreement between the WS model and the
numerical solution enables us to accurately quantify system-
atic errors connected to adiabatic LMT Bloch pulses used
in atom interferometers [49]. A relevant contribution to the
overall phase variance is induced by intensity fluctuations of
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FIG. 5. Phase uncertainty induced by lattice-depth fluctuations
vs peak lattice depth V0 for different peak accelerations aL . Solid
lines represent the phase uncertainty based on the WS model, dashed
lines show the phase uncertainty evaluated with the adiabatic Bloch
model [23] for (a) exemplary peak accelerations that allow for high-
fidelity LMT Bloch pulses, as determined in Fig. 3, and (b) the local
gravitational acceleration.

the light pulse. Based on our model, the phase accrued in an
adiabatic 2N h̄kL Bloch pulse in a single interferometer arm
is given by φ = E0,0NTB/h̄; cf. Eq. (4). A relative fluctuation
�V in lattice depth between two arms in Fig. 1(a) will there-
fore induce a variation of the relative phase

�φ

N
�V

V0

= 2π

∣∣∣∣∂E0,0

∂V0

∣∣∣∣ V0

dmaL
. (5)

Here, we refer the phase fluctuation to the number of BOs N
and the relative lattice-depth fluctuation �V/V0. In Figs. 5(a)
and 5(b) we show phase changes for exemplary accelerations
that allow for high-fidelity LMT Bloch pulses. We observe
a general tendency towards larger phase uncertainties using
smaller accelerations due to the prolonged time atoms spend
in the optical lattice; cf. Eq. (5). Based on Fig. 5(a), we
consider the requirements to achieve a phase uncertainty of
�φ = 1 mrad. We find that the level of relative intensity sta-
bilization needed in this case is �V/V0 � 10−6. This presents
a significant challenge in utilizing LMT Bloch pulses in atom
interferometers and highlights the advantage of symmetric
atom interferometer geometries in alleviating the detrimental
effects of relative intensity fluctuations [13,14].

We use our model to explain the performance limitations
of three different state-of-the-art experiments [2,12,17] due to
�V , which originates from a variance in the tilt angle �θ
of the beam axis, causing transversal displacements of the
atomic clouds. First, we analyze the fine-structure constant
measurement presented in Morel et al. [2,50]. This setup
utilizes a Ramsey-Bordé geometry with 87Rb atoms, where
both interferometer arms are accelerated simultaneously with
a momentum transfer of 1000 h̄kL. For small �θ and a given
separation between the interferometer arms z, this results in
�V/V0 = �θ2z2/2w2

0, using the harmonic approximation for
the Gaussian laser mode with waist w0. To reach a relative
uncertainty in h/m at the level of 10−9 in one shot, four
central fringes need to be resolved with a phase uncertainty
of �φ = 1 mrad, as reported in [50]. Using our model, we
provide an upper bound for the relative intensity stabilization
at �V/V0 � 1.51 × 10−6 which is equivalent to a maximal
variance of the tilt angle of �θ � 16.5 mrad. To improve the
precision by one order of magnitude, the variance needs to be
bound by �θ � 5.2 mrad.

As a second example, we analyze the cavity experiment
presented in Panda et al. [12]. In this setup, a spatially sepa-
rated superposition of 133Cs atoms is adiabatically loaded into
a vertically aligned optical lattice and held against gravity;
cf. Fig. 5(b). The record-breaking coherence time of 1 minute
corresponds to N ≈ 92 435 BOs. Again, oscillatory tilts of the
vertical cavity axis cause a relative lattice-depth instability
between the atomic clouds of �V/V0 � �θz/w0 in the case
of a shallow optical lattice with V0 = 7 Er [12]. These oscil-
latory tilts lead to a loss of contrast, which are explained in
[12] using semiclassical Monte Carlo simulations that model
the transversal motion of atoms in the Gaussian beam. Al-
ternatively, we infer from Eq. (5) of our one-dimensional
model a phase uncertainty of �φ ≈ 0.9 rad for a holding
time of 1 minute and a tilt uncertainty of �θ = 300 µrad
[12]. This is consistent with the loss of contrast observed
in the experiment. The temperature dependency of the ob-
served contrast decay [12] could be treated in our description
by extending to a cylindrically symmetric description of the
Gaussian beam.

As a third example, we analyze a proposal for gravita-
tional wave detection using atom interferometers presented in
Canuel et al. [17,51]. The targeted baseline design foresees
a double-loop geometry, including LMT beam splitters based
on Bragg diffraction [52,53] and BOs with N = 500 and a
phase resolution of �φ = 1 µrad. An optimal combination
of lattice depth and acceleration for LMT Bloch pulses can
be determined with the help of the WS model, as presented
in Fig. 3. For exemplary lattice depths and accelerations
based on Fig. 5(a) we quantify the necessary relative inten-
sity stabilization between the two atomic trajectories in each
interferometry arm to the level of �V/V0 ≈ 10−9. This result
highlights the stringent requirements necessary for gravita-
tional wave detection using LMT atom interferometers.

In summary, we have developed a model to design and
evaluate BO-enhanced atom interferometers, providing in-
sights into the fundamental loss processes and quantifying
systematic errors. More generally, we defined the fundamental
efficiency limit of neutral atom transport using optical lat-
tices. Using our framework, we show that there exist optimal
combinations of ramping times, peak lattice depths, and ac-
celerations to drive high-fidelity LMT Bloch pulses. To verify
these predictions, we compare with numerical solutions of
Schrödinger’s equation. Our theoretical description provides
the basis for considering other relevant systematic errors, such
as phase noise or residual vibrations. Furthermore, we can
consider the influence of spontaneous emission, including the
analysis of transversal effects [54,55]. In this context, our
theoretical work presented in this article is the foundational
piece for a comprehensive theoretical framework of LMT
Bloch pulses for high-accuracy and high-precision atom in-
terferometers.

Note added. Recently, we discussed with the group of
S. Gupta, University of Washington, Seattle, recent re-
lated experimental work [56]. We present a comprehensive
discussion and explanation of their results using the WS
model in Eq. (4) in the Supplemental Material [23]. The
results presented here were achieved by computations car-
ried out on the cluster system at the Leibniz University of
Hannover, Germany.
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