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Experimental observation of parabolic wakes in thin plates
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Wakes are medium perturbations created by a moving object, such as wave patterns behind boats, or wingtip
vortices following an aircraft. Here, we report about an experimental study of an uncharted form of parabolic
wakes occurring in media with the group velocity twice larger than the phase velocity, as opposed to the
conventional case of Kelvin wakes. They are formed by moving a laser spot on a thin plate, which excites a
unique wake pattern made of confocal parabolas, due to the quadratic dispersion of the zero-order flexural Lamb
mode. If the spatial dimensions are rescaled by the perturbation velocity and material constant, we obtain a single
universal wake with constant parabolic focal lengths. We demonstrate an evanescent regime above the critical
frequency where the wave components oscillate exclusively in the direction parallel to the perturbation path, with
an opening angle of 90◦. We define a dimensionless number, analogous to Froude and Mach numbers, which
determines whether or not the complete parabolic wake pattern will be excited by the moving source. Finally,
we generalize the physics of wake shapes to arbitrary dispersion relations.
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The broadest definition of wakes refers to a pattern, typi-
cally made of waves, excited by the movements of an object
or a perturbation in a medium. The most prominent example
is the Kelvin wake pattern generated by a moving object on
the surface of water [1–12]. A second common use of the
term wake is associated with the circulating turbulent flow
behind a moving object in a fluid (Kármán vortex) [13,14], as
seen with phenomena like wingtip vortices behind an aircraft
[15–18]. Additional associations encompass wakes formed
behind charged objects in supersonic plasma flows [19–21] or
laser-driven plasma wake fields [22–25], which show promise
as an alternative method for electron acceleration. This defini-
tion also includes Mach cones [20,26] or Cherenkov radiation
[27–30], which are less often called wakes due to the absence
of dispersion wave interference.

The wake pattern on the surface of deep water depends
on whether the dispersion is capillary dominated [31–33],
with ω ∝ k3/2 being the relation between angular frequency
ω and wave number k, or if it is gravity dominated [8,34],
with ω ∝ k1/2. The latter power law yields the commonly
observed Kelvin wake pattern, typical of the wakes origi-
nating from ducks or boats as they move. The Kelvin wake
patterns exhibit the remarkable property that their shape, in
the case of sufficiently slow movements, is independent of
the perturbation velocity, when properly rescaled coordinates
are used. The half-cone opening angle is constant at the value
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arcsin(1/3) ∼= 19.47◦. This is a well-researched situation of
the wakes on water where the group velocity is twice lower
than the phase velocity.

Our motivation is to extend the scope of the wake research
to general power laws by proving that the wakes can be
observed in media with different dispersion properties and
even in solids. In this work, we experimentally explore the
behavior of wake patterns excited in a medium in which
the power law governing the dispersion relation is exactly
inverse to the one of Kelvin wakes, namely ω ∝ k2. These
wakes are obtained behind a fast-moving perturbation on a
thin plate. The zero-order asymmetric Lamb mode of the
plate exhibits a dispersion relation well approximated by
ω = k2/α, where α is a constant dependent on the thin plate
thickness and material properties. The group velocity cg =
dω/dk = 2k/α is therefore twice higher than the phase ve-
locity cph = ω/k = k/α, and proportional to the square root of
frequency, setting a unique stage for the study of the new form
of wakes.

The perturbation in our case is a focused laser beam il-
luminating the surface of a polymer plate [Fig. 1(a)]. The
induced heating leads to a localized reduction in the Young’s
modulus of the plate. The flexural Lamb waves are excited
due to the temperature gradient and the uneven temperature
expansion along the plate thickness at the heated position. In
our experiment, galvanometric scanning mirrors were used to
displace the heated position at constant velocities vp in a linear
trajectory. The angle between the plate surface and the laser
beam was set to 20◦ at the midpoint of the scanning area.
Consequently, a small change in the galvanometric mirror’s
angle provided a large alteration in the perturbation’s position.
This, in turn, allowed us to achieve perturbation velocities
vp fast enough to observe a broad range of parabolic wakes.
Moreover, this setup enabled us to investigate the impact of
the laser spot size on the formation of the parabolic wakes.
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FIG. 1. Schematic of the setup, where a moving laser beam excites elastic waves on a thin plate (a). Measured parabolic wake patterns at
t = 0μs (b), (d), (f) and t = 70μs (c), (e), (g) at three distinct perturbation velocities vp [(b), (c), (d), (e), and (f), (g)]. The red dashed-line
square in (f) shows a portion of the wake whose shape is identical to the one observed over the full range in (b), when both axes are rescaled
by a factor 3, corresponding to the ratio of vp values in these two cases.

For more details regarding the experimental procedure and the
setup, please refer to the Supplemental Material [35].

In Figs. 1(b)–1(g), we present the parabolic wakes captured
by a laser vibrometer for three distinct vp values and two
different time instances. The out-of-plane velocity of the plate
was measured for each scanning position through separate
wake excitations. The excitation laser was in focus at the
position x‖ = 0, corresponding to time t = 0 [Figs. 1(b), 1(d),
and 1(f)]. Additional wakes for 12 different vp values and
a scenario involving an elevated temperature of the polymer
plate are presented in the Supplemental Material [35].

The wave pattern shape of Fig. 1(b) is identical to that
confined within the red dashed-line square in Fig. 1(f), which
has both axes reduced by a factor 3, chosen to correspond
to the ratio between the values of vp = 221 m/s in Fig. 1(f)
and vp = 73 m/s in Fig. 1(b). In contrast, Kelvin wakes fol-
low an inverse rescaling law, where higher vp provide larger
dominant wavelengths, while rescaling of spatial coordinates
in both directions does not change the cone opening angle.
In our case, the measured parabolas all have a curvature that
linearly increases with vp. The focal distance, which is in-
versely proportional to the curvature of the parabolic ridges
in Figs. 1(b)–1(g), is therefore inversely proportional on vp.

As wakes result from the interference of many frequency
components, we propose to study the different spectral com-
ponents of the wakes separately. As examples, we show in
Figs. 2(d)–2(f) [respectively Figs. 2(g)–2(i)] the measured
scans from Figs. 1(b) and 1(c) at vp = 73 m/s [respectively
from Figs. 1(f) and 1(g) at vp = 221 m/s], filtered to three
selected narrow-band frequencies, which were then processed
to obtain data points in Figs. 2(a)–2(c), marked by yellow
squares (respectively green circles).

In our experiment [Fig. 2(a)], we observe that the wave
number of the wakes in the direction parallel to the motion is
fixed by vp, and follows the law

k‖(ω) = ω

vp
. (1)

In particular, it is neither influenced by the dispersion law
of the medium nor the wave velocities in the medium. Instead,

its dependency on ω is entirely determined by vp. This condi-
tion matches the parallel projection of the phase velocity with
the source velocity. Using the dispersion law ω = k2/α where
k =

√
k2
‖ + k2

⊥, we can express the wave number of the wakes
in the direction perpendicular to vp:

k⊥(ω) =
√

αω − k2
‖

=
√

αω − ω2

vp
2

= αvp

√
ω

αvp
2

− ω2

α2vp
4
. (2)

If we introduce rescaled variables k̂⊥ = k⊥/αvp and k̂‖ =
k‖/αvp, as well as ω̂ = ω/αvp

2, we can simplify Eqs. (1) and
(2) to

k̂‖(ω̂) = ω̂, k̂⊥(ω̂) =
√

ω̂ − ω̂2. (3)

The above formula for rescaled wave numbers k̂‖(ω̂) and
k̂⊥(ω̂) is represented in Figs. 2(a) and 2(b) with thick red
lines and compared to the experimental results obtained for
ten different source velocities ranging from 73 m/s to 292
m/s identifiable by the shades of gray. The opening angle
between the propagation direction of the wave component
and the direction perpendicular to the source motion at a spe-
cific frequency, ϕ(ω̂) = arctan (k̂‖(ω̂)/k̂⊥(ω̂)), is also shown
in Fig. 2(c). As a result of the rescaling, the darker shades
of gray, corresponding to higher vp, stop at lower values of
ω̂ in Figs. 2(a)–2(c), even though the range of nonrescaled
ω is constant for all vp. Figures 2(a)–2(c) in their original
(nonrescaled) coordinates are provided in the Supplemental
Material [35].

Equation (3) predicts that k̂⊥(ω̂) is real for ω̂ < 1, when
ω is smaller than the critical frequency ωcr = αv2

p . The angle
ϕ(ω̂) increases until it reaches 90◦ at ωcr. This is the highest
frequency at which the wake components are purely propagat-
ing. The wake component at ωcr propagates in the direction
parallel to the perturbation path with the velocity equal to vp.
It can therefore be directly expressed as ωcr = vp/d , where
d is the distance between the vertices of two parabolas de-
fined by the maximum ridges of the wake pattern [Fig. 1(d)].
Interestingly, an opposite behavior is true for Kelvin wakes.
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FIG. 2. The measured wave numbers k̂‖ (a) and k̂⊥ (b) for ten different vp values (grey lines) collapse on the red curves predicted by Eq. (3)
except near the critical frequency (at ω̂ = 1). Around the critical frequency, variations in the perturbation size along the position x‖ (due to
the laser beam moving in and out of focus) become important. These variations are accounted for in a refined model (blue lines). The angle ϕ

between the direction of vp and the wave fronts becomes larger as ω̂ increases, reaching almost 90◦ at the critical frequency ω̂ = 1 (c). Beyond
this frequency, Eq. (3) predicts that k̂⊥ becomes imaginary, which defines the evanescent regime (f). When the parabolic wake patterns from
Fig. 1 are filtered to narrow frequencies (d)–(i), represented by yellow squares and green circles, the openings of the wave fronts adhere to the
Mach law in respect to the wave velocity at the specific frequency.

The k⊥(ω) of Kelvin wakes is real above a critical frequency,
which can be estimated from the wavelength of the wave com-
ponents propagating directly behind the moving perturbation.

For parabolic wakes, k̂⊥(ω̂) is imaginary at ω̂ > 1. In this
evanescent regime, wave components are localized to the
vicinity of the perturbation path, oscillating only along the
direction parallel to vp, as governed by Eq. (1). This effect
is evident in Fig. 2(f). The exponential decay length in the di-
rection perpendicular to vp of the evanescent waves decreases
with increasing frequencies. Due to the limited frequency
range of the measuring system and the increase of intrinsic
losses at higher frequencies, the evanescent regime (ω̂ > 1)
is more easily observed in the measurements performed at
lower vp.

While k̂‖ falls on the same curve for all vp values, there is
a greater discrepancy between the measured k̂⊥ and Eq. (3),
especially around ωcr. This arises due to variations in laser
beam diameter as it moves along in the direction of vp. As the
beam approaches the focal point, higher frequency compo-
nents are stimulated with higher amplitudes (and conversely
as it moves away from the focal point). These alterations of
the excitation amplitude spectrum along x‖ leads to a nonzero
imaginary part of k̂‖. As a result, the imaginary part of k̂⊥

becomes nonzero even below the critical frequency, and the
real part of k̂⊥ is underestimated by Eq. (2) when nearing ωcr

[Fig. 2(b)]. This effect becomes more pronounced for larger vp

values. Consequently, for the field map of Fig. 2(i), the angle
ϕ is 65◦ [green point in Fig. 2(c)], instead of 90◦ as predicted
by the theory. The effect of the laser focusing and defocusing
along the position x‖ can be accounted for in a refined model
(Supplemental Material [35]), yielding the thick blue lines,
which fit the measurements better than the reduced model of
Eq. (3).

Having understood how each frequency behaves individu-
ally, we can now express the wake pattern as the real part of
the following sum over all excited waves that verify Eqs. (1)
and (2):

Z (x, y, t ) =
∫ ωMax

0
A(ω)e−ikxxe−ikyye−iωt dω

=
∫ ωMax

0
A(ω)e−i(ω/vp )xe−i

√
αω−(ω2/vp

2 ) ye−iωt dω.

(4)

ωMax represents the highest frequency being excited, while
A(ω) is the excitation amplitude at a given ω. The amplitude
spectrum of the measured parabolic wake is provided in the
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FIG. 3. Time derivative of Eq. (5) obtained by the stationary phase approximation (a). The maximum ridges of the pattern follow shapes
of confocal parabolas, having focal lengths f̂n = φp + π/4 + 2πn, where φp = π/2 due to the velocity measurement. The parabolic shape of
the interference pattern can be elucidated through the concept of parallel lines (wave fronts) (b). Their slope (or angle ϕ) is computed from
their periodicity (wavelength) using the dispersion relation. Their origin corresponds to the phase of the wake excitation. If the dimensions
x‖ and y⊥ are rescaled by the factor αvp, the maximum and minimum ridges observed in the measurement (full wakes at three chosen speeds
shown in Fig. 1) align with the two confocal parabolas (red dashed lines) with focal lengths of 3π/4 and 3π/4 + π , respectively, across all
ten different vp [(c), gray shades] as well as for the scenario when α is increased [(c), blue].

Supplemental Material [35] for 12 different perturbation ve-
locities vp.

Using the same rescaled variables as those employed for
Eq. (3), the out-of-plane displacement of the interference
wake pattern can be formulated in rescaled position coordi-
nates: x̂‖ = x‖αvp, ŷ⊥ = y⊥αvp, and rescaled time t̂ = tαvp

2

as

Z (x̂‖, ŷ⊥, t̂ ) =
∫ ω̂Max

0
A(ω̂)e−iω̂x̂e−i

√
ω̂− ω̂2 ŷe−iω̂t̂ dω̂. (5)

Analogously to the case of Kelvin wakes, the integral
solution can be expressed using the stationary phase approx-
imation (please refer to the Supplemental Material [35]). In
order to explain the parabolic wake pattern of the velocity
(out-of-plane x‖ − y⊥), which is what we measure, we need
to differentiate Eq. (5) with respect to t̂ . Figure 3(a) shows
the stationary phase approximation of the time derivative of
Eq. (5) at t̂ = 0 and absolute ŷ⊥ values. The two-dimensional
interference pattern has ridges and zero values that conform
to the shape of parabolas. All their focal points are located
at the current position of the perturbation (x̂‖, ŷ⊥) = (0, 0).
The focal lengths of the n confocal parabolas (i.e., the distance
between their vertices and the current position of the pertur-
bation), lying on the maximum ridges of the wake pattern,
are given by f̂n = φp + π/4 + 2πn in (x̂‖, ŷ⊥) coordinates.
φp is a global constant phase shift depending on the details
of the excitation physics and n is an integer labeling the
considered parabola. For the out-of-plane velocity measured
in our experiment, a phase φp equal to π/2 is expected and
observed, since the maximum plate displacement of the wake
field occurs at the point illuminated by the heating laser.
These statements were cross-validated by numerical integral
solutions and analytical stationary phase approximation as
detailed in the Supplemental Material [35].

We now propose a geometrical construction of the
parabolic pattern [Fig. 3(b)]. For this, one can draw parallel
lines representing the wave fronts of specific narrow-band

frequency components [similar to the examples from the mea-
surement in Figs. 2(d)–2(i)]. These lines have inversely signed
slopes [or angle ϕ in Figs. 2(d)–2(i)] for positive and negative
ŷ⊥, representing Mach cones with the symmetry line on the
x‖ axis. The relation between these slopes and the distance
between two neighboring lines is defined by the dispersion re-
lation (cph at specific frequency component), while the origin
of the lines—intersection with the ordinate axis—is defined
by φp. The lines are tangent to confocal parabolas with fo-
cal lengths f̂ ′

n = φp + 2πn, as shown in the Supplemental
Material [35]. This approach also allows us to recover the
wake patterns associated with other dispersion relations, for
example to compare with Kelvin wakes. When the line bun-
dles are replaced by narrow-band frequency components (with
the lines following the maxima of the two-dimensional sloped
harmonic functions), a pattern similar to Fig. 3(a) emerges.
The parabolas situated on the maximum ridge of this wake
pattern are more open and have larger foci, shifted by π/4.
This is because all the tangent lines fall outside the parabolas
with focal lengths f̂ ′

n = φp + 2πn.
The focal lengths of the confocal parabolas were mea-

sured experimentally by determining the position x‖ of the
maximum signal amplitude (and the first minimum signal am-
plitude in the positive direction from the maximum) for all the
positions y⊥, for all time instances when the parabolic wake
pattern was within the scanned region, and for ten different
vp. The obtained mean values of the position x‖ along with
their standard deviation bands in rescaled coordinates (x̂‖, ŷ⊥)
are presented in Fig. 3(c). The curves obtained at all ten
different speeds (coded in gray shades) and at the increased α
(blue) align with two confocal parabolas having focal lengths
3π/4 (maximum) and 3π/4 + π (minimum). This provides
validation for our mathematical models and the universality
of the parabolic wake pattern.

Let us now derive the shape of the caustics depicted in
Fig. 3(b). The waves are approximated as trains of lines de-

fined by the condition
⇀

k · ⇀

r = 2πn, where n is an integer,
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FIG. 4. Two wave fronts (black lines) that are close in frequency interfere constructively at a fixed point, depicted in green (a). We use this
fixed-point condition to derive caustic wave patterns for arbitrary power laws (b), with the p = 1/2 (Kelvin wake, black), p = 3/2 (capillary
wake, blue), p = 2 cases (parabolic wake, red), and p = ∞ (hypothetical, green).

⇀

r = (x̂ , ŷ ), and
⇀

k = (k̂x, k̂y). Assuming a general power-law
dispersion ω̂(|k̂|) = |k̂|p

and using the direct equivalent of
Eq. (3), this condition yields

x̂ = 2πn

ω̂
− ŷ

√
ω̂

2
p

ω̂2
− 1. (6)

To find the caustic, we must find a point along this line
that remains fixed under small variations in ω̂, as shown in
Fig. 4(a). In particular, the x̂ coordinate of this fixed point does
not change under a small variation in ω̂, yielding the condition
∂ω̂x̂ = 0. Together with Eq. (6), this allows us to solve for
the coordinates of the caustic point associated to the angular
frequency ω̂, namely

x̂ = 2πn

p − 1
(pω̂1− 2

p − ω̂−1),

ŷ = p
2πn

p − 1

√
ω̂

− 2
p − ω̂

2− 4
p . (7)

This parametric expression contains the Kelvin-wake case
(p = 1/2), the capillary-wave case (p = 3/2), and the case
treated in the main text (p = 2). As shown in Fig. 4(b), it also
allows us to recover the asymptotic pattern corresponding to
p tending towards infinity. In our case of interest, p = 2, we
can go further and remove ω̂ from Eq. (7). As expected, we
obtain parabolic caustics satisfying

ŷ = 4πn

√
1 − x̂

2πn
. (8)

To achieve the complete parabolic wake pattern, it is essen-
tial that the moving perturbation excites frequencies reaching
at least until ωcr. This condition is not fulfilled when the length
of the perturbation spot L is excessively large or αvp is overly
high. In such cases, the parabolic wake pattern starts to open
from the front, where the waves depart from the perturbation
at ϕ = 90◦. Due to the lack of the frequency components with

larger ϕ (having the wider cone opening), the parabolic wake
pattern tends to approximate the shape of a Mach cone. This
situation is similar to the transition between Kelvin and Mach
regimes, wherein the cone openings are narrower than the
Kelvin angle if low-frequency components are not excited, for
instance in the case of excessively small objects moving on a
water surface with too high velocity [6,7].

In analogy with the Mach number for nondispersive media
and the Froude number for Kelvin wakes, a dimensionless
number that governs these physics can be defined for me-
dia with quadratic dispersion, as R = vpαL. This number
measures the ratio between the perturbation velocity and the
critical velocity vcr = 1/αL. The wake pattern has its com-
plete shape around the vertices of parabolas when R � 1
[Figs. 1(b)–1(f)]. All frequency components up to ωcr are
excited if L is sufficiently small at specific vp. This is not the
case in Fig. 1(g). Since the laser is out of focus, the value of
L is too high. At lower values of vp, the criterion R � 1 is
achieved for smaller L. In this case, the parabolas of the wake
pattern will be closed at their vortices, however, they will have
a smaller slope (longer focal lengths). In other words, only a
limited area around the central part of the rescaled universal
wake pattern will be visible.

To summarize, we provided an analytical explanation for
experimentally observed parabolic wakes propagating in a
medium with quadratic dispersion. We have shown that the
observed pattern is universal once the coordinates are rescaled
by the velocity and material factors. The equations define two
regimes (propagating and evanescent) separated by ωcr. In
opposition to the Kelvin wake, the wave components below
ωcr produce the parabolic wake, while evanescent wave be-
havior is observable under the condition that the addressed
frequency ω � ωcr. This condition is reminiscent to the criti-
cal angle behavior in the phenomenon of total reflection. The
evanescent waves propagate solely along the trajectory of the
moving perturbation, instead of along a spatial interface for
the phenomenon of total reflection.
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Our findings can be extended to other phenomena gov-
erned by quadratic (or even other power laws) dispersion,
such as flexural phonons on graphene membranes [36–38] and
specific regimes of polaritons in semiconductor microcavities
[39–41].

We also demonstrated that Lamb waves can be generated
not only by a laser pulse as a fast temporal change in il-
luminating power, but also by swift spatial movements of a
continuous laser beam. This phenomenon holds potential for
applications in contact-free damage detection and imaging of
mechanical properties that influence the shape of the parabolic
wake. Our findings may help to improve the understanding

of elastic waves emitted by a moving crack front eventually
occurring in silicon wafers [42–44].

In our experiment, the wave propagation properties were
altered by inducing changes in the heat distribution at the spot
of the moving perturbation. Interesting wave phenomena are
anticipated to emerge as a consequence of interaction between
the moving perturbation and the wake pattern that was excited
at a prior temporal instance (similar to a study on water waves
[45]). This situation occurs when the trajectory of the moving
perturbation deviates from a straight path, when vp is not
constant, or when the intensity of the perturbation varies over
time.
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[27] N. Razpet and A. Likar, Čerenkov radiation through the Hamil-
tonian approach, Am. J. Phys. 78, 1384 (2010).

[28] P. Genevet, D. Wintz, A. Ambrosio, A. She, R. Blanchard, and
F. Capasso, Controlled steering of Cherenkov surface plasmon
wakes with a one-dimensional metamaterial, Nat. Nanotechnol.
10, 804 (2015).

[29] A. J. Macleod, A. Noble, and D. A. Jaroszynski, Cherenkov ra-
diation from the quantum vacuum, Phys. Rev. Lett. 122, 161601
(2019).

[30] I. Carusotto, S. X. Hu, L. A. Collins, and A. Smerzi,
Bogoliubov-Cerenkov radiation in a Bose-Einstein condensate
flowing against an obstacle, Phys. Rev. Lett. 97, 260403 (2006).

[31] F. Moisy and M. Rabaud, Mach-like capillary-gravity wakes,
Phys. Rev. E 90, 023009 (2014).

[32] J.-C. Ono-dit-Biot, M. Trejo, E. Loukiantcheko, M. Lauch, E.
Raphaël, K. Dalnoki-Veress, and T. Salez, Hydroelastic wake
on a thin elastic sheet floating on water, Phys. Rev. Fluids 4,
014808 (2019).

L032027-6

https://doi.org/10.1243/PIME_PROC_1887_038_028_02
https://doi.org/10.1119/1.13550
https://doi.org/10.1088/0957-0233/13/9/707
https://doi.org/10.1017/S0022112085002646
https://doi.org/10.1115/1.2730847
https://doi.org/10.1103/PhysRevLett.110.214503
https://doi.org/10.1017/jfm.2013.607
https://doi.org/10.1119/1.4793510
https://doi.org/10.1016/j.euromechflu.2020.10.008
https://doi.org/10.1016/j.euromechflu.2014.03.012
https://doi.org/10.1017/jfm.2021.193
https://doi.org/10.1209/epl/i2002-00626-8
https://doi.org/10.1017/S0001924000000531
https://doi.org/10.1364/OE.27.001142
https://doi.org/10.1063/1.5065197
https://doi.org/10.1063/1.857606
https://doi.org/10.1063/1.874067
https://doi.org/10.1088/0741-3335/52/12/124004
https://doi.org/10.1103/PhysRevLett.120.226801
https://doi.org/10.1103/PhysRevLett.61.98
https://doi.org/10.1038/431515a
https://doi.org/10.1038/nature05538
https://doi.org/10.1038/nature13882
https://doi.org/10.1103/PhysRevE.62.4162
https://doi.org/10.1119/1.3483788
https://doi.org/10.1038/nnano.2015.137
https://doi.org/10.1103/PhysRevLett.122.161601
https://doi.org/10.1103/PhysRevLett.97.260403
https://doi.org/10.1103/PhysRevE.90.023009
https://doi.org/10.1103/PhysRevFluids.4.014808


EXPERIMENTAL OBSERVATION OF PARABOLIC WAKES … PHYSICAL REVIEW RESEARCH 6, L032027 (2024)

[33] E. Raphaël and P. G. de Gennes, Capillary gravity waves caused
by a moving disturbance: Wave resistance, Phys. Rev. E 53,
3448 (1996).

[34] F. S. Crawford, Speed of gravity waves in deep water: Another
elementary derivation, Am. J. Phys. 60, 751 (1992).

[35] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.L032027 for more details regard-
ing the experiment and the refined analytical models.

[36] E. Mariani and F. von Oppen, Flexural phonons in free-standing
graphene, Phys. Rev. Lett. 100, 076801 (2008).

[37] W. L. Z. Zhao, K. S. Tikhonov, and A. M. Finkel’stein, Flexural
phonons in supported graphene: From pinning to localization,
Sci. Rep. 8, 16256 (2018).

[38] A. Taheri, S. Pisana, and C. V. Singh, Importance of quadratic
dispersion in acoustic flexural phonons for thermal transport of
two-dimensional materials, Phys. Rev. B 103, 235426 (2021).

[39] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I.
Carusotto, R. Houdré, E. Giacobino, and A. Bramati, Superflu-
idity of polaritons in semiconductor microcavities, Nat. Phys. 5,
805 (2009).

[40] C. Ciuti and I. Carusotto, Quantum fluid effects and paramet-
ric instabilities in microcavities, Phys. Status Solidi 242, 2224
(2005).

[41] I. Carusotto and C. Ciuti, Probing microcavity polariton super-
fluidity through resonant rayleigh scattering, Phys. Rev. Lett.
93, 166401 (2004).

[42] D. Landru, D. Massy, N. Ben Mohamed, O. Kononchuk, F.
Mazen, S. Tardif, and F. Rieutord, Fracture wake patterns in
brittle solids, Phys. Rev. Appl. 15, 024068 (2021).

[43] D. Massy, F. Mazen, D. Landru, N. Ben Mohamed, S. Tardif, A.
Reinhardt, F. Madeira, O. Kononchuk, and F. Rieutord, Crack
front interaction with self-emitted acoustic waves, Phys. Rev.
Lett. 121, 195501 (2018).

[44] P. Ronseaux, F. Madeira, F. Mazen, D. Landru, O. Kononchuk,
S. Tardif, and F. Rieutord, Experimental study of post-crack
vibrations in dynamic fracture, J. Appl. Phys. 129, 185103
(2021).

[45] C. d’Hardemare, S. Wildeman, A. Eddi, and E. Fort, Space-time
folding of the wake produced by a supervelocity rotating point
source, Phys. Rev. Lett. 122, 104301 (2019).

L032027-7

https://doi.org/10.1103/PhysRevE.53.3448
https://doi.org/10.1119/1.17083
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.L032027
https://doi.org/10.1103/PhysRevLett.100.076801
https://doi.org/10.1038/s41598-018-34426-3
https://doi.org/10.1103/PhysRevB.103.235426
https://doi.org/10.1038/nphys1364
https://doi.org/10.1002/pssb.200560961
https://doi.org/10.1103/PhysRevLett.93.166401
https://doi.org/10.1103/PhysRevApplied.15.024068
https://doi.org/10.1103/PhysRevLett.121.195501
https://doi.org/10.1063/5.0047626
https://doi.org/10.1103/PhysRevLett.122.104301

