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Non-self-similar light transport in scattering media
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Transport processes underpin a wide variety of phenomena, ranging from chemistry, to physics and ecology.
Despite their pervasiveness, however, several distinctive features of these processes are still elusive, making it
difficult to recognize and classify the associated transport regimes. Using light scattering as a probe to explore
different propagation regimes, we report on the experimental observation of non-self-similar light transport
through turbid membranes. Our results show that a breakdown of self-similarity can arise for light waves
even in the presence of isotropic and homogeneous disorder, and can be tuned by varying the turbidity of the
system. By introducing the concept of self-similarity for light propagation, we provide a unified framework
for the classification of light transport regimes—overcoming the dichotomy between normal and anomalous
diffusion—and show that non-self-similar propagation is a common and experimentally accessible phenomenon.
This insight can help to understand and model other scenarios where light transport is dominated by rare
propagation events, such as in nonlinear and active media, but also in other fields of research beyond optics.

DOI: 10.1103/PhysRevResearch.6.L032026

Introduction. Light transport experiments are traditionally
a fertile playground for the study of novel transport regimes,
often allowing to cast intriguing parallels between the propa-
gation dynamics in seemingly unrelated research fields [1]. In
most cases, however, peculiar structural and/or optical prop-
erties must be purposely introduced in a scattering material in
order to observe anomalous diffusion, such as tailored spatial
correlations [2–11] or wavefront-shaped illumination condi-
tions [12–14]. For instance, transient anomalous transport
regimes were previously observed in structures with care-
fully engineered fractal heterogeneous inclusions [15–18].
Conversely, more trivial propagation dynamics is typically
expected when dealing with simpler disorder realizations and
illumination schemes.

One of the simplest configurations that can be considered
for a scattering medium is that of a plane-parallel slab, a
prototypical model that is commonly used as a basic geometry
for the study of radiative transport problems. In many of such
cases, the coherent aspects of light propagation can be disre-
garded (e.g., by performing dynamic or ensemble averaging
over different realizations of disorder), and an exact solution
can be found using standard results from scalar radiative trans-
fer theory or Monte Carlo (MC) simulations. These solutions
are typically assumed to be devoid of peculiar features, as
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radiative transfer theory requires that scattering centers are
placed at statistically independent positions, and in the far
field of one another [19,20].

As a result, the optical properties of a scattering slab con-
figuration are largely determined by the simple ratio between
the physical thickness of the slab and its transport mean free
path, also known as the optical thickness L/lt. When de-
creasing the optical thickness (e.g., by diluting the density of
scattering centers), the onset of a multiple scattering process
in the slab plane is often neglected altogether, as most of the
light impinging on the slab will pass through it in a ballistic
fashion. Even in optically thin samples, however, a small frac-
tion of light will still propagate over large distances through
multiple scattering events, owing to the unbound lateral extent
of the plane-parallel slab geometry [21–23]. This results in
a peculiar radiative transport regime which should still fall
under the validity assumptions of radiative transfer theory, and
yet remained largely unexplored.

In this Letter, we investigate this elusive regime experi-
mentally by reconstructing the moment scaling spectrum of
the intensity profiles transmitted through thin scattering films,
revealing the hallmarks of a generalized transport anomaly
related to the degree of self-similarity of the transient spatial
profiles. The onset of this anomalous regime is associated with
an enhancement of the in-plane propagation rate which per-
sists at late times, despite the isotropic, dilute, and statistically
independent positions of scattering centers in the disordered
slab. Traditionally, the classification of anomalous transport
regimes is based on the power-law scaling of their associ-
ated mean-squared displacement or variance 〈x2〉: We call
“normal” a transport process whose spatial variance grows
linearly with time, and “anomalous” everything else [24]. This
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FIG. 1. Probability density distributions for a numerical unidimensional propagation example. A few space-time trajectories are superim-
posed for illustrative purposes. Crosscuts of the normalized distributions at different delays are shown in the lower panels. (a) In the case of
strongly self-similar processes, the normalized spatial profiles can be rescaled (xt−1/ν → x̃) onto a single profile P(x̃) at all times, due to the
fact that all spatial moments follow the same q/ν scaling law. (b) For more general non-self-similar processes, no simple rescaling operation
can be applied.

classification scheme has obvious limitations, as it is unable
to distinguish the onset of different propagation regimes [25],
and can easily misclassify highly anomalous systems as sim-
ple examples of normal diffusion. For this purpose, we can
apply a richer description based on the scaling behavior of
all moments 〈|x|q〉 ∝ tγq , rather than just the variance [26].
Studying the power-law growth of different moments of dis-
placement enables a more correct and general classification of
all possible transport regimes. This can be done by building
the full moment scaling spectrum of the process, which is ob-
tained by considering the power-law exponents γq associated
with different qth moments, and evaluating the self-similarity
of their collective scaling [26–28]. In this framework, a trans-
port process is termed strongly self-similar if all moments
follow the same scaling law γq = q/ν for some constant ν

(hence γq grows linearly). Two simple cases exhibiting strong
self-similarity are ballistic propagation and normal diffusion,
for which ν = 1 and ν = 2, respectively. Superdiffusion is
also a typical strongly self-similar regime, characterized by
a constant value 1 < ν < 2. Alternatively, transport can be
weakly self-similar: In this case the moment scaling spec-
trum is divided in two self-similar regions characterized by
different ν values. This typically happens when the tails of
the distribution scale at a faster rate than the core, leading
to a piecewise-linear moment scaling spectrum. In principle,
however, one could envision a more general situation where
each moment follows a different scaling law. In this case,
which we dub non-self-similar, γq can be a more complex
function of q, and self-similarity is lost altogether.

A qualitative depiction of the typical hallmarks of self-
similar versus non-self-similar transport is shown in Fig. 1

for an illustrative unidimensional case. In the strongly self-
similar case, the probability density functions P(x, t ) can be
collapsed onto a single functional shape F (x̃) using a rescaling
operation mapping xt−1/ν → x̃. In the non-self-similar case
this is not possible, as can be seen intuitively by the fact
that the spatial profiles have altogether different shapes at
different times. Based on this framework, self-similarity has
been explored numerically for a variety of synthetic stochastic
models [28–34], but experimental studies in this field are still
scarce [35–37] due to the lack of a flexible platform where the
properties of these transport phenomena can be consistently
observed and tuned. Moreover, most models and systems stud-
ied to date exhibit only a weak self-similarity resulting from
the superposition of two separate self-similar processes have
been reported, rather than a full breakdown of self-similarity
distributed along the whole moment scaling spectrum. This
raises the question as to what extent can transport processes
actually deviate from self-similarity.

Results and discussion. We address this question by explor-
ing self-similarity experimentally in the case of light transport.
To this purpose, we prepare samples with different scatterer
densities and use a transient-imaging apparatus capable of
recording the spatial and temporal evolution of the transmitted
intensity profiles based on an optical gating scheme [38]. In
the experiment, the time-resolved transmittance of a 150 fs
probe pulse through the scattering sample is sampled via
nonlinear sum-frequency generation with a collimated gate
pulse impinging on a nonlinear crystal, at a repetition rate of
80 MHz. The probe and gate beam wavelengths are 1525
and 820 nm, respectively. A CCD camera collects the
transmitted profiles at different delays, from which the spatial
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FIG. 2. (a)–(c) Transmitted profiles recorded at different times ti for three 100-µm-thick samples with different turbidity (samples A, B,
and C in order of decreasing turbidity from left to right). Each frame covers the same area of 7.4 × 7.4 mm2 and is normalized to its maximum
value. Time delays between consecutive frames are �t = 1.33, 1.0, and 0.67 ps, respectively, for the three cases. (d)–(f) Representative radially
averaged profiles corresponding to the highlighted frames. A time-evolving intensity profile is visible for the least scattering sample C: The
spatial distribution of light evolves from a ring-shaped profile towards a top-hat-like distribution, showing one of the typical hallmarks of
non-self-similarity.

moments can be directly calculated. The integration time
of each frame varies between 1 and 2500 s, depending on
the decreasing intensity available at increasing time delays.
The experimental samples consist of free-standing scattering
films made of a dilute dispersion of TiO2 nanoparticles in
a UV-cured transparent polymer matrix (see the Appendix).
Three samples with the same thickness (L = 100 ± 1 µm)
and different particle densities have been prepared, up to a
maximum volume fraction of about 3%.

For each sample—referred to as samples A, B, and C in
order of decreasing turbidity—multiple transmitted intensity
measurements were recorded and averaged over different po-
sitions to obtain the incoherent transmitted intensity profiles
at different times ti [Figs. 2(a)–2(c)]. Due to the isotropic
structure of the scattering samples, a radial average around
the illumination axis can be performed to obtain the profiles
I (ρ, ti ) [Figs. 2(d)–2(f)]. Notably, the profile shape of the
instantaneous spatial intensity distributions is independent of
the presence of spurious absorption or intensity drifts of the
laser sources, which could only result in a modulation of their
amplitude, hence leaving the spectrum of their spatial mo-
ments unaffected. For the same reason, the spatial moments
of transmittance profiles recorded using different integration
times can also be directly compared without any further
normalization.

The asymptotic growth rate of the second moment (vari-
ance) of the transmittance profiles is typically considered as
a direct measurement of the diffusion rate in a scattering

system [38,39]. We use this observable to retrieve the effec-
tive transport mean free path of the considered samples by
finding the best-fit Monte Carlo (MC) simulation [40] to the
experimental data for each sample [Fig. 3(a)]. Simulations are
performed setting an effective refractive index n estimated
using the Maxwell-Garnett formula based on the different
TiO2/resin volume ratios, and an asymmetry factor g = 0.16
given by Mie theory for the average experimental particle size
of 280 nm at the probe wavelength of 1525 nm. However,
the exact value of g does not influence the results signif-
icantly, as expected for transport in the multiple scattering
regime. The analysis returned lt values of 53 ± 4, 195 ± 11,
and 630 ± 30 µm for samples A, B, and C, respectively, cor-
responding to optical thicknesses of 1.9 ± 0.3, 0.51 ± 0.05,
and 0.158 ± 0.017.

The experimental measurements reveal that the observed
asymptotic transverse propagation rate for these samples
is much larger than that expected from the lt values re-
trieved by MC fitting. In other words, even after several
scattering events, the transverse intensity profiles expand far
more quickly than what could be expected based on the
nominal transport mean free path, reaching values of the
mean-squared displacement growth rate for the samples A,
B, and C of 1.687 × 104 m2 s−1, 7.624 × 104 m2 s−1, and
2.714 × 105 m2 s−1, respectively.

The agreement found between experimental results and
Monte Carlo simulations suggests an interpretation for the ob-
served enhancement of the mean-square displacement growth
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FIG. 3. (a) Temporal evolution of the experimental mean-squared displacement (MSD). Fitting each curve with a corresponding MC
simulation returns their associated transport mean free path values. Shaded areas represent 1σ confidence intervals. (b) Temporal evolution of
a subset of the moments of displacement (0.1 � q � 4) for sample C, fitted with Eq. (2) for t > lt n/c (dotted) to retrieve γq. The output of the
corresponding MC simulations is also shown (solid, red).

rate in terms of the occurrence of exceedingly long steps in
long-lived trajectories. In other words, with decreasing optical
thickness, light spending a longer time inside the sample un-
dergoes fewer scattering events than what should be expected
based on the particle density in the sample, showing a sort
of “survival bias” for light [22]. The dynamic modification of
the effective path length distribution followed by the subset of
survived trajectories is such to break transport self-similarity
in these samples, giving rise to a different type of propagation
which remains fully compatible with the validity assumptions
of the radiative transfer equation (especially so for the most
diluted sample C), as confirmed by the excellent agreement
with MC simulations.

A more quantitative analysis of this phenomenon can be
performed by considering the spectrum of all qth moments at
different times, defined as

〈ρq〉(t ) =
∫ ∞

0 ρqI (ρ, t )ρ dρ
∫ ∞

0 I (ρ, t )ρ dρ
(1)

for a generic intensity distribution I (ρ, t ), with q in the pos-
itive real numbers. The growth rate of each moment can be
fitted using a power-law model

〈ρq〉(t ) ∼ (t − tq)γq , (2)

where γq is the exponent associated with the qth moment and
tq is a temporal offset which can be introduced to exclude
the early transient and small up-conversion artifacts associated
with the tight ballistic laser spot.

The moment growth rates were fitted with Eq. (2) in a
time range following the early quasiballistic transient (t >

lt n/c). The resulting moment scaling spectra are shown in
Fig. 4(a), together with the corresponding results obtained for
MC simulations performed with the previously determined lt
values. The varying degree of self-similarity exhibited by the
three different samples is highlighted in Fig. 4(b), where the
moment scaling spectrum is plotted normalized to the strongly
self-similar diffusive case γ (q) = q/2. At an optical thickness
of 1.9, sample A shows a moment scaling spectrum which is
fully consistent with a strongly self-similar transport regime,

exhibiting the same power-law scaling of normal diffusion.
On the other hand, samples B and C exhibit hallmarks of both
anomalous (superdiffusive) and non-self-similar transport.

Due to the finite size of physical samples, real step length
distributions cannot exhibit diverging moments, and different

FIG. 4. (a) Experimental and simulated moment scaling spec-
tra, and (b) same curves normalized to strong self-similar normal
diffusion. The solid and dashed black lines represent the case
of strong self-similar normal diffusion and ballistic transport, re-
spectively. Shaded areas in both graphs represent 1σ confidence
intervals
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FIG. 5. (a) Moment scaling spectra for sample C calculated
for nonoverlapping fitting time intervals at increasing delays, and
(b) same curves normalized to strong self-similar normal diffusion.
The solid and dashed black lines represent the case of strong self-
similar transport, respectively, for normal diffusion and ballistic
transport.

transport regimes are necessarily expected to onset at different
timescales after the initial anomalous stage. To this purpose,
we rely on numerical calculations with large statistics (1012

trajectories) to study how the observed transport regime
evolves asymptotically for t → ∞ in the case of the least
scattering configuration (sample C). Building the moment
scaling spectrum for 0.1 < q < 8 for increasingly delayed
time ranges shows that the transmitted intensity profiles
evolve from a superdiffusive and non-self-similar behavior,
to a moment spectrum compatible with strongly self-similar
normal diffusion (see Fig. 5). For the sample with a nominal
optical thickness of 0.158, this transition to the strongly
self-similar regime eventually occurs at a delay >60 ps,
corresponding to a total path length of >1 cm, well within
the multiple scattering regime (≈20 lt). On the other hand,
the in-plane diffusion rate enhancement with respect to the
nominal transport mean free path persists also in the limit for
t → ∞, i.e., even after the transport regime has converged to
its asymptotic and strongly self-similar final form, confirming
that the step length distribution effectively sampled by light
traveling inside optically thin membranes features fat tails
favoring steps longer than expected for the given particle
density.

Conclusions. We studied the propagation of light in op-
tically thin media with homogeneous disorder, performing

a full moment scaling spectrum analysis that revealed the
presence of anomalous transport transient regimes which can
be superdiffusive and non-self-similar.

The application of this type of analysis is still sporadic
in the literature [25,41], despite its unique ability to identify
different transport regimes and highlight otherwise hidden
properties. For example, the observation of weakly self-
similar mobility of polymer particles unveiled the presence of
active transport mechanisms inside living cancer cells [36,42],
or the occurrence of bulk-mediated long jumps for particles
being adsorbed and desorbed on planar lipid bilayers [37].
Similarly, non-self-similarity in the dispersion dynamics of
Arctic sea ice hints at the occurrence of fracturing and faulting
events [35], even though correcting for the mean drift flow
remains challenging [43].

In this Letter we have shown that light can exhibit a general
and tunable breakdown of self-similarity, which changes con-
tinuously along its moment spectrum and can be studied under
experimentally controlled conditions. Scattering membranes
with a low optical thickness, therefore, provide an ideal
system for studying this fascinating physics which includes
non-Gaussian diffusion [41], extreme events [44], transient
return probabilities [45], or visitation statistics [46], to name
a few.

Other relevant examples of transient light transport regimes
exhibiting an enhanced or suppressed propagation rate are
known in the literature, such as those associated with Lévy
glasses [2,17,47], or spatially quenched scatterer distributions
[15,18,48]. It should be stressed, however, that the peculiar
transport regime observed in this work is of a fundamentally
different type compared to these previous cases. Indeed, the
samples that we have studied exhibit the simplest type of
random and uncorrelated disorder typical of dilute nanopar-
ticle mixtures. Moreover, the effect that we observe persists
even when averaging over different disorder configurations,
as confirmed both experimentally and by the agreement with
annealed-disorder MC simulations.

The lack of self-similarity exhibited by light transport in
thin scattering membranes is not associated with ballistic
propagation in the slab plane nor with a particular type of
scatterer or illumination condition, as confirmed by its per-
sistence after multiple scattering events. As such, it could be
relevant to study whether its associated transverse propagation
enhancement has any impact on the well-known invariance
property for the average path length in scattering media, which
should in principle remain valid up to arbitrary precision also
for optically thin samples [49]. Most importantly, this type of
non-self-similar transport arises without the need to postulate
the presence of specific conditions such as heterogeneous
disorder, active transport mechanisms, or jumps mediated
through different embedding media—which suggests that the
occurrence of weakly or altogether non-self-similar transport
transients in confined geometries may be far more frequent
than currently assumed.
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Appendix: Sample fabrication. Three samples were fabri-
cated with a thickness of L = 100 ± 1 µm and different scat-
tering densities, targeting optical thickness values between
0.1 and 10, i.e., spanning across the ballistic-to-diffusive
transition.

The samples are composed of a mixture of a transparent
UV-curable resin (Norland Optical Adhesive 65) and tita-
nium dioxide nanoparticles (Tioxide RX-L) with an average
diameter of 280 nm. The refractive indices of the resin and
the nanoparticles at λ = 1525 nm are n = 1.51 and n = 2.47,
respectively. Three mixtures with TiO2/resin mass fractions
of 0.1, 0.02, and 0.005 were prepared, as determined using a
precision balance. Assuming spherical particles and a specific
gravity of 3.55 g cm−3, these correspond to estimated particle
volume fractions of 0.034, 0.0068, and 0.0017 for samples A,
B and C, respectively.

The mixtures are magnetically stirred for at least 2 h, and
then infiltrated by capillary action between two microscope
slides with a controlled gap. The slides are coated by a thin
film of water-soluble polyvinyl alcohol (PVA) to facilitate
their subsequent removal after UV curing of the sample, and
glued together using NIST glass microspheres with a diameter
of 100 µm as calibrated spacers to control the thickness of the
gap. The sample is exposed to a 35-W UV lamp for 6 h to
cure the scattering mixture (the nominal curing time of the
transparent resin is around 5 min, but the presence of TiO2

nanoparticles slows down the curing process). Finally, the
resulting cells are left in water to dissolve the PVA layers and
allow the release of the sample as a free-standing film. The
samples are then cured again under UV light for a few hours
on each side to ensure their complete polymerization.

This process results in flexible, free-standing slabs with a
central scattering region of at least 5 cm2 where the transport
measurements are performed. Besides the scattering area, two
transparent regions are used to measure the exact sample
thickness optically through time-of-flight measurement of in-
ternally reflected light, and to precisely determine the absolute
origin of the time-domain axis.
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