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Quantum logarithmic multifractality
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Through a combination of rigorous analytical derivations and extensive numerical simulations, this work
reports an exotic multifractal behavior, dubbed “logarithmic multifractality,” in effectively infinite-dimensional
systems undergoing the Anderson transition. In contrast to conventional multifractality observed in finite
dimensions, logarithmic multifractality at infinite dimension introduces an algebraic behavior with respect to
the logarithm of system size or time. We demonstrate this phenomenon across eigenstate statistics, spatial
correlations, and wave packet dynamics. Our findings offer crucial insights into strong finite-size effects and
slow dynamics in complex systems undergoing the Anderson transition, such as the many-body localization
transition.
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Introduction. Determining the critical threshold of a
continuous phase transition can be challenging. At finite sys-
tem size, temperature, or time, such transition smoothens
into a crossover, lacking singular behavior. While second-
order phase transitions benefit from the scale-invariance
property to discern their threshold [1], other transitions
like Kosterlitz-Thouless (KT) type transitions [2] present
additional complexities, including logarithmic finite-size
effects [3].

A striking example of this fundamental difficulty is many-
body localization (MBL), which prevents an isolated quantum
many-body system from thermalizing under sufficiently
strong disorder [4–7]. Despite mathematical arguments [8],
and experimental [7] and numerical characterizations [6], the
mere existence of this intriguing phase has been the subject
of strong debate recently [9–22]. The primary reason for this
debate is the lack of understanding of the critical behavior,
including finite-size scaling and dynamical behavior at the
transition.

Describing the critical behavior of such a transition, start-
ing from a specific model, can be a daunting task, especially
in the case of MBL, where we lack the powerful techniques
available at low energies. However, two types of approaches
have proven efficient in describing such universal properties:
random graph and random matrix theories. MBL was initially
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conceived as an analogy to the problem of Anderson local-
ization on random graphs [4,5,23]. In fact, the Anderson case
provides analytical tools while retaining the subtle finite-size
and finite-time effects typically observed in MBL [24–53].

Another powerful tool is random matrix theory [54]. In this
context, it has enabled the description of properties across
different phases, including the many-body thermal [55], the
noninteracting metallic, and the Anderson localized phases,
as well as the multifractal properties emerging at the An-
derson transition in finite dimensions [56,57]. Recently, new
random matrix ensembles have been developed to describe an
extended nonergodic phase analogous to MBL [58–67].

In this Letter, along with the companion paper [68], we
introduce and address analytically and numerically random
matrix ensembles describing the critical properties at the An-
derson transition in infinite dimensions (AT∞). While this
does not yet address the behavior at the MBL transition, it
represents a significant step toward understanding it. Indeed,
we are able to characterize analytically and numerically the
logarithmically slow finite-size and finite-time effects that
affect the AT∞, similar to those observed in the context of
MBL under strong disorder [19,46]. Our introduced random
matrix models not only recover the critical behavior predicted
for random regular and Erdös-Rényi graphs [26,27,43], but
also predict another critical behavior termed “logarithmic
multifractality.” This behavior involves properties varying al-
gebraically with the logarithm of system size or time.

Quantum multifractality: from finite to infinite dimensions.
The Anderson transition is a well-studied second-order phase
transition in finite dimensions [57,69]. Scale invariance at
criticality manifests as quantum multifractality [37,70–87],
a property depicting spatial fluctuations of eigenstates char-
acterized by a set of fractal dimensions [88–90]. It can be
investigated by considering the moments Pq ≡ ∑

i |ψ (i)|2q of
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order q of on-site eigenstate amplitudes |ψ (i)|2 exhibiting an
algebraic scaling behavior Pq ∼ N−Dq (q−1) with the system
size N . While Dq = 1 for ergodic delocalization and Dq = 0
for localization, the multifractal dimension Dq is a nontrivial
function of q with 0 < Dq < 1 at the transition point.

Various random matrix ensembles, such as the power-law
random banded matrix (PRBM) [91–93] or the Ruijsenaars-
Schneider (RS) [94–96] ensembles, which are generalizations
of the Wigner-Dyson ensembles with power-law decaying
off-diagonal elements, have been instrumental in describing
analytically the critical multifractal behavior in finite dimen-
sions [81,82,91–101]. Interestingly, they allow to describe
how multifractal properties evolve from low dimensions
d � 2, where multifractality is weak, D2 � 1, to high dimen-
sions d � 1, where multifractality is strong, D2 � 1.

One of the critical features of the infinite dimension case is
its exotic multifractal properties, characterized by Dq = 0 for
q > q∗, and Dq > 0 for q < q∗ [57], with a threshold q∗ = 1

2
[102–105]. However, the condition Dq = 0 for q > q∗ does
not reliably identify the transition point, as knowledge of how
Dq vanishes with system size is essential. For random regular
and Erdős-Rényi graphs, it has been shown analytically that
P2 ∼ (ln N )−1/2 + P∞

2 , where P∞
2 > 0 signifies true localiza-

tion behavior in the thermodynamic limit [26,27,43,52,53].
This type of critical behavior is termed “critical localization”
in this Letter. By contrast, numerical simulations in hyperbolic
and smallworld networks have suggested another possibility
where P2 is algebraic in ln N , also compatible with D2 = 0
[35,47,49,106]. This behavior hints at the possibility of log
multifractality, i.e., Pq ∼ (ln N )−dq (q−1), with a q-dependent
log-multifractal exponent dq.

Distinguishing between the above-mentioned two critical
behaviors is crucial. Critical localization resembles a KT
behavior in terms of P2: Throughout the localized phase,
P∞

2 remains finite until a sudden drop to zero in the de-
localized phase, accompanied by characteristic logarithmic
finite-size effects at the transition [43]. Markedly different, log
multifractality entails the following scenario: localized wave
functions on treelike graphs explore only a few rare branches
[35,47,49]. This support spans ln N sites. At the transition,
wavefunctions become multifractal on this support.

Based on both analytical and numerical simulations, the
present work demonstrates the existence of log multifractal-
ity, in addition to the other critical localization behavior. We
introduce a variant of the PRBM ensemble [91,92] emulating
an effective infinite dimension by incorporating a specific
decay of the off-diagonal matrix elements. We also intro-
duce a unitary model akin to the so-called kicked rotor and
RS models [95,96,107]. Also amenable to analytical treat-
ment, the unitary model introduced here allows us to reach
very large system sizes and times and therefore to validate
the predicted log-multifractal properties. After characterizing
log multifractality through the algebraic behavior of Pq ∼
(ln N )−dq (q−1) in ln N both analytically and numerically, we
explore the slow decay of eigenstate spatial correlations and
derive characteristics of wave packet dynamics. As one re-
markable consequence of log multifractality, we find that the
return probability exhibits an algebraic decay with ln t rather
than with the time variable t itself.

Random matrix models of infinite effective dimension. We
aim to extend the PRBM ensemble to describe the critical
behavior of the AT∞. The PRBM consists of N × N real
symmetric matrices Ĥ , whose entries Hi j are independent
Gaussian random variables with mean 〈Hi j〉 = 0, variance
〈|Hii|2〉 = 1, and 〈|Hi j |2〉 ∼ (b/|i − j|)−2a for large |i − j| �
b. The critical value a = 1 distinguishes between a delocal-
ized phase (a < 1) and a localized phase (a > 1) [105]. While
the PRBM model can be adjusted to emulate low to large
but finite dimensions by controlling the bandwidth param-
eter b, infinite dimensionality, associated with Dq → 0 as
N → ∞, appears to require b = 0. We address this obstacle
by considering the limit a → 1+, i.e., the closest to local-
ization while still being critical. Since limε→0 |i − j|1+ε �
|i − j|(1 + ε ln |i − j|) for ε � 1, we can retain the first-order
term in ln |i − j| to obtain

〈|Hi j |2〉 = {1 + [|i − j| ln1+μ(1 + |i − j|)/b]2}−1, (1)

where we have generalized the logarithmic correction with
an exponent μ � 0. This defines the strongly multifractal
random banded matrix (SRBM) ensemble. This ensemble
enables us to analytically derive, when μ = 1/2 > 0, key fea-
tures of random regular graphs of infinite effective dimension
[26,27,43,52,53], while also predicting the new log multifrac-
tality for μ = 0, some features of which have been observed
in smallworld and hyperbolic networks [35,47,49,106].

In addition to the above random Hermitian matrix ensem-
ble, we also consider a unitary ensemble, named strongly
multifractal random unitary matrix (SRUM) ensemble. The
SRUM ensemble can be seen as a variant of the so-called
kicked rotor model in quantum chaos and the RS model
[95,96,107–109]. The SRUM ensemble is comprised of ran-
dom unitary matrices

Ui j = ei�i

N∑
k=1

Fike−iKV (2πk/N )F−1
k j , (2)

where V (x) = ln[−1/ ln(λ| sin x
2 |)] for x ∈ [0, 2π ), V (x +

2π ) = V (x) and the Fourier transform Fjk = e2iπ jk/N/
√

N .
The parameter λ is set to λ = 0.9 to avoid the singularity of
V (x) at x = π . �i are random phases uniformly distributed
over [0, 2π ). Due to the singular behavior of V (x) when x →
0 (2π ), the amplitudes of the matrix elements of Ui j decay
as |Ui j | � K/(2r ln r) for large r ≡ |i − j|; this is the same
behavior as

√〈|Hi j |2〉 in Eq. (1) with μ = 0 and b replaced by
K/2.

Log multifractality. To examine how log multifractality
emerges when μ = 0, we analytically compute 〈Pq〉 by treat-
ing the off-diagonal matrix elements in SRBM and SRUM
models as perturbation [95,96]. The moments Pq for q < 1

2
can be obtained through a standard perturbative approach [68]
which yields, for the SRUM model at lowest order in K ,

〈Pq〉 � 1 + K2qAq(ln N )−2qN−Dq (q−1), Dq = 2q − 1

q − 1
, (3)

with Aq a constant. For large N , we approach the conventional
multifractal behavior Pq ∼ N−Dq (q−1).

Importantly, this approach leads to divergences when
q > 1

2 , necessitating more advanced treatments. In this con-
text, we employ Levitov renormalization [97,98], known for
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(a) (b) (c)

FIG. 1. Eigenstate log multifractality in the SRUM model. (a) Conventional multifractality for moments Pq with q < 1
2 as predicted by

Eq. (3) for K = 0.05 and different q values as indicated by the labels. The black dashed lines are fits by Eq. (3) with Aq and Dq two
fitting parameters. (b) Multifractal dimension Dq vs q for K = 0.05. The finite-size estimate Dq ≡ [log2〈Pq(N/2)〉 − log2〈Pq(N )〉]/[q − 1],
represented by green symbols (lines are an eyeguide) for system sizes N = 210, 214, 218, converges slowly to the theoretical prediction
Dq = (2q − 1)/(q − 1) for q < 1/2. The crosses indicate the Dq values obtained from the fits from Eq. (3) represented in panel (a), which
incorporate the log corrections and agree perfectly well with Dq = (2q − 1)/(q − 1). Inset: Log-multifractal dimension dq (computed as
[ln〈Pq(N/2)〉 − ln〈Pq(N )〉]/[(q − 1)(ln ln N − ln ln N

2 )]) as a function of q for system sizes N = 210, 214, 218. dq converges at large N to the
nontrivial analytical law (4) (violet line). Star symbols are fitted dq values shown in panel (c). (c) Log multifractality for moments with q > 1

2 ,
well described by Eq. (4). Different curves correspond to different q values as indicated by the labels. The black dashed lines are power-law
fits 〈Pq〉 = c(ln N )−dq (q−1) with c and dq two fitting parameters, see inset of panel (b). Disorder averaging ranges from 360 000 realizations for
N = 26 to 1800 realizations for N = 218. Error bars are smaller than symbol size.

its effectiveness in the PRBM and RS ensembles [92,95]. This
yields (see [68] for details) the following expression for q > 1

2
and K � 1:

〈Pq〉 ∼ (ln N )−dq (q−1) , dq = K�(q − 1
2 )√

π�(q − 1)(q − 1)
. (4)

Similar treatments apply to SRBM and also give Eq. (3) and
Eq. (4), with K replaced by 4b [68]. In this regard, results from
SRUM and SRBM fully echo each other, illustrating their
universality. Equation (4) shows that our models display log
multifractality, as Pq algebraically scales with ln N rather than
N , and provides an explicit expression for the corresponding
multifractal exponent.

To validate the analytical predictions (3) and (4), especially
the algebraic behavior in ln N , reaching large system sizes
is essential. This is much easier to achieve in the SRUM
case. Indeed, implementing a sparse diagonalization approach
assisted by a polynomial filter [110], we are able to explore
system sizes as large as N = 218 with a high number of
random realizations. In Fig. 1, the left panel illustrates the
conventional multifractal behavior of moments Pq with q < 1

2 ,
fitting well with Eq. (3). The multifractal dimension Dq is
displayed as a function of q in the middle panel, vanishing
for q > 1

2 . The right panel showcases the log multifractality
of moments Pq with q > 1

2 , fitting effectively with Eq. (4).
The log-multifractal dimension dq exhibits a nontrivial depen-
dency on q and K , well accounted for by Eq. (4). These results
are also verified for the SRBM case, see [68], thus supporting
their universality.

We now turn to the average correlation function, C(r) ≡
〈∑N

i=1 |ψ (i)|2|ψ (i + r)|2〉, a key multifractality probe which
illustrates particularly well the distinctive features of log mul-
tifractality induced by the effective infinite dimension of our
models (see [68] for more details). We find that it exhibits
an exotic behavior given by C(r) ∼ (1/r) × (ln r)−α , with

0 < α < 1, as depicted in Fig. 2(b). The specific decay of
C(r) associated with log multifractality can be understood
as the product of two terms. The first 1/r factor indicates
the nontrivial logarithmic wavefunction support, reminiscent
of the behavior found in random graphs of effective infinite
dimension, where wavefunctions explore a finite number of
branches, thus a logarithmic number of sites, from the expo-
nentially large number of branches at disposal [29,35,47,49].
In fact, the 1/r prefactor replaces the K−r term found in
such correlation function in random graphs, see, e.g., Eq. (4)
of [47]; it is therefore a hallmark of the effective infinite
dimension of our models. The second term comes from the
replacement of C(r) ∼ rD2−1 obtained in conventional multi-
fractality by a power function of ln r to reflect multifractality
in ln N [Eq. (4)]. Hence, it is a signature of multifractality on a
logarithmic support with distances scaling as ln r instead of r.

Wave packet dynamics. The dynamics of a wave packet
initialized at a single site ψ (r, t = 0) = δr,0 also encodes rich
information on quantum multifractality [81,84,86,87,111]. In
conventional multifractality, the return probability R0(t ) ≡
|〈ψ (t )|ψ (0)〉|2 exhibits a power-law decay with time t , 〈R0〉 ∼
t−D2 , with an exponent given by the multifractal dimension
D2 [80–82]. To describe analytically R0(t ) in the case of log
multifracality, we focus on the SRBM model and adapt the an-
alytic expression for the return probability that was obtained
for the PRBM case in the limit b � 1 by means of a super-
symmetric virial expansion [82], see [68] for more details.
This approach gives 〈R0〉 ∼ (ln t )−d2 , which indicates an al-
gebraic decay of 〈R0〉 in ln t controlled by the log-multifractal
dimension d2.

On the other hand, for a finite size N , the limit t → ∞
gives 〈R0〉 ∼ 〈P2〉 ∼ (ln N )−d2 [see Eq. (4)]. Therefore, there
must exist a characteristic time scale t∗ separating the infinite-
size behavior ∼(ln t )−d2 of 〈R0〉 from its finite-size stationary
value ∼(ln N )−d2 , with ln t∗ ∼ ln N . We can hence assume, as
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(a) (b)

FIG. 2. Slow wave packet dynamics for the SRUM with initial state ψ (r, t = 0) = δr,0, in connection with log multifractality. (a) Illustration
of the scaling property in Eq. (5) for the return probability 〈R0〉 at K = 0.05. The data from various system sizes and times t ∈ [10, 106] collapse
onto a single scaling curve when 〈R0〉 × (ln N )d2 is plotted against the scaled time ln t/ ln N . The black dashed line represents a power-law
fit, 〈R0〉 ∼ (ln t )−d2 , giving d2 ≈ 0.025 in perfect agreement with the analytical prediction d2 = K/2 and the value extracted from P2. Inset:
corresponding raw data for 〈R0〉 with, from top to bottom, N = 27, 29, . . . , 215. Results are averaged over a range from 18 000 realizations for
N = 27 to 7200 realizations for N = 215. (b) Average probability distribution of the wave packet at different times plotted as r〈|ψ (r, t )|2〉 vs ln r
in a symmetrical log-log scale, with K = 1.0. Curves from dark blue to pale orange correspond to evolution times t = 10, 77, 1668, 35398, 105.
The violet dotted line fits the behavior expected at short distances r � rc, corresponding to the correlation function C(r) (shown by the maroon
dashed line), giving α ≈ 0.7; while the green dotted line fits the one for r � rc, see Eq. (6). The vertical dashed line locates the crossover rc.
Results are averaged over 720 000 [36 000 for C(r)] disorder configurations with system size N = 215 [N = 216 for C(r)].

was done in [87], the following scaling behavior:

〈R0(t, N )〉 = (ln N )−d2 g(ln t/ ln N ), (5)

with g(x) ∼x�1 x−d2 and g(x) ∼x�1 cst. The same scaling be-
havior is expected for SRUM ensemble, as the amplitudes of
its off-diagonal elements decay in the same way. The results,
shown in Fig. 2(a) for SRUM, confirm the validity of the
scaling described by Eq. (5).

It is also interesting to examine the spatial expansion of
a wave packet [86,87,111–113]. For sufficiently small r, we
find that the wave packet amplitudes exhibit a decay behavior
similar to the average spatial correlation function of the eigen-
states, C(r). Instead, for sufficiently large r, the wave packet
amplitudes decay following the direct long-range couplings
described by the off-diagonal matrix elements, i.e., Eq. (1).
If we introduce rc as the crossover scale between the two
regimes, these two behaviors can be summarized as

〈|ψ (r, t )|2〉 =
{ 〈R0〉[r(ln r)α]−1, 1 < r < rc,

B
[

r
rc

ln( r
rc

)
]−2

, rc < r � N
2 ,

(6)

with ln rc ∼ (ln t )d2/(1−α) and B = 〈R0〉[rc(ln rc)α]−1, see
[68]. This behavior is illustrated in Fig. 2(b).

Generalization to critical localization. We can construct a
whole family of SRBM ensembles describing critical localiza-
tion if we consider μ > 0 in Eq. (1). If we focus on the case
of q = 2 only, analytical procedures as above lead to 〈P2〉 ∼
(ln N )−μ + P∞

2 , with P∞
2 > 0 indicative of a localized behav-

ior. Our results also reveal that the spatial correlation function
of the eigenstates decays as C(r) ∼ 1/[r(ln r)1+μ], and the
return probability R0(t ) ∼ (ln t )−μ + R∞

0 , with R∞
0 > 0 (see

[68] for more details). It is noteworthy that when μ = 1
2 ,

these results align with the analytical predictions for random
regular and Erdős-Rényi graphs [26,27,43]. This suggests a
potential connection between the exponent μ and the specific
characteristics of certain types of graphs.

Conclusion. In this Letter, we have presented two random
matrix models for the critical behavior at the Anderson tran-
sition in infinite dimension. Through analytical solutions and
extensive numerical simulations involving large size and time
scales, we have provided compelling evidence of log multi-
fractality, through the scaling behavior 〈Pq〉 ∼ (ln N )−dq (q−1)

for q > 1
2 . This scaling behavior signifies a remarkable scale

invariance in the logarithm of the system size, extending
beyond conventional multifractality in finite dimension and
scale invariance in second-order phase transitions. Loga-
rithmic multifractality controls the slow decay of spatial
correlations and the slow dynamics of a time-evolving wave
packet, particularly its return probability 〈R0〉 ∼ (ln t )−d2 . Fi-
nally, we discussed how to generalize our random matrix
models to obtain other “critical localization” scenarios pre-
dicted at the Anderson transition on random regular and
Erdős-Rényi graphs [26,27,43].

This work thus uncovers distinctive characteristics of
the Anderson transition in infinite dimensions. It would be
interesting to investigate whether the critical behavior on
smallworld or hyperbolic networks, where P2 follows an
algebraic law with ln N [35,47,49,106], suggesting log mul-
tifractality, conforms to our predictions. The multifractal
delocalization on a logarithmic support that we find here
is reminiscent of extended nonergodic wavefunctions with
fractal support [58–67] and of the critical properties recently
proposed for the Anderson transition in large dimension
[114,115]. It would be interesting to characterize these critical
behaviors along the lines drawn in our study.

Since the Anderson transition in infinite dimension is
closely related to the elusive MBL transition, one perspec-
tive of this work is to formulate a random matrix model to
describe the critical behavior at the MBL transition. While
generalized RP random matrix models allow to describe
transitions between ergodic, nonergodic, and localized phases
[58–67], they lack the notion of spatial distance, which is
crucial in such localization problems, and crucially rely on
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an explicit system size dependence of the matrix elements. In
contrast, our models capture the universal physics of infinite
dimensions through a specific and nontrivial spatial decay
of hopping elements. Having an analytical description of the
slow dynamics and strong finite-size effects expected at the
MBL critical point will allow us to address the recent debate
about the existence of MBL more effectively.
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