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Energies and spectra of solids from the algorithmic inversion of dynamical Hubbard functionals
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Energy functionals of the Green’s function can simultaneously provide spectral and thermodynamic prop-
erties of interacting electrons’ systems. Although powerful in principle, these formulations need to deal with
dynamical (frequency-dependent) quantities, increasing the algorithmic and numerical complexity and limiting
applications. We first show that, when representing all frequency-dependent propagators as sums over poles—a
truncated Lehmann representation—, the typical operations of dynamical formulations become closed (i.e.,
all quantities are expressed as sums over poles) and analytical. In the framework, the Dyson equation is
mapped into a nonlinear eigenvalue problem that can be solved exactly; this is achieved by introducing a
fictitious noninteracting system with additional degrees of freedom, which shares, upon projection, the same
Green’s function of the real system. In addition, we introduce an approximation to the exchange-correlation
part of the Klein functional adopting a localized GW approach; this is a generalization of the static Hubbard
extension of density-functional theory with a dynamical screened potential U (ω). We showcase the algorithmic
efficiency of the method, and the physical accuracy of the functional, by computing the spectral, thermodynamic,
and vibrational properties of SrVO3, finding results in close agreement with experiments and state-of-the-art
methods, at highly reduced computational costs and with a transparent physical interpretation.
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Accurate and predictive first-principles calculations of
materials properties have been and remain a challenging
task for scientific discoveries and technological innovation
[1]. Although density-functional theory (DFT) has provided
a major step forward in the prediction of ground-state
properties [2,3], addressing spectroscopic quantities remains
challenging [4–7]. To overcome this limitation, dynamical
methods, mostly based on Green’s functions, have been used;
these include many-body perturbation theory (MBPT) ap-
proaches such as GW [5,8], dynamical mean-field theory [7,9]
(DMFT), spectral functional theories [6,10,11] (SFT), and
electron-boson interaction schemes [12–14]; in all of these ap-
proaches, dynamical (frequency-dependent) self-energies or
potentials arise.

In Green’s function theories, the Luttinger-Ward (LW)
and Klein functionals [15–19] are energy functionals of the
Green’s function that are variational and yield conserving
potentials that are dynamical. Although explicitly known di-
agrammatically, the exact exchange-correlation term �xc of
the functional is computationally inaccessible and needs to
be approximated [20,21]. The choice of the approximation
for �xc determines the physics accessible to the functional,
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ranging from long-range plasmonic effects, as in GW [5,8], to
strong correlations as in DMFT [7,9]. The stationarity condi-
tion of the functional yields the Dyson equation involving the
interacting propagator G and the dynamical self-energy (as a
derivative of �xc with respect to G) [18,19]. Therefore, the
functional and its derivative determine the thermodynamics
and the spectral properties of a material, also allowing one to
compute, at self-consistency, ground-state quantities such as
forces and phonons through the Hellmann-Feynman theorem
[22].

Due to the presence of dynamical quantities, applications
where both spectroscopic and thermodynamic quantities are
computed together are limited (see Ref. [23] and references
therein). In the context of GW , such calculations have been
performed for model systems, such as the homogeneous elec-
tron gas [24] or Hubbard chains [25–27], and later extended to
solids, typically using an imaginary-axis formalism [28–31].
This latter approach has been proven very effective for the pre-
diction of ground-state properties but retains limited accuracy
for spectral properties, due to the challenges of performing the
analytic continuation to the real axis [32]. Similarly, in DMFT,
it is possible to calculate different ground-state properties
accurately [33,34], while spectral properties still need to deal
with analytic continuation.

In this letter, we propose a framework to enable the calcu-
lation of accurate spectral and thermodynamic properties on
the same footing, and apply it to study SrVO3. First, we gen-
eralize to the nonhomogeneous case the algorithmic-inversion
method on sum over poles (AIM-SOP) [23] to tackle dynami-
cal formulations (e.g., MBPT or DMFT) for condensed-matter
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applications; here, the dynamical (frequency-dependent)
propagators are represented as sum over poles (SOP) and de-
fined on the entire complex plane, thus avoiding analytic con-
tinuation (for clarity, by SOP we imply a sum over first-order
poles). Second, we introduce a dynamical Hubbard functional
that generalizes the DFT+U energy functional of Dudarev
et al. [35] to host a dynamical screened potential U (ω), rather
than a static U , and that can be applied to solids with localized
d or f frontier electrons. Third, we use AIM-SOP to imple-
ment the dynamical Hubbard functional and obtain the spec-
tral and thermodynamic properties of SrVO3, a paradigmatic
correlated metal. We find very good agreement with experi-
ments and state-of-the-art methods, such as GW +DMFT, for
the spectrum, bulk modulus, and phonons, at a greatly reduced
computational cost compared to established approaches.

Algorithmic-inversion method on sum over poles. AIM-
SOP provides a theoretical and computational framework
aimed to deal with dynamical quantities, such as Green’s
functions (GF) and self-energies (SE), and which is closed
for common operations appearing in many-body perturbation
theory (MBPT), i.e., all quantities are expressed as sums over
poles. Starting from our previous study [23], here we general-
ize the framework to the operatorial case to address realistic
materials. AIM-SOP is based on the representation of dynam-
ical (frequency-dependent) propagators as sum over poles,

�(r, r′, ω) =
N∑

i=1

�i(r, r′)
ω − �i

+ �0(r, r′), (1)

where � may be a generic propagator (not only a SE, but
also, e.g., the GF or the polarizability), �i are operatorial
residues (we omit spacial and orbital indexes henceforth),
�i are scalar poles, and �0 is a static operator (for example,
the Hartree-Fock term). In general, all time-ordered (TO)
operators can be expanded as SOP [36]. It is evident that the
sum of two operators on SOP is a SOP, and the same holds
for multiplication and convolutions [23]. In addition, and
crucially, the Dyson equation G(ω) = [ωI − h0 − �(ω)]−1 is
closed on SOP, i.e., a self-energy on SOP yields a GF on SOP.

To demonstrate this, we start by observing that the
frequency-wise inversion of the Dyson equation can be ex-
actly mapped into the solution of the nonlinear eigenvalue
problem,

[h0 + �(ω)]|ψ〉 = ω|ψ〉, (2)

where the nonlinear eigenvalues are the poles of the Green’s
function and the eigenvectors determine its residues. In fact,
as derived in the Supplemental Material [37] (and in Ref. [38]
within the mathematical framework of NLEPs), if the self-
energy can be represented as a sum over poles (i.e., it is
rational on the whole complex plane), the resulting GF is also
a SOP,

G(ω) =
∑

s

∣∣ψ r
s

〉〈
ψ l

s

∣∣
ω − zs

, (3)

where (zs, ψ
r
s ) are the nonlinear eigenvalues and (right) eigen-

vectors of Eq. (2). Of course, when dealing with the exact
self-energy, the Lehmann representation of the Green’s func-
tion guarantees Eq. (3), but the extension to approximate
self-energies requires the mathematical treatment of NLEPs

[37,38]. Moreover, in writing Eq. (3) we have assumed the
completeness of the nonlinear left/right eigenvectors; we also
mention that, in the more general case of a self-energy that is
analytic in a connected set of the complex plane, one needs to
add to the rhs of Eq. (3) an analytic remainder function—see
Supplemental Material [37] for an in-dept discussion.

Although there are multiple ways to solve Eq. (2) (e.g., see
Refs. [38] or [39]), here we exploit the knowledge of residues
and poles of the SE in Eq. (1) to find the SOP for the GF.
Introducing a factorization of the self-energy residues �m =
VmV̄ †

m in Eq. (1), the Dyson equation can be rewritten as

G(ω) =
[
ωI − h0 −

N∑
m=1

Vm(ω − �m)−1V̄ †
m

]−1

. (4)

This can be interpreted as embedding a noninteracting sys-
tem h0 with N noninteracting fictitious degrees of freedom,
representing the bath, each having a Hamiltonian �m [40]
coupled to h0 by Vm and V̄ †

m . As can be proven by a direct
calculation, the Green’s function in Eq. (4) can be obtained as
G(ω) = P0(ωItot − HAIM)−1P0 and

HAIM =

⎛
⎜⎜⎜⎝

h0 V1 . . . VN

V̄ †
1 �1I1 0 0
... 0 . . . 0

V̄ †
N 0 . . . �N IN

⎞
⎟⎟⎟⎠, (5)

with P0 projecting onto the h0 Hilbert space. We carry out
the proof by exploiting embedding techniques in the Supple-
mental Material [37]. To summarize, AIM-SOP exactly maps
the nonlinear eigenvalue problem, Eq. (2), into a linear eigen-
value problem by building a fictitious noninteracting system,
with additional degrees of freedom (DOFs), that possesses the
same GF as the interacting system upon projection. As a side
but important note, the freedom in the factorization of �m

can be exploited to minimize the dimension of the bath. In
fact, when using SVD to factorize �m, the number of columns
(rows) of Vm (V̄ †

m ) is reduced to the rank of �m, thus making
dim[Im] = rank[�m]. Then, the dimension of HAIM is reduced
to dim[HAIM] = dim[h0] + ∑

m rank[�m].
It is important to note that, at variance with our previous

study [23], in Eq. (5) the entries are matrix blocks and not
scalars, also making apparent the link to NLEPs. In mathemat-
ical terms this treatment can be seen as a special case of the
“linearization” of NLEPs using rational functions [38], with
the HAIM matrix serving as an ad hoc alternative to the com-
panion matrix or other approaches [39]. In electronic-structure
methods, a construction comparable to HAIM is used in the
context of DMFT to efficiently invert the Dyson equation
[7,41]. Here, also owing to the connection to the NLEP frame-
work, the case of fully non-Hermitian (diagonalizable) Hamil-
tonians is also included, e.g., with Vm �= V̄m and complex �m.
In the Supplemental Material [37] we also discuss the case of
nondiagonalizable Hamiltonians together with the appearance
of higher-order poles in the solution of the Dyson equation. By
linking this approach to the theory of embedding and unfold-
ing, it becomes apparent that the methods in Refs. [42–45],
all involving the construction of a supermatrix (or upfolded
matrix) to solve the Dyson equation for the self-energy or the
Bethe-Salpeter equation, can be seen as specialized cases of
the present framework. It is important to stress that to maintain
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computational efficiency it is essential to have a SOP repre-
sentation of the self-energy; so, the physical and algorithmic
assumption here is to work with approximate but analytical
propagators (as SOP), and to solve exactly the Dyson equa-
tion within this representation. In addition, in Ref. [46] we
complement the approach with the AIM-SOP reversed, i.e.,
from the SOP of the GF we obtain the SOP of the SE.

Dynamical Hubbard functional. Taking AIM-SOP as a
formal and effective approach to solving electronic-structure
problems subject to dynamical potentials, we introduce a
functional formulation that extends the DFT+U energy func-
tional of Dudarev et al. [35] to host a frequency-dependent
screened potential U (ω). In particular, we define a “dynamical
Hubbard” Klein energy functional as

EdynH[G] = EH [ρ] + Exc[ρ] + �dynH[G]

− Trω
[
G−1

0 G
] + TrωLog G−1

0 G + Trω[h0G0].

(6)

Here, Trω[...] stands for
∫

dω
2π i e

iω0+
Tr[...], G represents the

Green’s function (GF) of the system, G−1
0 = ωI − h0 is the

Kohn-Sham Green’s function, ρ is the density derived from
G, and G is the projection of G onto a localized manifold
(typically d or f states), commonly referred to as the Hubbard
manifold. For a single site, this dynamical Hubbard energy
correction reads

�dynH[G] = 1

2

∫
dω

2π i

dω′

2π i
eiω0+

eiω′0+
U (ω′)

× Tr{G(ω + ω′)[δ(ω − c)I − G(ω)]}, (7)

where U (ω) represents the screened potential W (ω) of the
system projected onto a localized (Hubbard) space and av-
eraged over it, and c is a constant to fix double counting
(DC). The DC term is included because we are correcting an
approximate DFT functional, and its purpose is to suppress the
exchange-correlation interactions of the localized manifold
included at the DFT level (for a comprehensive review, see
e.g., Ref. [47]).

To justify the ansatz for �dynH[G], we first look at its
derivative, i.e., the (time-ordered) self-energy,

�dynH(ω) = 2π i
δ�dynH[G]

δG

= −
∫

dω′

2π i
eiω′0+

U (ω′)G(ω + ω′) + 1

2
U (c)I, (8)

which is composed of a localization of the GW SE [48,49]
(first term), and the double-counting term 1

2U (c)I. In partic-
ular, as shown in Sec. S5 of the Supplemental Material [37]
and similarly in Ref. [49], the dynamical Hubbard self-energy
can be derived from the GW self-energy by discarding the
itinerant part of the Lehmann (or KS) amplitudes. Also, if a
static screening is considered, �dynH reduces to the (static, ro-
tationally invariant) DFT+U Hubbard correction of Ref. [35].
Indeed, similar to considering DFT+U a truncation of COH-
SEX [50], the dynamical Hubbard functional stems from a
localization of GW [49]. Note that, at variance with Ref. [49],
the SE of Eq. (8) preserves the correct time ordering, as no
approximation in the frequency convolutions was carried out.
Additionally, �dynH reduces to the GW0 functional (plus a

double-counting term) in the limit of the Hubbard manifold
becoming the entire space. The generalization to multiple sites
consists of summing different �I terms, one per site, and is not
treated here for simplicity. Note that, as discussed in Sec. S6
of the Supplemental Material [37], we fix the double counting
parameter c as c → ∞, so that U (c) = U∞, i.e., the bare
Coulomb potential localized and averaged on the manifold.

Being a Klein functional with the screened interaction
set to U (ω), EdynH[G] can be made stationary by solving
self-consistently the corresponding Dyson equation with a
static term h0 = hKS(ρ) and a SE, �dynH(ω) = ∑

m,m′ |φm〉
�mm′

dynH(ω)〈φm′ |, where {φm} span the localized Hubbard mani-
fold for each unit cell (summation over Bravais vectors is left
implicit, see note [51]). Here, the use of the algorithmic inver-
sion method is crucial and provides a closed (all within SOPs)
formulation. This means that given an initial GF expressed as
SOP, e.g., G = GKS, and a SOP for the screened interaction
U (ω), the SE �dynH can also be written as a SOP. Indeed, as
mentioned above, the convolution of two SOPs is a SOP [23],
and the projections are just linear operations on the residues.

With a SE on SOP, the algorithmic inversion method can
be used to find the SOP for the GF. The cycle can then be
iterated until self-consistency. Furthermore, the SOP form of
the Green’s function naturally allows for the accurate eval-
uation of the generalized Hubbard energy of Eq. (7), the
chemical potential, and, in general, integrated thermodynamic
quantities [23]. In Ref. [48] Miyake et al. observe that their
version of localized GW, termed GdW —same as Eq. (8) but
with a different choice of double counting, see Supplemental
Material [37]—gives very similar spectral results when the
full k-dependent GW self-energy is localized onto the man-
ifold. Here, similarly to GdW [48], we first localize and then
calculate the self-energy, given the existence of an energy
functional for this form and the link to DFT+U.

Application to SrVO3. As a case study, we apply the
formalism to SrVO3. This material is prototypical since it
possesses localized electrons around the Fermi energy with d
character that are not strongly correlated [53,54], and can thus
be described within a GW -like approximation. Furthermore,
localized GW has shown to provide qualitatively good spectral
results for this material [48] by improving the GW bandwidth
[48,53] and yielding results similar to GW + EDMFT [54].
Here, we take a step further and compute not only the spectral
properties of the material but also integrated quantities, such
as the total energy and its derivatives (lattice parameter, bulk
modulus, phonons), obtained from the functional EdynH[G].
Note that, while we choose to study a metallic system, the
framework can be readily applied to semiconductors and in-
sulators. As mentioned, a choice of U (ω), accounting for the
dynamical screening of the electrons in the Hubbard localized
manifold is needed. We consider U (ω) to be the average
over the Hubbard manifold of the screened interaction W
in the random-phase approximation (RPA); at variance with
EDMFT, which uses a cRPA screening [54–56], here we retain
screening originating from all the bands (see the Supplemental
Material [37] and the references therein for a discussion).

Although designed for self-consistency, here we limit the
approach to a one-shot calculation—i.e., a single step in
the stationarization of EdynH—using as a starting propagator
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FIG. 1. Spectral function [52] of SrVO3 from this work (color
plot) compared to PBEsol (solid-white line) and PBEsol+U (dashed-
white line). Only the t2g bands are displayed. The chemical potential
is shifted to 0 in all three cases. The color map is logarithmic.

the self-consistent Kohn-Sham Green’s function computed
with a standard semilocal DFT exchange-correlation func-
tional (PBEsol [57,58]). By doing so, we need to evaluate
the energy functional at EdynH[G = GKS], and the same
for the self-energy, �dynH[G = GKS]. Then, exploiting the
algorithmic inversion method, we find the resulting non-
self-consistent Green’s function. At this level, the dynamical
Hubbard Klein energy functional simplifies to

EdynH[GKS] = EDFT[ρ] + �dynH[GKS], (9)

correcting the DFT energy with a dynamical energy term. In
this letter, we use this last equation to evaluate the energy, and
give all the numerical details of the simulations in the Sup-
plemental Material [37]. To go beyond such approximation,
please refer to Ref. [46], where we use AIM-SOP to obtain
an expression for TrωLn{G−1

0 G} in terms of the SOP of the
Green’s function and self-energy.

In Fig. 1 we present the spectral function resulting from
our calculations. In contrast to DFT (PBEsol) or DFT+U
(PBEsol+U), which only shift the chemical potential, the
spectral function derived from �dynH drives a reduction in
the bandwidth, along with a renormalization of the full width
of the t2g bands. Table I provides details on the bandwidth
(BW), the mass enhancement factor (m∗/mPBEsol), and the
positions of the lower/upper satellites (LS/US) plus/minus
the broadening. While PBEsol and PBEsol+U overestimate
both the occupied and full bandwidth, the present results
align well with the data from Ref. [48], obtained through
localized-GW calculations (referred to as qp-locGW in the
Table, as only the quasiparticle band structure is computed),
and also closely match experimental data [61,62] and results
from DMFT [54,59,60].

Compared to the GW calculations in Ref. [53], the present
results provide a further reduction in the bandwidth, from
approximately 0.65 eV to about 0.5 eV. An asymmetric renor-
malization of t2g with respect to the Fermi energy, absent in
the GW calculations, is also observed. Naturally, these effects
are due to the localized nature of the correction. Concerning
the satellites, the LS position is slightly underestimated (i.e.,

TABLE I. Occupied bandwidth (BW) of the t2g bands, the mass
enhancement factor (m∗/mPBEsol), and energy of the lower (LS)
and upper satellites (US) from experiments and different theoretical
frameworks—with two numbers indicating two different satellites.
Results from the generalized dynamical Hubbard functional intro-
duced in this work are estimated from the spectral function in Fig. 1.
m∗/mPBEsol is estimated using the ratio of the full bandwidths (LDA
and PBEsol coincide). All energies are in eV.

Method BW m∗/mPBEsol LS US

PBEsol 1.0 1
PBEsol+U 0.92 1.1

GW [53] 0.65 1.5 −2
2.2
3.5

GW+C [53] 0.65 1.5 −2 2.2
(qp)locGW [48] 0.5 2
GW+DMFT [59] 0.5 2 −1.6 2
GW+DMFT [60] 0.6 2 −1.5 2.5
GW+EDMFT [54] −1.7 2.8

This work 0.5 2 −2.5 ± 1
2.6
3.5

± 1

Exp. [61] 0.7 1.8 −1.5
Exp. [62] 0.44 2 −1.5

deeper in energy) compared to DMFT and GW , but exhibits a
significant broadening of around 1 eV, making it still consis-
tent with the references. While the position of the first upper
satellite (US1) agrees with GW + EDMFT and GW + C re-
sults, the appearance of a second upper satellite (US2) at about
3.5 eV (similarly to GW ) differs. A more detailed discussion
of the incoherent part of the spectrum, density of states, and
self-energy can be found in the Supplemental Material [37].
Notably, the consistency of the quasiparticle results across
different choices for the double-counting terms (this letter and
Ref. [48]) is reassuring. Additionally, the use of ortho-atomic
d orbitals to define the localized manifold, instead of maxi-
mally localized Wannier functions from the dp model as done
in Ref. [48], confirms that results are robust against specific
details of the localized d manifold for this material. However,
this may not always be the case, as, for instance, in situations
where Wannier functions hybridize or localize along bonds.

From the knowledge of the SOP of the Green’s func-
tion (here KS) and the functional form of �dynH, one can
straightforwardly calculate total energies and total-energy dif-
ferences. In Fig. 2 we compare the equation of state for SrVO3

obtained from PBEsol, PBEsol+U, and the present dynamical
formulation. In the legend, we report the estimated values for
the equilibrium volume V and the bulk modulus B, using a
Birch-Murnaghan third-order function for the fitting [64]. It
can be observed that the present approach correctly predicts
the softening of the bulk modulus while overcorrecting the
equilibrium lattice parameter. Furthermore, in the Supplemen-
tal Material [37] we link the softening of the bulk modulus
to the change of the charge density from the different ap-
proaches. While these findings are encouraging, they are to
be considered preliminary in view of the absence of self-
consistency.

Finally, utilizing the relaxed structures and
capitalizing on the cost effectiveness of the present method,
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FIG. 2. Equation of state for SrVO3 calculated using PBEsol
(blue), PBEsol+U (orange), and the present approach (green). Data
(crosses) are fitted using the Birch-Murnaghan curve (solid line). The
values and errors obtained using the fit are displayed in the legend.
For reference, the experimental volume is marked in dashed black,
and the bulk modulus is reported in the legend. Experimental values
are taken from [63].

we compute the zone-center phonons for SrVO3. Data are
reported in Table II. Since, given the lack of self-consistency,
the Hellmann-Feynman theorem does not apply, we use
finite-energy differences. Consistent with the softening of the
bulk modulus, the first two frequencies are lower compared to
PBEsol calculations. Additionally, similar to state-of-the-art
methods such as LDA+EDMFT [34], the remaining optical
modes are shifted to higher frequencies.

In conclusion, in this letter, we provide a computationally
straightforward Green’s function framework to address the
electronic structure of materials exhibiting correlation in a
localized manifold. First, we establish a connection between
the solution of the Dyson equation and nonlinear eigenvalue
problems; then we solve the equation exactly by extend-
ing the algorithmic inversion method on sum over poles
(AIM-SOP), introduced in Ref. [23], to the general nonho-
mogeneous (matricial) case to treat realistic materials. Next,
we present an approximation to the exchange-correlation �xc

TABLE II. Zone center phonons for SrVO3 calculated with dif-
ferent approaches; the last column shows the results obtained using
the generalized dynamical functional introduced in this letter (on top
of PBEsol). The data from Ref. [34] have been estimated from the
plot. Frequencies are in terahertz.

(THz) PBEsol LDA+EDMFT [34] This work

ω1 4.86 4.3 3.9
ω2 10.3 9.0 9.4
ω3 11.0 11.2 12.1
ω4 17.3 18.9 19.4

part of the Klein energy functional, yielding a localized-
GW self-energy, and providing a dynamical generalization
of DFT+U. We combine this functional with the algo-
rithmic inversion method to study the paradigmatic case
of SrVO3. Our results closely agree with state-of-the-art
computational approaches but come with a very modest com-
putational cost. The method allows one to simultaneously
access spectral and thermodynamic properties, including total
energies and their differences. Moreover, the existence of a
Klein functional guarantees the possibility of performing self-
consistent calculations. This, in turn, will enable the use of
the Hellmann-Feynman theorem to calculate forces and other
derivatives within a Green’s function formalism. Addition-
ally, besides self-consistency, the method is readily applicable
to the study of insulating materials. For example, it can be
used to correct erroneous metallic ground states predicted
by semilocal DFT, as is often the case with DFT+U. For a
detailed discussion of the topics of this letter please also refer
to T.C. Ph.D. Thesis [65].
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