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Directing entanglement spreading by means of a quantum East/West heterojunction structure
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We extend the translationally invariant quantum East model to an inhomogeneous chain with East/West
heterojunction structure. In analogy to the quantum diffusion of particles, we observe a plateaus-shaped entan-
glement entropy spreading in the heterojunction during time evolution that can be regarded as continuous cycles
in a quantum heat engine. In order to figure out the possibility of manipulating the entanglement entropy as a
quantum resource, the entropy growth is shown to be determined by the initial occupation and the site-dependent
chemical potential, and the former is equivalent to an effective temperature. Through fine adjustment of these
parameters, we discover the entanglement flow is simply superposed with those from two sources of the chain.
An intriguing relation between our model and the traditional heat engines is subsequently established.

DOI: 10.1103/PhysRevResearch.6.L032014

Introduction. Quantum entanglement, an inherent param-
eter with nonlocality, has generated much interest as an
important physical resource for quantum information process-
ing, metrology, and communication [1–6], which provides a
novel concept to study complicated kinetic and dynamic is-
sues [7–10]. In recent studies it was found that the subsystems
entanglement entropy as the order parameter in thermalized
systems tended to grow rapidly with power-law spreading,
while in many-body-localized systems, the propagation of
correlation could be confined and the eigenstate thermal-
ization hypothesis is violated, manifesting a more sluggish
logarithmic entropy growth [11–15]. The extensive property
of entanglement entropy also holds much insightful physics,
such as the measurement-induced phase transitions in which
the measurement-rate-dependent transitions from volume law
to area law have been observed [16–20], and the topological
entanglement entropy can be used to detect the topological
order [21–23]. In one-dimensional random quantum circuits,
the growth of entanglement is explicitly an analogy with
stochastic surface growth model of classical particles, and the
hydrodynamics can be described by the Kardar-Parisi-Zhang
equation [24–26]. In this context it is intuitive to consider
feasible ways to efficiently manipulate entanglement entropy
in nonthermal systems.

In classical thermodynamics, one is able to manipulate the
heat flow by embedding the system into hot and cold baths, but
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it is difficult to explicitly quantify and direct the relevant en-
tropy flow. In order to extend the classical heat engines to their
quantum counterpart, many achievable quantum devices have
been theoretically and experimentally studied, such as the
thermal diode, thermal transistor, and thermal valve [27–33].
One question which then arises is whether these thermal op-
erations can be formulated within the framework of resource
theory for entanglement entropy. The kinetically constrained
model (KCM) is a class of model whose dynamics can be
quantitatively regulated by the initial states and interaction,
providing a candidate for manipulation mechanism [34,35].
The subject of this Letter is thus to control the flow of entan-
glement entropy in a KCM similar with that for conventional
heat current and quantitatively direct the entanglement flows
by defining the analogous chemical potential and effective
temperature.

Model. We construct a heterojunction based on KCM for
the spin-1/2 unidirectional facilitation, e.g., the quantum East
model which shows a disorder-free dynamical phase transition
[36–38]. The model Hamiltonian is written as

Heast = 1

2

N−1∑

i=1

μini − 1

2

N−1∑

i=1

niσ
x
i+1, (1)

where ni = (1 − σ z
i )/2 = |1〉〈1|i and σ x,z

i are the projector
onto the occupied state |1〉 and Pauli operators at site i. Herein,
we use the chemical potential μi to replace the common
manipulation parameter e−s of thermalization, which is equiv-
alent to the original Hamiltonian [36].

Due to the constrained kinetic terms in the Hamiltonian,
there are not conserved particle numbers, and the fast (0 <

μi < 1) or slow (μi > 1) dynamic phase could be observed
on two sides of the Rokhsar-Kivelson (RK) point initially
defined as a specific value where the ground state is the
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equal-weight superposition of all dimer states in the quantum
dimer model [39,40], suggesting the chemical potential acts
as an energy barrier in the chain. In the last few years, for the
quantum East model, eigenstate localization properties and
the further bosonic East model have been studied in great
detail [38,41,42]. This unidirectional constraint has also been
extended in the higher-dimensional quantum North-or-East
model [43,44], the dynamical phase transition under periodic
driving [45,46], and the potential experimental realization in
Rydberg platforms [47,48].

In order to construct the chain with heterojunction struc-
ture, we add a quantum West model in contact from the right
to the chain, and a hopping junction is set between them. The
Hamiltonian becomes

H = Heast + Hcont + Hwest, (2)

with

Hcont = −1

2
(σ+

N σ−
N+1 + σ−

N σ+
N+1), (3)

Hwest = 1

2

2N−1∑

i=N+1

μi+1ni+1 − 1

2

2N−1∑

i=N+1

σ x
i ni+1. (4)

It can be found that the West part has the same structure
with that of the East part but with an inverted facilitation
direction. The middle two sites, as ends of respective parts, are
symmetrically set as a contact, and their chemical potentials
are ignored so that they are dominated by neighboring sites of
the East (West) part.

For the sake of generation of current flow, we introduce
two regions on each side of the contact: the spacer region
with chemical potentials of all sites being set to μi = μs = 2
throughout this Letter, and the drive region, unless particularly
stated, with chemical potentials being set as μi = μd = 0.99,
as depicted schematically in Fig. 1(a). The last drive site is
also set to μi = 2, and we define the number of drive sites
D as the drive region size. On the other hand, the occupied
state |1〉 is essential, which serves as the source to facilitate
neighboring sites. Since the number of |1〉 is not conserved,
the initial occupied states in the drive region can be regarded
as an “effective temperature” related to the dynamics, as dis-
cussed below. By this consideration, we initially set all the
spacer sites to be |0〉 (namely, zero temperature), and initial
states on the drive sites can be changed with sets of |0〉 and |1〉,
including superposition states. We define the initial occupa-
tion number ρ0 to quantify the number of |1〉 in drive regions.
For example, a chain with μ1 = μ2 = μ2N−1 = μ2N = 0.99,
μ3 = · · · = μ2N−2 = 2 implies D = 3, and the eight-site state
|10100000〉 has initial occupation ρ0 = 2 in the East part.
Different from the translation-invariant quantum East model
with fixed μi of every site, the site-dependent μi and ρ0 pro-
vide variables to manipulate the imbalanced particle densities
flowing in the spacer region. The most advantage of this model
is that, since the total number of particle is not conserved,
drive regions with initial |1〉 states can be regarded as sources
to generate the steady flow, which is unavailable in systems
with conservation of particle number.

However, the ρ0 and the spreading of particles are not
a completely linear relationship. Because of the nearest-
neighbor one-spin facilitation of Heast, an occupied site may

FIG. 1. (a) Schematic illustration of our model with heterojunc-
tion structure. East and West parts are marked in blue and orange,
respectively. The drive and spacer regions are distinguished by differ-
ences in the shade of color. The middle contact interaction is plotted
as gray. (b) The simulated mean occupation 〈ni〉 of ground states
of the quantum East model (L = 24, only partial sites are shown)
with seven different D’s. Exponential decay is observed through the
dashed lines of corresponding color. (c) Ground state 〈ni〉 of the
heterojunction chain with D = 4 (red), D = 5 (blue), and D = 6
(green).

inhibit the next-nearest-neighbor flip. For example, suppose
a configuration in three sites of a chain, and the Hamiltonian
acting on the state results in

|11〉(μ|1〉 − |0〉)2|03〉,
↗

Heast|111203〉
↘

|1112〉(−|1〉 + μ|0〉)3,

(5)

and

Heast|011203〉 → |0112〉(−|1〉 + μ|0〉)3, (6)

where → figures out subsequent states. In the former case, the
first site indirectly inhibits the facilitation of the third site by
flipping the second site, which is not the case in the latter. As a
result, an occupied site is able to facilitate the nearest neighbor
as well as possibly reduce facilitation of further sites. The
initial occupation therefore turns out to be worthy of study,
which as stated plays the role of a high-temperature source in
the drive region.
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Results. In the following, we numerically investigate the
ground states and dynamics with default size L = 2N = 24
by density matrix renormalization group (DMRG, the maxi-
mum bond dimension is set as 300) and time-evolving block
decimation (TEBD, the Trotter gate time step and truncation
error threshold are set as �t = 0.05 and 10−9) methods in
open boundary conditions (OBC) [49–51]. Based on previous
research, the ground state of the translation-invariant quantum
East model for μi > 1 shows that occupied sites are local-
ized at the first few sites. That is, the expectation value of
ni exponentially decays as 〈ni〉 ∼ e−i/ξ , with the localization
length ξ depending on μi [38]. By contrast, a homogeneous
occupation distribution is present in thermal phase (μi < 1
or s < 0). By adding nonuniform μi to the quantum East
model, in Fig. 1(b), we show the mean occupation 〈ni〉 as a
function of sites i with different D. The fitting dashed lines
which figure out the decay rates have exactly the same slope
because of the same μs = 2 in the spacer region. On the other
hand, as illustrated by Fig. 1(c), by changing the number
of drive sites up to D = 6 in the heterojunction model, the
particles are found to accumulate in the middle of the chain. It
implies that the enlarged drive region can not only increase the
occupation in the drive region but also enforce the particles
injecting onto the surface of spacer region, similar with the
function of gate voltage in conventional field-effect transistors
[52]. Along with the investigation of the particle injection
in systems of different sizes (see Appendix A), we conclude
that the greater chemical potential μs (equivalent to smaller
localization length ξ ) forces particles to localize around drive
regions and holds back the injection, while enlarging drive
size D could promote injection.

For investigating this injection of particles in a dynamical
manner, we construct unipolar initial states which only the
sites in East drive region are occupied and the evolution of
the West part can thus be ignored. More complicated bipolar
structures adding occupation of both parts will be discussed
in a later section. As mentioned in Ref. [38], the Hilbert space
of the quantum East model is determined by the first occupied
site, which is normally set as the leftmost and vice verse for
the West model. Here, we show the unipolar evolution of
the initial state ρ0 = 3, D = 3, namely, |111 000 . . . 00〉. As
shown in Fig. 2(a), the dynamics of 〈ni〉 reveals a slow diffu-
sion process. The particles firstly accumulate at the leftmost
site, and later a periodic wave motion is clearly visible.

Next, we explore the entanglement spreading by consid-
ering the entropy cut at every bond of the chain, namely,
Sr = −Trr�log�, with � being the reduced density matrix
taking a partial trace at i = r, which differs from the common
half-chain entanglement entropy and has been used to study
the entanglement transition related to the quantum Zeno effect
[53]. In Fig. 2(b) the entanglement entropy manifests similar
evolution features with that of mean occupations, that is, there
are four periods of oscillation up to around t ∼ 350. In order
to be more detailed on these similar variation tendencies, we
plot the 〈nL/2〉 and half-chain entropy SL/2 in the insets of
Fig. 2. It is clear that they share almost the same growth
process, resulting from the blocking effect of Hcont on the
entanglement spreading. Since the evolution on the sites from
i = L/2 + 2 to L can be ignored, the reduced density matrix
after partial tracing of the left half chain is totally determined

FIG. 2. Dynamics of initial state as |11100 . . . 000〉 for D = 3.
(a) Time evolution of occupation 〈ni〉. The growth of the middle
site 〈nL/2〉 is specifically shown in the inset. (b) The von Neumann
entropy Sr of every bond r, i.e., the subsystem of the reduced density
matrix is chosen based on the cut between i = r and i = r + 1. The
bipartition entanglement evolution of the middle bond SL/2 is present
in the inset, and three slow growth stages are marked with blue
dashed lines.

by the site i = L/2 + 1. That is, in terms of the property of
entanglement entropy, SL/2 can only depend on 〈nL/2+1〉 (and
also 〈nL/2〉 in terms of the hopping junction). This entan-
glement growth reminds us of the surface growth model for
entanglement in random quantum circuits, where an entan-
glement tsunami can be described by the Kardar-Parisi-Zhang
(KPZ) equation of particles [24,54,55].

Moreover, the wavelike entanglement spreading from the
left accumulates at junction, with rate varying periodically,
generating a staged entropy growth, which means the crests
are associated with maximums of growth rate, and ev-
ery trough resulting in the slow quasi-isentropic processes
(marked with blue dashed lines). This oscillatory behavior of
entanglement entropy can be regarded as continuous cycles of
heat engine described by a temperature-entropy diagram. We
further calculate the entropy growth of systems of different
sizes, which solely shows that the entanglement of a smaller
system is easier to approach middle junction.

The above results imply that we may be able to manipulate
entanglement analogous to enabling the particle flow with
a series of variables like the potential difference. Here, the
occupation of drive region standing for temperature provides
a possible role to manipulate entanglement, which deserves
further study based on the previous analysis. To this end, we
then focus on the influence of initial occupation and drive size
on SL/2, which has been discussed a bit based on the maximal
number of consecutive down spins in Ref. [36]. With the
single-site superposition state |α〉i = √

α|1〉i + √
1 − α|0〉i,
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FIG. 3. The entanglement entropy under different conditions in
the heterojunction. (a) The SL/2 at t = 1200 as a function of the initial
occupation ρ0 with D = 3 (black square), D = 4 (pink circle), and
D = 5 (blue triangle). As in Eq. (7), the ρ0 increases by sweeping
α ∈ [0, 1] between integers x. Local maximum values at integer ρ0

are marked with dashed lines. Inset: Comparison among three μi in
the drive region for D = 3. (b) The evolution of SL/2 with initial state
|11100 . . . 〉 as a function of μ1 = μ2 = μd . Inset: The final states
SL/2 at t = 1200.

we construct a series of continuous nonintegral ρ0 at the
(x + 1)-th site for unipolar initial states as

|φ(x, α)〉 = |1112 . . . 1x〉|α〉x+1|0x+2 . . . 0L−10L〉, (7)

so that the initial occupation becomes ρ0 = x + α. Take an ex-
ample: |φ(3, 1/3)〉 = |111〉(√1/3|1〉 + √

2/3|0〉)|000 . . . 〉.
Figure 3(a) illustrates SL/2 vs ρ0 at t = 1200 with different D.
It is observed that every local maximum appears at integral ρ0

(marked with dashed lines). It should be noted that the fastest
entropy change of every D appears at the final stage (such
as ρ0 ∈ [4, 5] for D = 5), suggesting the entropy increase is
mainly related to the boundary between the drive and spacer
region. More interestingly, as the initial occupation increases,
SL/2 shows small downward tendencies and will reach local
minima, which are balanced points between inhibition and
facilitation. When the ρ0 increases further, the facilitation
plays a leading role until the next integer. As mentioned
above, the ρ0 could be regarded as an effective temperature
with respect to the “cold” spacer region, so Fig. 3(a) can
be regarded as an entropy-temperature diagram for the heat
engine whose cycles can be approximately constituted by
isentropic and isothermal stages. By an isentropic process
we mean stages where entropy is almost constant when ρ0

increases, which are always found around the local minima,
namely, these balanced points. Then the isothermal process
refers to stages where entropy changes so rapidly that we
can regard ρ0 as almost static, which are always peaked at
around integer ρ0. This effective temperature then serves as

the essential point of our model as we find a way to define
a temperature gradient relevant to dynamical characters in
a quantum heat engine. One may doubt above results seem
to be strongly model dependent, but the East model as the
simplest paradigm with a facilitated interaction as well as
an occupation potential term can be extended to many more
sophisticated models without particle conservation [56,57].
The definition of temperature here in a dynamic perspective
can be generalized to other KCMs with facilitation. We also
compute different μd of the drive region in the inset, which
shows similar variation tendencies with a slight difference of
amplitude.

One may ask if the chemical potential μd has the same
effect of temperature. We then fix the D = 3, ρ0 = 3 and show
the entropy variance as a function of μd in the drive region in
Fig. 3(b). The entanglement does not change with μd when
μd < 1.0 and then increases when 1.0 < μd < 1.4. Crossing
a turning point, the smaller μd enables more active facilitation
and more easily spreading entanglement. As addressed above,
a possible phase transition is supposed to appear at the critical
point μd = 1 for fast and slow dynamics, but the fastest-
growing entropy as well as the turning point is observed at
around μd = 1.4. This result can be qualitatively interpreted
by dividing the parameter extent of μd into three sectors.
When μd < 1, the spacer region is attached to a thermalized
drive region where few particles can be pumped into the
localized spacer region. For larger μd > 2, the drive region
freezing most particles is relatively more localized than the
spacer region and the entanglement flow is thus blocked. Then
there is a competition between two sectors in the middle in-
terval μd ∈ [1, 2], where particles not only stay at the weakly
localized drive region but also can be pumped into the spacer
region. That is, what matters is not the turning point around
μd = 1.4 but the interplay of three sectors. More numerical
results for μ > 2 and D = 4 are available in Appendix B.
Consequently, the chemical potential in our model cannot
be equivalently recognized as the temperature showing an
approximately positive correlation with entropy like ρ0; it is
more like a parameter of detuning.

Hence, now we have two parameters to regulate the growth
of entanglement flows. As seen in Fig. 2, the entropy flow
shows apparent periodic waves whose amplitude and period
are related to ρ0 and μd . Concretely, we would like to present
two illustrative examples of coupling between entanglement
flows from two sides in the form of waves: one involving the
same flow tendencies but with varying amplitudes, and the
other one showcasing similar amplitudes with different ten-
dencies. After some tentative simulations, we have elaborately
chosen initial conditions appropriate for analysis. We set the
initial state as |11100 . . . 00101〉 (the initial state |1010 . . . 〉 is
discussed in more detail in Appendix C) and plot the resulting
Sr in Fig. 4(a). Even though two flows have the same tendency
from equal μd , they have unequal amplitudes, and the West
part shows an evidently faster entanglement flow than that in
the East part. This amplitude difference could be explained by
previous discussion that the second unoccupied site hinders
the flip of the edge occupied site of |13〉, which matters most
to the pump spacer region during evolution. The SL/2 values
of three different initial states as a bipolar and two unipolar
evolutions are further displayed in Fig. 4(b). Three curves
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FIG. 4. Dynamics of entropy Sr for the heterojunction chain.
(a) The initial state is chosen as |11100 . . . 00101〉 with D = 3 and
μd = 0.99. (c) The initial state is chosen as |11100 . . . 00111〉 with
D = 3, μd = 0.99 in the East model and μd = 0.5 in the West model.
Comparisons of SL/2 under different conditions are plotted in (b) and
(d).

have similar cyclic growth processes, and interestingly, the red
curve is equivalent to the superposition of the other two, which
is qualitatively attributed to the extensive property of entropy.
It is also worth noting that the extensivity heavily depends
on the choice of model. For our heterojunction structure, the
unidirectional facilitation imposes the direction of entangle-
ment, and the hopping contact in Eq. (3) which makes the
middle two sites a coupled zone between two parts provides
a possible interaction to combine the entropy of two inverted
models. Namely, the junction gathers not only the particles
but also entanglement. In addition, we calculate the evolution
under two different dynamical parameters, μd = 0.99 in the
East and μd = 0.5 in the West, as shown in Fig. 4(c). Here, a
lower μd brings a different flow tendency, that is, a coupling
between similar amplitudes. A simple superposition is also
found in Fig. 4(d).

Discussion and conclusion. Before ending, we discuss
more on the chemical potential and temperature. In our model
we replace the flip factor e−s in the common quantum East
model with parameter μi as the chemical potential for the
occupation ni in Hamiltonian Eq. (1). As is well known, in
the traditional thermodynamics, the internal energy of ideal
gases can be described by the Euler equation as

E = T S − PV +
∑

j

μ jNj, (8)

where Nj denotes the particle number of the jth component
and μ j the relevant chemical potential. In an electrochem-
ical cell, the difference of chemical potential serves as the
bias voltage to generate current flow. In the quantum East
model, however, the chemical potential difference plays a
more complicated dualistic role in dynamics. Here, the non-
conservation of particles from the facilitation term provides
a persistent particle flow almost identical with the entangle-
ment flow analogous to the steady heat flow from the hot to
cold region, which suggests a way to understand the relation-
ship between the classical and quantum heat engine. Most

importantly, since in normal cases the latter engine is based
upon pure states, it is difficult to define a relevant temperature
analogous to its classical counterpart. Here in our model, the
drive region size and initial occupation together play the role
of temperature, which can be promisingly applied to redefine
the temperature in quantum heat engines.

In summary, we have studied a nonuniform one-
dimensional KCM based on the nearest-neighbor-facilitated
quantum East model. We focus on the dynamics of en-
tanglement spreading and explore its potential of realizing
entanglement manipulation. The entanglement flows depend-
ing on the initial states and drive region are investigated.
Through introducing an analogical West model to construct a
heterojunction, the superposed entanglement flows are studied
and the relationship with quantum heat engines is discussed.
Further, our work offers a different perspective on KCMs with
facilitation and opens up possibilities for research of entangle-
ment dynamics within the framework of thermodynamics.

Acknowledgments. The authors gratefully acknowledge
support from the National Natural Science Foundation of
China (Grants No. 12374107 and No. 11974118).

Appendix A: Ground-state particle injection. In the main
text we found the particle injection in the contact sites is
determined by the drive region size D. Here, we assume a
linear inequality as the injection condition,

a1D + a2ξ � L/2, (A1)

where ξ and L label the localization length and the total
number of sites, and a1 and a2 are desired fitting coefficients.

According to previous research about the quantum East
model, the localization length only depends on the chemical
potential μi of the spacer region (set as μs in the following),
and it can be derived that ξ ∝ (logμs)−0.533 from Ref. [38].
In Fig. 5 we thus compute the critical μs, generating just the
particle injection of the ground state [the equality holds in
Eq. (A1)] as a function of drive region size D and plot the
corresponding linear fit of ξ . These results can be well fitted
by Eq. (A1), and we get a1 = 0.95, a2 = 24.86 by averaging
five different L. That is, the particle injection arises when

0.95D + 24.86ξ � L/2. (A2)

To verify the validity of the above equation, the ξ/L is plot-
ted against D/L in the inset of Fig. 5(b). It can be observed that
all five curves stay around the resulting injection condition,

0.95D/L + 24.86ξ/L � 1/2, (A3)

that is, they are collapsed onto a single curve well. Addition-
ally, at fixed D/L with infinite L, the ξ also has to be infinity as
in Eq. (A3), which indicates the critical chemical potential is
trending to the RK point of slow dynamics μs = 1, as shown
in the inset of Fig. 5(a).

It is worth mentioning that changing the chemical potential
of the drive region also delivers different outcomes, but the
impact is very slight when the drive region size is small.

Appendix B: Entanglement flow under varying chemical
potentials. As we state and discuss in the main text, the
unexpected change in entropy SL/2 with chemical potential
μd is attributed to three sectors with different localization
properties.

L032014-5
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FIG. 5. (a) Critical μs as a function of D for ground states of the
heterojunction model with different system sizes L. Inset: Critical μs

at fixed D/L = 1/6 with increasing L. (b) The localization length
ξ are obtained from corresponding μs, and the dashed lines are the
linear fit. Inset: ξ/L as a function of D/L, and Eq. (A2) in equality
holding is plotted by the dashed line with crosses.

In Fig. 6(a) we plot the final SL/2 under D = 3 related
to μ with initial states ρ0 = 2 : |1100 . . . 〉 and ρ0 = 3 :
|11100 . . . 〉, as examples to show the physical significance.
For μd < 1, the drive region exhibits the thermalized phase,
and fewer particles can be facilitated to break through the
edge between two regions. As μd increases to approach the
localization transition point μd = 1, a slight growth is ob-
served. If enlarging μd > μs = 2, the drive region is more
localized than the spacer region, and most particles are frozen;
hence corresponding entropy flow is inhibited. In the interval
1 < μd < 2 called weak localization, though the spacer re-
gion is relatively more localized, a competition between two
sectors exists, which leads to the crossover at around μd = 1.4
for both initial states. Three sectors are labeled in the figure.
Different curves of ρ0 have a similar tendency, and the ρ0 = 3
shows a larger amplitude, resulting from the edge occupation
of the drive region, which mostly affects the facilitation of
sites in the spacer region.

Additionally, a larger drive region and more initial occupa-
tion possibly make the relation between μd and entanglement
so complicated that it is hard to quantitatively predict the
entanglement growth. However, some common characters can
also be noticed in Fig. 6(b), a larger drive region D = 4 with
different initial states. For ρ0 = 1 : |100 . . . 〉, large μd has
effectively limited the facilitation of the sites in the drive re-
gion, and little entropy can flow to the contact as shown in the
figure. By the way, a similar situation also exists in D = 3 but
is not obvious. In the sector of weak localization, a maximum

FIG. 6. The final states SL/2 at t = 1200 as a function of μ, the
chemical potential in drive region (a) D = 3 with initial occupation
number ρ0 = 2, 3 and (b) D = 4 with initial occupation number ρ0 =
1, 2, 3.

is identified at around μd = 1.7 from the competition noted
above.

Appendix C: Discontinuous occupation initial states. We
have discussed initial states |φ(x, α)〉 with continuous occu-
pation in the main text, and in this section, the initial state
with discontinuous occupation will be analyzed based on
|10100 . . . 〉. Here, we construct initial superposition states as

|b〉 =
√

b|1110 . . . 〉 + √
1 − b|1010 . . . 〉, (C1)

where b is the superposition coefficient. Figure 7 illustrates the
final SL/2 vs b, and we identify a curve akin to the behavior of
the entropy-temperature diagram in the main text. Referring

FIG. 7. The SL/2 at t = 1200 as a function of the superposition
coefficient b under D = 3 and μ = 0.99.
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to the previous results, in the first stage (before the red circle),
the inhibition plays a dominant role during the increase of the
second occupation. As the occupation continues to increase,
the facilitation from the second sites is starting to perform

stronger than inhibition, and thus the entropy grows after
the minimum. This result also verifies the dual role of the
occupied site in the East model, including facilitation and
inhibition.
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