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Shepherding and herdability in complex multiagent systems

Andrea Lama *

Modeling and Engineering Risk and Complexity, Scuola Superiore Meridionale, Naples, 80100, Italy

Mario di Bernardo †

Department of Electrical Engineering and ICT, University of Naples Federico II, Naples, 80125, Italy

(Received 1 August 2023; revised 9 February 2024; accepted 8 May 2024; published 11 July 2024)

We study the shepherding control problem where a group of “herders” need to orchestrate their collective
behavior in order to steer the dynamics of a group of “target” agents towards a desired goal. We relax the
assumptions, often made in the existing literature, of targets showing cohesive collective behavior in the absence
of the herders, and herders owning global sensing capabilities. We find scaling laws linking the number of targets
with the minimum number of herders needed to shepherd them, and we unveil the existence of a critical threshold
of the density of the targets, below which the number of herders needed for success significantly increases. We
explain the existence of such a threshold in terms of the percolation of a suitably defined herdability graph and
support our numerical evidence by analyzing a partial differential equation describing the herders dynamics in a
simplified one-dimensional setting. Extensive numerical experiments validate our methodology.
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In various physical contexts, a group of agents (the
herders) must cooperate and self-organize in order to orches-
trate the emergence of some desired collective behavior in
another group (the targets), which would naturally act differ-
ently. Examples include shepherd dogs herding sheep towards
a location [1], predators such as dolphins corralling prey [2,3],
and robotic systems managing environmental pollutants [4] or
guiding agents to safety [5–9]. This is known as the “shep-
herding” control problem in the control theoretic and robotics
literature, where typically artificial herders need to drive tar-
gets to a specified area [8]. Previous research has primarily
been focused on one herder with multiple targets [7,10,11],
with less emphasis on the case of multiple herders [5,6,12].

Notably, when herders are outnumbered, solutions often
assume targets exhibit cohesive behavior, such as sheep flock-
ing together [1,5,10,13,14], allowing herders to leverage this
for efficient problem solving [5,10,11]. Relaxing this assump-
tion makes the problem much more cumbersome to solve
theoretically, as recently noted in [10]. Moreover, the as-
sumption that targets are cohesive is also unrealistic in many
applications such as environmental cleanup via multirobot
systems [4] or the confinement of microbial populations [15]
where target agents (pollutant particles or bacteria) do not
necessarily fulfill this hypothesis.
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There is also a second strong and, most importantly, un-
realistic assumption that most of the current solutions often
adopt: that the herders possess unlimited sensing capabilities,
i.e., that they all know the positions of all other herders and
all targets in the region of interest [1,12].

Moreover, as noted independently in the recent literature,
e.g., [11,12], most existing approaches adopt centralized or
distributed strategies that do not exploit a crucial feature of
complex systems. Specifically, effective shepherding control
should not be preengineered but should emerge from herders
following simple local rules in their interactions with targets
and each other, leading to collective behavior suited for the
shepherding task. A striking example is that described in
[16], where a phenomenological model is used to describe
the emergent collective behavior that two or more humans
show when asked to solve the shepherding problem in a virtual
reality setting (e.g., starting oscillating around the targets to
contain them).

In this Letter, we simultaneously remove both of the
assumptions mentioned earlier. Our investigation aims to
determine if, and under what “herdability” conditions, mul-
tiple cooperating herders—operating solely based on local
information—can effectively shepherd a group of target
agents towards a desired state. To this aim, we pro-
pose and analyze a minimal model, general enough to
comprise all the crucial features of the problem in the
presence of limited sensing capabilities of the herders and
the absence of any inherent collective behavior among the
targets.

Our approach is fundamentally different from typical stud-
ies on active-passive particle systems (see, e.g., [17–19]),
where the emergence of spontaneous behavior similar to shep-
herding is also observed. It is also distinct from previous
research on bipartite systems for understanding prey-predator
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FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by magenta
circles) at (a) the initial time t = 0 with the agents uniformly dis-
tributed in �0 (yellow shaded disk), (b) at an intermediate time
during shepherding control when herders surround all targets, and
(c) when the task is successfully achieved with all the targets in �G

(dark blue circle). (d) Schematic of the herders’ and targets’ sensing
(magenta shaded disks) and repulsion (blue shaded disk) regions of
radius ξ and λ, respectively. The solid black arrows represent the
direction of motion of the herders when moving in the absence of
nearby targets (H1), selecting the target to chase T∗ with the largest
distance from to goal (H2), or when the herder pushes a selected
target towards the goal region (H3).

and foraging behaviors [20]. In particular, in the problem we
study, herders actively make decisions on what targets to se-
lect and maneuver incorporating a feedback mechanism based
on their proximity to themselves and the goal region. This
unique integration of feedback control theory into physics-
inspired models marks our study as distinct in the field of
complex systems control. Our goal is to engineer the collec-
tive behavior of a complex multiagent system (the herders) in
order for another group of agents (the targets) to perform a
desired task and solve a distributed control problem, an aspect
that has been rarely considered in the vast literature on control
and controllability of complex systems (see, e.g., [21] and
references therein).

We consider the shepherding problem in R2 [see Fig. 1(a)],
where N herders must corral M targets to a goal region �G.
We assume that both the herders and the targets are initially
randomly and uniformly distributed in a circle �0 of radius R,
and that the �G region is a circle of radius r∗ < R, both �0

and �G being centered around the origin. Let H ∈ R2N be the
vector of the herders’ positions H = [H1, H2, . . . , HN ] with
Hi ∈ R2 being the Cartesian coordinates of the ith herder,
i = 1, . . . , N , and T ∈ R2M the vector of the targets’ positions
T = [T1, T2, . . . , TM ], with Ta ∈ R2 being the Cartesian co-
ordinates of target a, a = 1, . . . , M.

We assume the targets do not exhibit any type of cohesive
collective behavior with their dynamics being described by the
following overdamped Langevin equation

Ṫa =
√

2DN + β
∑
i∈Na

(λ − |dia|)d̂ia, (1)

where, analogously to what is typically considered in the
literature on soft matter, e.g., [18,19,22], N is white Gaus-
sian noise, β and D are positive constants, dia = Hi − Ta is
the vector of the difference between the position of herder
i and target a, λ > 0 is the radius of the region where
targets are repelled by nearby herders, and Na represents
the set of indices of all the herders, if any, whose po-
sitions are such that |dia| � λ. Note that βλ ≡ vT is the
maximum escaping speed of a target due to the presence
of one nearby herder and that we assume βλ2 � D so
that the harmonic repulsive action eventually exerted by the
herders onto the targets dominates over their own Brownian
dynamics

We model the dynamics of the herders as made of two
mutually exclusive terms, one capturing their own dynamics
and the other their interaction with the targets (see, e.g., [23]).
Specifically, we set

Ḣi = (1 − ηi )Fi(Hi, r∗) + ηiIi(T, H, ξ ), (2)

where ηi = ηi(T, H, ξ ) is an indicator function activating
when herder i has at least one target to chase in its sensing
region of radius ξ , Fi(Hi, r∗) describes the herder’s own dy-
namics when it is not chasing any targets, while Ii(T, H, ξ ) is
a feedback term capturing the herder’s reaction to the presence
of targets in its sensing region.

Without loss of generality, we choose Fi(Hi, r∗) so that the
herders, in the absence of nearby targets, converge towards the
origin if outside the goal region of radius r∗; namely we set

Fi(Hi, r∗) =
{−vH Ĥi, if |Hi| � r∗,

0, otherwise.
(3)

As typically done in the control theoretic and robotics
literature, e.g., [12], we assume that at each time step,
herder i selects a target within its sensing region, say T∗

i =
Ti(H, T, ξ ), to corral and chase. Then, we choose

Ii(T, H, ξ ) = −{α[Hi − (T∗
i + δT̂∗

i )]}vH , (4)

where δ = λ/2 is the distance at which the herder places itself
behind the chosen target to corral it towards the goal region,
α is a positive dimensional constant, and {·}vH is a saturation
operator that limits the herders’ maximum speed to vH when
chasing a target.

The target to chase T∗
i is selected by herder i as the target

with the largest distance from the origin among those, if any,
within the sensing radius of herder i. Furthermore, if herder
i detects other herders H j in its sensing region (i.e., such
that |H j − Hi| � ξ ), it only considers those targets Ta for
which |Ta − Hi| � |Ta − H j |. Through this simple local rule,
nearby herders effectively cooperate so as to decide which
target to chase without needing any global information on the
positions of other herders and targets.

We assume that the herders’ velocity vH > vT as typically
done in the control literature [8] and to prevent the formation
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FIG. 2. Values of the fraction χ of successfully herd targets
obtained for different values of M and N when R = 50. Results
are averaged over 50 simulations; the increments of N and

√
M

have values 
N = 1, 

√

M = 1. The level curve for χ∗ = 0.99 is
depicted by the white curve. The left panel shows the case of infinite
sensing (ξ = ∞) where N∗ ∝ √

M while the right panel the case of
limited sensing (ξ < ∞) where we recover N∗ ∝ √

M only above a
critical threshold M > M low (white vertical line).

of stable chasing patterns that can be observed for vT � vH

(similar to those reported in [24–26]) that can hinder the
achievement of the control goal. In addition, the radius of the
repulsion zone λ is chosen smaller than that of the sensing
area ξ .

Next, we study the herdability of a group of M targets by
a group of N herders [27]. Specifically, we define a group
of M target agents as “herdable” by N herders if the latter
can successfully guide at least a certain fraction χ > χ∗ of
the former towards �G within a finite time [see Supplemental
Material (SM) [28] for further details]. The threshold fraction
χ∗ is set based on standard values in control theory, typi-
cally χ∗ ∈ {0.9, 0.95, 0.99} [29]. Given the dynamics of the
agents, we will then look for the minimal number of herders,
denoted as N∗(M ), required to achieve herdability of M
targets.

For the sake of comparison, we start by considering herders
with infinite sensing capabilities, setting ξ = ∞. As shown in
Fig. 2(a), for a broad range of target group sizes, the required
number of herders, N∗(M ), exhibits a quadratic relationship
with the number of targets. Conversely, in scenarios with finite
sensing [Fig. 2(b)], the scaling N∗(M ) ∝ √

M is observed, but
only when the number of targets, M, exceeds a certain critical
threshold, M low. Below this threshold, the task notably de-
mands more herders, indicating, counterintuitively, that fewer
targets do not necessarily ease the control task with herders’
limited sensing abilities.

In general, the minimum number of herders, N∗(M ),
needed to shepherd M targets depends on two things, namely
the herders’ ability to (i) collectively sense all targets, which
are random independent walkers, and (ii) to counterbalance
the diffusion of the M targets with the transport flow they
induce.

From a simple dimensional argument, as the M targets are
distributed in a two-dimensional circular domain while the
N herders tend to arrange themselves on its one-dimensional
boundary [see Fig. 1(b) and SM videos [28]], condition (ii) is
satisfied for N∗(M ) ∝ √

M [as observed in Fig. 2(a)] while

)b()a( TT

ΩG ΩG

FIG. 3. Two representative configurations of targets and the
structure of the corresponding herdability graph G (whose edges are
depicted as solid black lines) (a) below and (b) above the critical
percolation threshold M̂ low. Green arrows show possible paths the
herder could potentially navigate to reach the furthermost targets,
denoted as T�, showing that when the graph is too sparse [panel (a)]
more distant targets can be lost.

condition (i) is trivially satisfied when the herders possess
infinite sensing (ξ = ∞).

However, with finite sensing ξ < ∞, meeting condition
(i) becomes increasingly more cumbersome as targets’ den-
sity decreases (e.g., M < M low). In this case, targets can
become too sparse, hindering herders from efficiently scout-
ing the area based on local information alone. Consequently,
a larger number of herders, N∗ is required to ensure all
targets, particularly those farthest from the goal �G, are ob-
served. This requirement deviates from the quadratic scaling
observed with infinite sensing. For M > M low, the higher
density of targets enables herders to effectively navigate and
explore the area of interest moving from target to target,
even without sensing each target at every time instant, thus
aligning with the scaling law observed in the infinite sensing
scenario.

To explain the critical threshold M low, we analyze how
herders, relying on local information, can satisfy the condition
of sensing and corralling also distant targets from �G.

To this aim, we define the herdability graph G as the ran-
dom geometric graph [30] where nodes represent targets, and
an edge exists between two targets, say Ta and Tb, if their
distance is within the sensing radius of the herders, i.e., if
|Ta − Tb| � ξ .

Then, a path in G from one target, Ta, to another generic
target, say Tc, indicates the potential for a herder to transition
from sensing Ta to sensing Tc. Therefore, we propose to esti-
mate the critical threshold M low by calculating the percolation
threshold of the graph G, denoted as M̂ low(R, ξ ); in particular,
we compute M̂ low(R, ξ ) in the worst case at t = 0 when targets
are randomly and uniformly distributed within a circle of
radius R (see Sec. II of the SM [28] for further details).

Figure 3 presents two schematic examples illustrating tar-
get configurations below and above the estimated threshold
M̂ low along with their respective herdability graph structures
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FIG. 4. Scaling of the critical threshold M low as a function of
ξ/R. The numerically observed values of M low (scatter dots), evalu-
ated by direct inspection, are compared with the theoretical estimate
M̂ low (dashed line) for different values of ξ and R (see Table 1 in
the SM [28] for the values of ξ and R selected). Error bars repre-
sent the maximum precision of the computation given the step size



√
M = 1 used in the simulations. Results for χ∗ ∈ {0.90, 0.95} are

reported in Sec. I of the SM [28] confirming the observed scaling.
For the same ξ/R value, scatter points were shifted on the x axis to
increase visibility.

G. These examples clarify how M̂ low can serve as an ap-
proximation for the critical threshold M low. Given the known
scaling of the percolation threshold of a two-dimensional ran-
dom geometric graph as R2/ξ 2 [31], we anticipate M low ∼
R2/ξ 2. This expectation aligns with our numerical findings
shown in Fig. 4 when χ∗ = 0.99, confirming that our theo-
retical approach effectively captures the observed trend. For
more details and additional validation for different χ∗ values
and noise levels in the targets dynamics, we refer the reader to
the SM [28].

Our study’s central finding is that effective herdability
hinges on sufficient connectivity of the herdability graph
G. To analytically substantiate this, we examine a simpler
one-dimensional scenario and derive a partial differential
equation (PDE) characterizing the spatiotemporal dynamics
of the herders’ density, denoted as ρH . A pivotal aspect of
our analysis involves translating the decision-making process
herders use to select the target to chase, T∗

i , into a continuum
framework. We propose this can be done by expressing the
target selection rule used by the herders as a weighted average
approximated by

T∗
i = lim

γ→∞

∑
a∈Ni

eγ |Ta| Ta∑
a∈Ni

eγ |Ta| , (5)

with Ni being the set of target indices such that dia � ξ .
Then, recasting (5) in a continuum framework, ignoring

the herders’ own dynamics, Fi, allowing different herders to
select the same target, and setting δ = 0 in (4) for the sake of
simplicity, the dynamics of the herders’ density ρH (x, t ) can
be captured heuristically by the following PDE,

ρH
t +

[
−dV

dx
ρH

]
x

= 0, (6)

x/ξ

ρ
T
(x

)

V
( x

)

FIG. 5. Stationary distributions of the targets, ρT (magenta
lines), over a one-dimensional domain together with the correspond-
ing potential V (red line) computed by (7) showing global stability
when no regions exist where ρT |x∈
 = 0 with |
| > ξ (top panel)
and local stability otherwise (bottom panel).

where

−dV

dx
= − 1

M

∫
Bξ (x)

eγ |y|ρT (y)(x − y)dy, (7)

with ρT being the density of the targets supposed to be station-
ary when the herders are sufficiently faster than the targets,
and Bξ (x) denotes a ball of radius ξ centered in x, and M is a
normalization factor.

Using (6), we find, as shown in Fig. 5, that a globally
stable equilibrium configuration, in which herders completely
encircle all targets, is attainable only under the condition that
no regions exist where ρT |x∈
 = 0 with |
| > ξ , a situation
corresponding to the herdability graph G being disconnected.
This further substantiates our finding that the targets need to
maintain a sufficient level of connectivity within the herdabil-
ity graph G in order to enable the herders to collectively detect
and guide even the most distant ones.

In summary, the relevance of our findings is twofold.
Firstly, we solved the shepherding control problem in a set-
ting with non cohesive stochastic targets and with herders
with limited sensing capabilities. Secondly, we introduced and
analyzed the herdability of a group of targets by a group of
herders providing conditions for the herders to corral and
chase all targets. This is achieved solely by means of lo-
cal information and knowledge of the control goal enabling
the herders to select the next target to chase according to
a decentralized feedback control mechanism. We found that
the minimal number of herders N∗ required to successfully
shepherd a group of M targets scales as N∗ ∝ √

M only above
a critical threshold M low in the case of limited sensing. We
showed that an estimate of such critical threshold can be effec-
tively obtained in terms of the percolation of a suitably defined
herdability graph. Finally, we provided a strategy to trans-
late to a continuum framework the target selection strategy
used by the herders and, consequently, derived an appropriate
PDE describing the evolution of the herders’ density in a
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one-dimensional representative setting. The stability analysis
of the asymptotic herders’ distributions confirmed our claim
that in order for the task to be successful the herdability graph
must be adequately connected.

Ongoing and future work will be devoted to further ex-
plore the continuum formulation of the shepherding control
problem. Indeed, we anticipate that such a formulation will
allow to investigate herdability for a variety of targets dy-
namics [32], leveraging on results from the literature on the
physics of nonreciprocal interactions [25] and on the control
of PDEs, e.g., [33,34]. For example, the collective dynamics
of the targets could be described as a wave equation where
perturbations can effectively propagate in space, e.g., [35],
and then solutions to the boundary-control problem of the
wave equation described in [33] could be adapted to find
novel herder configurations to solve the shepherding control
problem.

All the numerical simulations were carried out in MATLAB

using a forward Euler scheme for the herders, and a Euler-
Maruyama scheme for the targets, with time steps 
t = 0.03,
and total duration t depending on the settling time required for
stationarity (see Fig. S8 of the Supplemental Material [28]).
The parameters of the targets’ dynamics were chosen as D =
1, β = 3, λ = 2.5. The parameters of the herders’ dynamics
were chosen as vH = 8, α = 5, γ = 5. The radius r∗ of the
goal region �G was chosen as R/5. The source code to run
the simulations can be downloaded from [36].

This work was supported by the Italian Ministry of Uni-
versity and Research (MUR) through the project PRIN 2022
“Machine-learning based control of complex multi-agent sys-
tems for search and rescue operations in natural disasters
(MENTOR)” - CUP E53D23001160006.
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