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Fractional skyrme lines in ferroelectric barium titanate
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We predict a topological defect in perfectly screened ferroelectric barium titanate which we call a skyrme
line. These are linelike objects characterized by skyrmionic topological charge. As well as configurations with
integer topological charge, the charge density can split into well-localized parts carrying a localized fraction of
topological charge. We show that under certain conditions the fractional skyrme lines are stable. We discuss a
mechanism to create fractional topological charge objects and investigate their stability.
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Skyrmions are topologically nontrivial defects originally
proposed as a model of nuclei by Skyrme [1], though now
various versions of skyrmions are more commonly stud-
ied in ferromagnets and other materials. They exist due to
the topology of the system and their topological stability
makes them promising candidates for various applications,
with the prototypical application being high-density memory
storage [2].

Recently, ferroelectric materials were shown to be a host
for nontrivial physics associated with topological defects.
The most studied are lattices of polar vortices, predicted in
Refs. [3,4] and evidenced in Ref. [5]. This motivated the
theoretic [6] and experimental [7] searches for lattices with
skyrmionic charge. The individual units of this lattice are
sometimes called (polar) skyrmion “bubbles” [8,9]. A bubble
is a localized region of the material where the polarization has
an opposite direction to the background. Evidence of localized
skyrmion bubbles have been theoretically predicted in BaTiO3

[10] and strained PbTiO3 [11]. Polar skyrmions and vortices
have novel features such as chirality [12] and local negative
permittivity [13,14]. Vortexlike Ising lines have also been
simulated numerically [15].

In this Letter, we show that another type of defect in ferro-
electrics is possible, which we coin a ferroelectric skyrme line.
These share many properties with skyrmions, such as their
topology and chirality, and can be thought of as skyrmions lo-
calized on ferroelectric domain walls. We report the existence
of many nontrivial skyrme lines in barium titanate, despite
not finding any stable skyrmions in our model. Configurations
where skyrme topological charge is confined to a domain wall
have attracted interest for a long time both in mathematical
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physics [16–18] and recently in other physical systems such
as magnetic systems [19–21] and superconductors [22,23].

The especially interesting property of these defects is
that they exhibit fractionalization of topological charge. Tra-
ditionally topological charge is supposed to be an integer,
represented as an integral over some topological charge
density. However, recently fractionalization, where the topo-
logical charge density is split into several stable configurations
of localized fractions, has become of interest in a variety
of models. Fractional topological defects were searched for
in various systems and a fractional vortex was reported re-
cently in superconductors [24], where the interesting aspect
of the fractionalization is that it arises from the vorticity in
the fields which are not order parameters in the strict Lan-
dau theory sense [25], and hence represent effects beyond
the conventional symmetry and topology classification. Frac-
tional skyrmions have been seen in condensed matter systems
[21,26,27] and mathematical physics [28]. The concept also
applies to topological defects in higher dimensions [29,30].
In these examples, fractional defects exist as part of a larger
object such as a lattice or integer-charged defect. Importantly,
we report that ferroelectrics allow topological line defects
with unique fractional skyrme charge, which are themselves
stable.

We study a Ginzburg-Landau-Devonshire model of bar-
ium titanate in the rhombohedral phase (T < 201 K). We
focus on a specific model with no electrostatic energy
contributions. The model can be written in terms of a po-
larization vector P = (P1, P2, P3) and a symmetric strain
tensor ui j which can be conveniently bundled into a 6-vector
e = (u11, u22, u33, u23, u13, u12). The free-energy density is
given by

F = 1
2 Gabcd∂aPb∂cPd + V (P) + 1

2Cαβeαeβ − qαbceαPbPc.

(1)

The parameters are detailed in the Supplemental Material
[31]. The potential V (P) in the rhombohedral phase has eight
ground states which point in the directions of cube vertices:
P ∝ (1, 1, 1), etc. The strain tensor satisfies an addition com-
patibility constraint, which ensures there are no holes in the
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material. We have developed a method to minimize the free
energy while preserving the compatibility constraint. While
minimizing for P, we project the energy-minimizing strain
eα = C−1

αβ qβcd PcPd onto a complete set of compatible func-
tions. Since we can express the strain part of the free energy
as an inner product, this is guaranteed to be the unique com-
patible energy-minimizing strain. More details can be found
in the Supplemental Material [31]. We ignore the electrostatic
energy for simplicity and so our model is of perfectly screened
barium titanate.

A skyrmion is a texture that exists and is stable due to the
topology of the system. Usually, this topology is due to the
structure of the field. In magnetic materials, the fundamental
field is the magnetization, a field which takes values on the
sphere S2. Maps from S2 to a plane with fixed boundary con-
dition have nontrivial topology through the second homotopy
group π2(S2). It is this topology which makes the magnetic
skyrmion stable. In ferroelectrics the order parameter field
is the polarization P ∈ R3, which has trivial topology. So a
naive symmetry-based analysis would suggest that the field
structure cannot support skyrmions. However, the point P = 0
has very high energy and there is an energy cost for a configu-
ration to contain this point. This is why Bloch walls (which
do not contain P = 0) are often energetically favored over
Ising walls (which contain P = 0) in low-temperature barium
titanate [32]. If P is never zero, the field can be thought of as
P ∈ R3 \ {0}, which has nontrivial topology and can support
skyrmions since π2(R3 \ {0}) = Z. Note that the topological
argument involving homotopy groups, which are the basis for
skyrmion stability in magnetic materials and the skyrme lines
here, only strictly hold in the continuum limit.

We find in barium titanate a stable object which carries
skyrmionic topological charge, which we call a skyrme line.
These can be viewed as an “unwrapped skyrmion” as shown
in Fig. 1. The configurations are similar to domain walls but
have a nontrivial structure along the wall. The skyrme lines lie
on planes, embedded in R3. The free energy depends on the
orientation of the two-dimensional (2D) plane in the three-
dimensional (3D) material. We consider the plane spanned
by two orthogonal vectors s and r. First, consider a domain
wall that connects two antipodal ground states ±PV along a
direction s; the material’s extent in the s direction, Ls, should
be much larger than the width of the domain wall. We take
periodic boundary conditions in the r direction for simplicity
and discuss more realistic boundary conditions in the next
section. Overall, the boundary conditions are then

P(±Ls, r) = ±PV , P(s, Lr ) = P(s,−Lr ). (2)

The skyrme line seen in Fig. 1 respects these boundary condi-
tions. It is constructed using the initial configuration

Psk
a (s, r; r0) = |PV |Rab

⎛
⎜⎝

cos(N1r + r0) sin[ f (s)]

sin(N1r + r0) sin[ f (s)]

cos[ f (s)]

⎞
⎟⎠

b

, (3)

where Rab is the rotation matrix taking (0,0,1) to the bound-
ary ground state, (−1,−1,−1) in this case, and f (−Ls) =
0, f (Ls) = N2π . The topological charge is equal to N = N1N2

and we have taken N1 = N2 = 1. Equation (3) is the un-
wrapped form of the standard “hedgehog” baby skyrmion

FIG. 1. Plots of the polarization vector P for a skyrmion (left)
and skyrme line (right). We find that ordinary skyrmions are unstable
in barium titanate, but that skyrme lines can be stable. One can think
of a skyrme line as an “unwrapped” skyrmion: The long arrows
demonstrate how a skyrmion is mapped onto a skyrme line. The
short arrows, representing P, are colored white, red, green, blue, teal,
pink, yellow, and black when their nearest ground state is PV times
(1,1,1), (−1, 1, 1), (1,−1, 1), (1, 1,−1), (1, −1, −1), (−1, 1, −1),
(1, −1, 1), and (−1, −1, −1) respectively, visually represented in
the top subfigure.

[33]. To have periodic boundary conditions r must be a
multiple of π/Lr . The parameter r0 allows us to shift the
skyrmion along the r axis.

When the point P = 0 does not appear in a configuration
we can construct the normalized polarization vector P̂ and
use it to calculate a topological charge, usually known as the
skyrme charge:

N = 1

4π

∫
P̂ · ∂sP̂ × ∂rP̂c ds dr. (4)

The skyrme line in Fig. 1 has charge N = 1. The charge is
conserved provided that P is never zero. If this does happen,
the charge becomes undefined and the skyrme line collapses
into a regular domain wall.

To show stability, we numerically relax the skyrme line
(3) using a gradient flow (see Supplemental Material [31]).
We know that the allowed domain walls depend on the ori-
entation of the wall in the material, and so we expect that
the skyrme line stability depends on the plane orientation
(s, r). We search over various plane orientations and find
various stable configurations, including skyrme lines. One
such configuration is plotted in Fig. 2, with s = 1/

√
3(1, 1, 1)

and r = 1/
√

2(0, 1,−1). Note that the three contours P1 = 0,
P2 = 0, and P3 = 0 in Fig. 2 never touch. Their intersec-
tion would correspond to the point P = 0, which has very
high energy. One can only “unknot” the contours by passing
through the point. This energy barrier generates an outward
pressure on the skyrme line. Conversely, the gradient energy
Gabcd∂aPb∂cPd is minimized when the line collapses into a
simple domain wall and so encourages the line to shrink. The
balance between these two forces stabilizes the skyrme line.

L032011-2



FRACTIONAL SKYRME LINES IN FERROELECTRIC … PHYSICAL REVIEW RESEARCH 6, L032011 (2024)

FIG. 2. A numerically generated skyrme line plotted twice. We
plot the polarization vector P colored to reflect the closest vacuum
(left) and the contours Pi = 0 overlaid with the topological charge
density (right). The charge is fractionalized: Its density is mostly
concentrated on the contour intersections.

The topological charge deserves careful study. We observe
what can be interpreted as topological charge fractionaliza-
tion in this system. Namely, the topological charge density is
equally concentrated at the six points, where two of the three
contours Pi = 0 intersect. At these intersections, two of the
P components are zero and so the polarization points along a
Cartesian axis. Now consider a loop around an intersection,
which is in target (or P) space and encircles an axis. We call
the orientation of this loop the chirality of the intersection. If
the direction is anticlockwise, the chirality is positive and vice
versa. Each positive chirality intersection contributes +1/6 to
the charge and each negative chirality loop −1/6. In Fig. 2
the skyrmion contains six positive chirality intersections, and
so has charge N = 1. More formal arguments, using differ-
ent language, were recently made for a magnetic system in
Ref. [34]. The intersections are extrema of the potential and
so each charge 1/6 skyrmion has the same mathematical struc-
ture as their “non-Abelian vortices,” which are topologically
stable due to an energetics-motivated puncturing of the target
manifold.

We have seen that the topological charge fractionalizes
into sixths and will now show that we can construct frac-
tional skyrme lines by adjusting the boundary conditions of
the system. We again construct a domain wall connecting
two ground states ±PV . In barium titanate, there are sev-
eral energy-degenerate domain walls that connect the ground
states. We suppose that one type of domain wall PW +(s) is
present at one side of the material, LR, and another PW −(s) at
the other side, −LR. We expect this situation to occur when the
system is annealing. Since there is no energetic reason for one
wall to be preferred, both will form in different regions and
our system describes what will happen between these regions.
The boundary conditions are now

P(±Ls, r) = ±PV , (5)

P(s,−Lr ) = PW −(s), P(s, Lr ) = PW +(s), (6)

FIG. 3. Fractional skyrme lines with topological charge n/6,
which are stable in a variety of planes spanned by s and r. Skyrme
lines with the same boundary data have a relative topological
charge 1.

where PW + and PW − are genuine 1D domain wall solutions.
These can be found in arbitrary orientations following the
methods developed in Ref. [35]. We then generate an initial
configuration that satisfies the boundary conditions (5), of the
form

P(s, r) = PW −(s)g(r) + PW +(s)[1 − g(r)], (7)

with g(Lr ) = 0 and g(−Lr ) = 1.
We now apply gradient flow to the initial data (7). By

using different PW ± and different g(r)s, we can generate a zoo
of skyrme lines. Solutions with absolute topological charge
n/6, n ∈ [1, 6] are plotted in Fig. 3. All configurations here
have fixed boundary conditions. There are four different sets
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of boundary conditions, and for each we plot two configura-
tions separated by one unit of charge. The fact that both are
stable suggests that there is an energy barrier due to their
different topological charges. We calculate the topological
charge by simply counting the contour intersections, with
chirality. Given the order of contours at the top and bottom
of the box, the charge is fixed to be some fraction, up to an
integer. Hence the fractional charge is due to the structure
of the domain wall solutions at each side of the system.
We verify this simple counting by calculating the topologi-
cal charge numerically using (4). For each skyrme line with
charge N , there is an energy-degenerate partner with negative
skyrmionic charge −N . This can be generated by applying
a reflection to P, across the plane with normal PV × s: a
symmetry of the system.

We can better probe the wall stability by then relaxing the
boundary condition to be open. That is, take ∂rP(s,±Lr ) = 0.
When this is done, all the walls in Fig. 3 are stable except
the 4/6-charge wall, which ejects two intersections to become
a 2/6-charge wall. Overall, we have found stable, localized
skyrme lines with various fractional topological charges. As
another check of the stability of the skyrme lines, we have
applied the simplified string method [36,37] to a skyrme line.
This method calculates the energy barrier between the skyrme
line and a simple domain wall, and shows that the topolog-
ical charge becomes ill defined at this barrier. The analysis
confirms that the skyrmionic topology is what provides the
skyrme line with its stability. More details can be found in the
Supplemental Material [31].

The skyrme lines discussed here have some similarities and
differences with other objects in the literature. In Ref. [6], the
authors found a lattice with skyrmionic charge 1 per unit cell.
Like ours, the charge fractionalizes and is concentrated at the
intersection of contours Pi = 0. Unlike ours, the lattice is only
stable due to the presence of a nanowire. Recently, the exis-
tence of individual antiskyrmions (similar to the configuration
shown in Fig. 1 left) in barium titanate at T = 0 K has been
reported [10]. Despite searching, we do not find such stable
configurations in our simulations. Finally, note that the charge
N = ±1/2 skyrme lines have the same topological structure
as merons.

The skyrme lines that we found can be created and ma-
nipulated using external electric fields. First, one can create a
whole skyrme line from a configuration with zero topological
charge. The process requires a complicated stencil; we use a
four-part stencil. Each part of the electric field stencil had a
strength |E | = 0.3 MeV/m2. Each square was 3 × 6 nm large
and point in the direction indicated by the color in Fig. 4. The
color scheme is visually represented in Fig. 1. The electric
field was applied until the system reached equilibrium (less
than 1 unit of τ ; see Supplemental Material [31]), then turned
off. This creates enough energy to overcome the P = 0 energy
barrier and a skyrme line with topological charge N = 1 is
created. Note that the stencil used here is a nanoscale object
and hence cannot be created with current technology. But this
simulation shows that fractional skyrme lines can theoretically
be produced by an external field.

Since each part of the previous stencil points in a different
direction, engineering such an external field is a challenge.
A simpler process, with a simpler stencil, can be seen at the

FIG. 4. Making a charge 1 skyrme line (top) and switching an
N = −1/2 line to an N = +1/2 line (right) using external electric
fields. The color of each stencil represents the direction of the applied
external field.

bottom of Fig. 4. Here, we switch from a N = +1/2 line to
a N = −1/2 line using a one-piece stencil. A 6 nm × 6 nm
electric field of strength 0.3 MeV/m2 was applied until equi-
librium was achieved (less than 1 unit of τ ), then turned off.
In the process, three positive-chirality contour intersections
are turned into three negative-chirality ones.

We have considered another type of topological defect
in perfectly screened ferroelectric barium titanate, which we
call a skyrme line. Their stability depends on a topologi-
cal charge which is protected by the high-energy cost of
the point P = 0. We found stable skyrme lines and studied
their stability, creation, and switching. A unique feature of
ferroelectric skyrme lines is that they can exist with frac-
tional topological charge and these structures should appear
naturally in an annealed sample. We found all examples of
possible fractional skyrme lines N = n/6 in the rhombohedral
phase.

In this work, we have ignored the electrostatic energy
contribution. Physically, we have modeled perfectly screened
barium titanate. This approximation is most reasonable for
neutral domain walls, when s · P = 0, such as the charge
N = ±1/2 walls studied here. These are the skyrme lines
most likely to exist in real barium titanate. This moti-
vates further studies that would include the electrostatic
energy. One can add a nonlocal term which is numerically
expensive. Including also raises difficult theoretical ques-
tions of regularization, especially for nonperiodic boundary
conditions [38].
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We discussed how to switch domain walls using a very sim-
ple mechanism. The robustness and manipulability of these
objects suggest that fractional skyrme lines might be use-
ful objects for data storage devices. The +1/2 and −1/2
skyrmions have different chirality, and this property might be
determinable using four-dimensional scanning transmission
electron microscopy (4D-STEM) experiments [12].
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