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Adaptive strategy optimization in game-theoretic paradigm using reinforcement learning
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Parrondo’s paradox refers to the counterintuitive phenomenon whereby two losing strategies, when alternated
in a certain manner, can result in a winning outcome. Understanding the optimal sequence in Parrondo’s games is
of significant importance for maximizing profits in various contexts. However, the current predefined sequences
may not adapt well to changing environments, limiting their potential for achieving the best performance. We
posit that the optimal strategy that determines which game to play should be learnable through experience.
In this Letter, we propose an efficient and robust approach that leverages Q learning to adaptively learn the
optimal sequence in Parrondo’s games. Through extensive simulations of coin-tossing games, we demonstrate
that the learned switching strategy in Parrondo’s games outperforms other predefined sequences in terms of
profit. Furthermore, the experimental results show that our proposed method can be easily adjusted to adapt to
different cases of capital-dependent games and history-dependent games.
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Inspired by the dynamic nature of flashing Brownian ratch-
ets, Parrondo’s paradox demonstrates that alternating between
two strategies, each of which will individually result in losses,
can surprisingly lead to a winning outcome. This intriguing
paradox has piqued interest and found relevance in varied
fields such as quantum systems [1,2], biology [3,4], and en-
cryption [5], demonstrating its wide-ranging applications [6].
A player selects between two games, A and B, which is in-
dividually a losing game. When played in a certain sequence,
it can surprisingly result in a winning outcome in the long
run. Determining the optimal sequence for switching between
games is crucial for maximizing outcomes, as highlighted by
Dinis [7]. There is the capital-dependent Parrondo’s paradox
which is reliant on the current capital of the player, while
the history-dependent variant relies on the past wins/losses to
decide on the game to be played. The sequential arrangement
of playing the games can determine whether one wins or
loses the game in the long term. For example, the periodic
“ABABB” sequence has been devised as the optimal sequence
for the capital-dependent Parrondo’s paradox, drawing sup-
port from both theoretical analysis and empirical observations
[8]. However, this is optimal only when the sequence is speci-
fied as periodic. Therefore, several attempts have further been
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made to discover the optimal sequence in an arbitrary order,
with researchers exploring different methodologies. One no-
table approach is the utilization of genetic algorithms [9,10],
which are renowned for their powerful search abilities in
combinatorial problems [11,12]. The convergence of these
multifaceted approaches empowers researchers to study the
intricate interplay between game ordering and winning out-
comes within Parrondo’s paradox, gaining new insights into
the underlying dynamics and optimizing strategies for maxi-
mum advantage. Nevertheless, these methods typically search
for a fixed sequence, which inherently restricts the scope of
their potential applications for the following reasons.

Parrondo’s games exhibit complex dynamics and nonlin-
ear relationships, making it difficult to anticipate optimal
sequences solely based on static analysis. The performance
of Parrondo’s games is sensitive to specific conditions, such
as the current capital. Predefined sequences are typically de-
signed based on theoretical or empirical insights, which fail
to adapt to these changing conditions, as they remain fixed
regardless of the environment. Consequently, the subopti-
mal sequencing may fail to fully capitalize on advantageous
conditions or adequately mitigate the deleterious effects of
unfavorable circumstances, thus diminishing the game’s over-
all performance. This suboptimality can arise due to a lack
of adaptability to dynamic environments, or inadequate in-
corporation of feedback mechanisms and control strategies.
The consequence is an attenuation of the game’s ability to
exploit beneficial opportunities and navigate challenging sce-
narios, highlighting the critical importance of discerning and
implementing optimal sequencing schemes to attain favorable
outcomes.
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Some works such as Refs. [13–15] have already noticed
that policy based on the current state can achieve the maxi-
mum profit and proposed to use adaptive strategy. However,
there still lacks a general framework that can accommodate
complex situations, such as different M in the coin-tossing
game within the capital-dependent Parrondo’s paradox or
other complex tasks. To address this issue, we use rein-
forcement learning that emerges as a compelling solution
to overcome the limitations of predefined sequences in Par-
rondo’s games. Our contributions can be summarized as
follows.

(i) The dynamic and adaptable nature of reinforcement
learning, driven by learning from experience, enables in-
formed decision-making in response to changing conditions.
Therefore, we explore employing reinforcement-learning al-
gorithms to find the optimal sequence in Parrondo’s games.
In this way, we can adaptively update the sequence, allowing
for the discovery of optimal sequences that outperform static
approaches.

(ii) We have studied the extensibility of reinforcement
learning in finding the optimal sequence in Parrondo’s games.
The experimental results show that our proposed method can
be easily tailored to adapt to different problems by simply
modifying the size of state space. Furthermore, in addition
to the well-studied capital-dependent games, we have also
explored the applicability of our proposed method in history-
dependent games.

We first review some basic definitions of Parrondo’s
games [8] and elucidate the methodology for modeling Par-
rondo’s games [6,16] within the framework of reinforcement
learning. In particular, we will explore the application of
Q-learning techniques to identify the optimal sequence of
moves.

Game A. In game A, a player tosses a coin and re-
ceives a win if it lands on heads, and a loss if it lands on
tails. In particular, the probability p1 of the coin landing
on heads is given by 0.5 − ε, where ε is a small positive
constant, and the probability of the coin landing on tails is
given by 0.5 + ε. In other words, the coin is biased toward
tails. The player starts with an initial capital of 0, and each
win adds 1 unit to their capital, while each loss subtracts
1 unit from their capital. Game A is a Markov process and
can be modeled as follows:

�A =
⎡
⎣ 0 1 − p1 p1

p1 0 1 − p1

1 − p1 p1 0

⎤
⎦. (1)

Game B. In game B, the player has two coins to choose
from, coin 2 and coin 3. Both coins have a different probability
of landing on heads or tails. Coin 2 has a probability of p2 of
landing on heads, and a probability of 1 − p2 for landing on
tails. Coin 3 has a probability of p3 for landing on heads, and
a probability of 1 − p3 for landing on tails. Again, the player
starts with an initial capital of 0, and each win adds 1 unit to
their capital, while each loss subtracts 1 unit from their capital.
The player’s coin selection is based on the current capital and
a parameter M. If the current capital is a multiplier of M, coin
2 is chosen; otherwise, coin 3 is selected. Game B is a Markov

process and can be modeled as follows:

�B =
⎡
⎣ 0 1 − p3 p3

p2 0 1 − p3

1 − p2 p3 0

⎤
⎦. (2)

For game A, let t be the round of game and X (t ) be the
average capital at round t , then we have

X (t + 1) = X (t ) + 2p1 − 1. (3)

Similarly, the average capital at round t can be obtained as
follows if game B is played at round t ,

X (t + 1) = X (t ) + 2pwinB (t ) − 1, (4)

where pwinB refers to the probability of winning of game B.
Let π0(t ) be the probability that the capital at round t is a

multiple of 3, then we can have pwinB(t ) as follows:

pwinB(t ) = π0(t )p2 + [π1(t ) + π2(t )]p3. (5)

Similarly, π1(t ) and π2(t ) refer to the likelihood that the
capital is a multiple of 3 with the remainder of 1 or 2, respec-
tively, and π (t ) ≡ [π0(t ), π1(t ), π2(t )]T .

We can define the expected gain at round t as follows:

g(t ) ≡ X (t + 1) − X (t ). (6)

The above equation is satisfied for whatever game is
played. For each case, we can have

g(t ) =
{

gA if A is played at t,
gB if B is played at t .

(7)

The expected gain of game A is as follows:

gA ≡ 2p1 − 1. (8)

Similarly, game B is as follows:

gB ≡ 2[π0(t )p2 + [π1(t ) + π2(t )]p3] − 1. (9)

Therefore, the total gain of playing game for T rounds is

GT =
T∑

t=1

g(t ). (10)

Let αt denote the game to play at round t which can only
have values of A or B. The problem now becomes that of
finding the sequence (α1, α2, . . . , αn) to maximize GT , with

π(t + 1) = �Aπ(t ), if αt = A,

π(t + 1) = �Bπ(t ), if αt = B.
(11)

Let Ĝn(π ) be the maximum expected gain at round n. Then
we can have the expected gain if we play game A at round
n − 1 as follows:

gA + Ĝn−1(�Aπ ). (12)

Similarly, we can have the following if we play game B:

gB + Ĝn−1(�Bπ ). (13)

Then, we can choose the game to play based on

Ĝn(π) = max
{
gA + Ĝn−1(�Aπ), gB + Ĝn−1(�Bπ)

}
. (14)
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FIG. 1. The diagram of Q-table in Parrondo’s paradox.

It is obvious that the optimal game to play is dependent on
the latest result only. Due to the Markov nature of Parrondo’s
games [15], we are motivated to approach the problem with
a technique that can adapt to the changing environment. In
this Letter, our focus is on employing the Q-learning algo-
rithm [17,18], a reinforcement-learning method, to discover
the optimal strategy. Unlike the typical switching strategy (pe-
riodic or random) [19,20], this method will follow a sequential
decision-making framework, where an agent interacts with the
environment, learns from its actions, and updates its policy
based on observed rewards. In this work, the reward is set to
the gain of the played game. Our proposed method begins by
defining the state space, which is based on the type of game.
For the capital-dependent game, the state space consists of
three possible remainders of the current capital divided by 3,
i.e., 0, 1, or 2.

In the context of the history-dependent Parrondo’s paradox,
game A is the same as the capital-dependent one while game
B is different. Determining the game scenario to be played
hinges upon the sequential results of the preceding two games
instead of the current capital. As each game can culminate
in either a win or a loss, a total of four distinct combina-
tions emerge from the possible outcomes of the previous two
games: {lose, lose}, {lose, win}, {win, lose}, and {win, win}.
These four combinations, in turn, correspond to four distinct
coin options that can be chosen. In this case, the state space
is set to the aforementioned four possible scenarios. The ac-
tion space is determined by the available choices, specifically
selecting either game A or game B at each decision.

The core implementation revolves around the Q-learning
algorithm loop. The agent iteratively selects actions based
on an ε-greedy strategy. Upon executing an action, the agent
receives a reward and subsequently updates the Q value for the
corresponding state-action pair using the Q-learning update
rule as follows,

Q(s, a) ← (1 − α)Q(s, a) + α[r + γ max
a

Q(s′, a)], (15)

where Q(s, a) is a state-action pair, referring to the expected
cumulative reward. α denotes the learning rate. r is the imme-
diate reward obtained after taking action a in state s. γ refers
to the discount factor and determines the importance of future
rewards in the learning process. The diagram of the Q-table
defined in our problem is shown in Fig. 1 and the pseudocode
is shown in Algorithm 1.

ALGORITHM 1. Q learning for optimal sequence in Parrondo’s
paradox.

1: Initialize Q-table with random or zero values
2: Define state space and action space
3: Set hyperparameters: learning rate α, discount factor γ ,

exploration rate ε

4: Initialize episode counter e ← 1
5: While not convergence criteria met do
6: Initialize state s
7: while not end of episode do
8: Select action a based on ε-greedy strategy
9: Execute action a in the environment

10: Observe reward r and new state s′

11: Update Q-value
12: Update current state: s ← s′

13: end while
14: Increment episode counter: e ← e + 1
15: end while
16: Output: Optimal strategy

Our proposed method will be validated using a genetic
algorithm and theoretical strategy to search for optimal game
sequences. This approach is conducted under various settings,
with a relaxed structural framework. The benchmark methods
are as follows:

Random sequence. A random sequence is introduced as a
comparison with the performance of our proposed method.
The random sequence involves randomly selecting game A
or game B, without any bias or intelligent decision-making
process.

Fixed sequence. The ABABB sequence, identified through
theoretical analysis when M = 3 [8], is also taken as one of
the benchmarks. As for M = 2 and M = 4, we empirically
use AB and AABB as a form of comparison.

Genetic algorithm. Inspired by Ref. [9], we adopt the ge-
netic algorithm as one of the methods in searching for the
optimal sequence, comprising the following components:

Population. We start by creating an initial population of
random sequences of games. In this case, we can represent a
sequence of games as a list of 0 and 1, where 0 represents
playing game A, and 1 represents playing game B.

Fitness. For each individual in the population, we calculate
its fitness (i.e., capital) by averaging 103 simulations of the
sequence.

Selection. We use tournament selection to select individu-
als for reproduction. This means we randomly choose a subset
of individuals with a high fitness from the population.

Crossover. We use the single-point crossover to combine
two individuals. This involves selecting a random point in the
sequence and swapping the subsequences before and after that
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FIG. 2. Simulation results for the capital-dependent game
(M = 3).

point between the two parents. The crossover probability is set
to 0.5.

Mutation. We adopt random mutations by flipping a ran-
dom bit in the sequence with a small probability. The mutation
probability is set to 0.1.

We start with a standard scenario of M = 3, conducting
100 game rounds across 106 simulation repetitions. In keeping
with the consistency of other works [9,13], we adopt the
following parameter settings: p1 is set to 1/2 − ε, and p2

and p3 are set to 1/10 − ε and 3/4 − ε when playing the
coin-tossing game, respectively. The initial capital is set to
0 and ε is set to 0.005. As part of our experiments, we will
also include the case of M = 2 and M = 4 as exploratory
exposition. To illustrate the adaptability of our method, the
history-dependent Parrondo’s paradox is also investigated.
Through iterative updates to the Q values based on observed
rewards and actions, the agent incrementally learns the op-
timal policy. Each episode is completed when the capital
reaches 20 and the number of episodes is set to 1000. The

FIG. 3. Simulation results for the sequence searched by the ge-
netic algorithm.

learning rate in updating the Q-table is set to 0.001, and the
discount factor is set to 0.9.

The results from playing game A and game B individually
can be found in Fig. 2. As observed, both games will yield a
losing result in the long run. The comparison of the different
methods such as reinforcement learning, fixed sequence, and
random sequence is given in Fig. 2. These experimental results
underscore the superior performance of the proposed adaptive
reinforcement-learning (RL) algorithm in capital accrual, out-
stripping both the random sequence and the optimal sequence
predicated on theoretical calculations. This indicates the ef-
ficacy of the adaptive RL-based approach, particularly when
the switching strategy is not constrained to adhere strictly to
periodic or stochastic sequences. As another method deviating
from the periodic or random sequence, the genetic algorithm
is also used to search the optimal sequence, as shown in
Fig. 3. We employ elitism to make sure the individual with
the highest fitness can be retained. Nevertheless, it is found
that the optimal fitness values in the population do not al-
ways rise as expected but fluctuate slightly. We then take the
best individual obtained in the last round as the optimal se-
quence, which achieves the capital of about 5, higher than the
random sequence. However, the sequence searched by the ge-
netic algorithm is still predefined. Although this metaheuristic
method breaks the constraint of random and periodic manner,
its performance is still not comparable to the status-aware
method, as shown in Fig. 2. This result reveals a promising
potential for utilizing adaptive decision-making models, in
contrast to predefined or random approaches, thereby advanc-
ing the prospects of greater economic yield.

The result of M = 2 is shown in Fig. 4. As observed, game
B will lose more money than in the case of M = 3 in the
long run, reaching a much lower capital of −15. Unlike the
traditional Parrondo’s game, the random interplay of the two
strategies cannot turn the result into a positive one, as ob-
served in Fig. 4. On the other hand, the gain of profit is heavily
subject to the selection of sequence when adopting the peri-
odic manner. The sequence AABB can only achieve the same
profit as random sequence, both of which are negative, while
AB can lead to a capital gain of up to 25, as observed in Fig. 4.
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FIG. 4. Simulation results for the capital-dependent game
(M = 2).

The extensibility of reinforcement learning empowers us to
fine tune the algorithm to suit specific game parameters, facil-
itating its adaptability to different values of M and enabling
the exploration of more complex variations of Parrondo’s
games. In practice, we only need to change the size of the
Q-table and make the number of states equal to M, then the
optimal sequence under different settings can be easily found.
As observed in Fig. 4, reinforcement learning can still find a
much better sequence than random sequence such as in the
previous case of M = 3, revealing the effectiveness of our
proposed method. Other evidence of the adaptability of our
proposed method is shown in Fig. 5 where the case of M = 4
is tested (and no longer exhibiting the Parrondo effect). In this
setting, game B is no longer a losing game. Then, the main
focus should be shifted to maximizing the profit instead of
turning lose to win, as in traditional Parrondo’s games. As
seen, the reinforcement-learning method can still achieve the
dominant strength over the random sequence and periodic se-
quence of AB and AABB (included as a form of comparison).

In the history-dependent Parrondo’s paradox, paradoxical
effects are also exhibited, as shown in Fig. 6. Here, game

FIG. 5. Simulation results for the capital-dependent game
(M = 4).

B involves four coins, each with probabilities of winning
of 0.9 − ε, 0.25 − ε, 0.25 − ε, and 0.7 − ε, respectively. By
modifying the state space, the optimal strategy can also be
learned and our proposed method can gain a capital of up to
25, much higher than the random sequence. As observed from
the update process of the Q-table in Fig. 7, the best action
in each state is well determined after a certain episodew of
simulations, which suggests our method can easily converge
to the optimal strategy. By leveraging the insights from Par-
rondo’s paradox, a reinforcement-learning-based game can
help optimize decision making and achieve better results in
certain real-world scenarios where switching between dif-
ferent strategies based on certain outcomes is required. For
example, in the context of the COVID-19 pandemic shown
in Ref. [21], reinforcement learning can help determine the
optimal switching strategy between lockdown and open com-
munity based on the infection numbers per day. The RL agent
can learn from past data and adjust the switching decisions to
minimize the loss caused by the pandemic. In an agricultural
optimization example [22], Parrondo’s paradox is applied

L032009-5



KANG HAO CHEONG AND JIE ZHAO PHYSICAL REVIEW RESEARCH 6, L032009 (2024)

FIG. 6. Simulation results for the history-dependent game aver-
aged over four possible initial states.

to crop rotations, alternating between cover and cash crops
to mitigate intensive farming damage. The adaptable nature
of reinforcement learning could enhance the yield further.

FIG. 7. The convergence test of capital-dependent game when M = 3.

In this context, the agent evaluates the farm’s current state,
considering factors such as soil quality, weather, and pest
presence, then selects the next crop to plant, influencing future
conditions and yield. The experimental results of different set-
tings of the capital-dependent game and the history-dependent
game also highlight the applicability and extensibility of our
method. In studies concerning the modification of actions
contingent upon the system state, the underlying model that
governs the switch timing often remains intuitive and fails
to reach an optimal level. These models, while demonstrat-
ing some efficacy, do not fully capitalize on the potential
for decision-making enhancement, thus revealing an area of
improvement by our proposed method discussed here. As
demonstrated by the coin-tossing game, the switching strategy
is learnable through reinforcement learning, suggesting its
effectiveness.

In conclusion, our investigation was primarily concen-
trated on optimizing play sequences within two inherently
losing games via a departure from the conventional method-
ologies of periodic or random sequences. This approach is
well adapted to dynamically changing environments, a crucial
aspect for applying Parrondo’s paradox in real-world scenar-
ios. We have implemented an algorithmic strategy aimed at
learning and determining the most advantageous switching
strategy. This strategy was pivotal in identifying the optimal
sequence of play under varying conditions, a task that posed
significant analytical challenges. Our numerical experiments
have demonstrated the efficacy of our proposed model. Not
only was our model capable of learning and applying the
optimal switching strategy, but it also significantly outper-
formed the traditional approaches in these complex, dynamic
scenarios. This advancement underscores the potential of
adaptive strategies in game-theoretic paradigms and decision-
making processes, particularly in environments characterized
by uncertainty and fluctuation. Transitioning the proposed
framework from simulation to real-world applications offers
a valuable opportunity to tackle challenges such as computa-
tional requirements, scalability, and system integration, which
will inspire future work. Our research will also be extended
to the broader field of engineering, as well as economics,
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statistical physics, and complex systems, by moving beyond
the standard paradigms and incorporating elements of dy-
namic adaptability and environmental responsiveness.
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