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Syndrome decoding is an integral but computationally demanding step in the implementation of quantum
error correction for fault-tolerant quantum computing. Here, we report the development and benchmarking
of Artificial Neural Network (ANN) decoding on IBM quantum processors. We demonstrate that ANNs can
efficiently decode syndrome measurement data from heavy-hexagonal code architecture and apply appropriate
corrections to facilitate error protection. The current physical error rates of IBM devices are above the code’s
threshold and restrict the scope of our ANN decoder for logical error rate suppression. However, our work
confirms the applicability of ANN decoding methods of syndrome data retrieved from experimental devices and
establishes machine learning as a promising pathway for quantum error correction when quantum devices with
below threshold error rates become available in the near future.
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Introduction. The development of quantum processors has
made remarkable progress over the past few years with
quantum devices consisting of more than 100 qubits cur-
rently accessible from multiple developers [1–3]. In principle,
100 qubits could allow computations intractable on classical
supercomputers, yet the computational capabilities of the cur-
rent generation of quantum processors are limited by high
levels of physical noise [4]. Several studies have implemented
and tested error mitigation strategies to suppress the detri-
mental impact of noise with varying levels of success [5–8].
Ultimately, the full power of quantum computers can only be
realized when Quantum Error Correction (QEC) techniques
are implemented. These will allow efficient and scalable de-
tection and correction of errors in quantum circuits, leading to
fault-tolerant quantum computations [9–12]. Over the recent
decades, QEC codes have been theoretically developed to pro-
vide a means to suppress errors on logical information through
the use of encoding in a larger Hilbert space [12–15]. One of
the leading QEC codes is the surface code, which offers a high
logical error rate threshold based on nearest neighbor inter-
actions between qubits on a two-dimensional lattice [10,16].
The implementation of surface code–based QEC requires the
classical processing of syndrome data—related to the physical
error locations—to find appropriate corrections for physical
qubits. However, this step, known as decoding, is a computa-
tionally intensive task. Recent work has theoretically shown
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that Artificial Neural Network (ANN)-based decoders can
facilitate fast and scalable decoding [17–24], which is crucial
to prevent the accumulation of errors during any quantum
computation. The next major milestone is to implement an
ANN-based syndrome decoder on quantum processors to di-
rectly benchmark their performance. This has been reported
by three recent papers to date, which are based on experimen-
tal data from devices developed by Google [25–27].

In this work, we develop an ANN-based syndrome decoder
and demonstrate its implementation on IBM quantum proces-
sors. Further, we assess its performance through comparison
against the well-established graph-based Minimum Weight
Perfect Matching (MWPM) technique, using PyMatching
[28]. Our work shows that, in principle, ANN-based syndrome
decoders can efficiently process syndrome measurement data
from IBM devices and suggest appropriate corrections—
achieving a crucial step in the pipeline of QEC on quantum
computational devices.

Historically, the development of surface code literature
has been primarily based on the square lattice arrangement
of qubits [10,16,29], yet the architecture of IBM quantum
processors is built on a heavy-hexagonal (HH) arrangement
of qubits, as shown in Fig. 1(a). The motivation for such a
qubit layout was to reduce the local connectivity of qubits.
This addressed the physical difficulty of controlling many
connections to each qubit and aimed to reduce cross-talk noise
[30]. However, the HH format required the modification of the
traditional square surface code construction to a hexagonal
architecture, with ancillary qubits—changing the underlying
circuit structures for syndrome measurement. In 2020, Cham-
berland et al. laid out the foundational framework for QEC on
HH and heavy-square lattices of low-degree locally connected
qubits [30], introducing the HH QEC code. This original
HH code was optimized to minimize the number of required
physical qubits by removing some ancillary qubits on the
boundaries of the hexagonal lattice and maintaining a lattice
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FIG. 1. Neural network decoder framework. (a) The lattice connectivity of qubits of a 127 qubit device developed by IBM with color range
denoting error probabilities associated with single and two qubit gates. The shaded section represents a subsection of this device where the
average error rate is lowest, in a region which supports a d = 3 HH error correction code. Dotted outlines indicate some other possible subgraph
locations. (b) The qubits of a HH code, with orange circles representing the data qubits and light/dark gray circles representing the ancillary
flag and measurement qubits, respectively. Connecting lines represent the connectivity of two-qubit gates within the lattice. (c) Multiple cycles
of the HH error syndrome measurement in the presence of circuit noise. (d) The circuits for X and Z gauge operator measurement of the
HH code. (e) An ANN-based syndrome decoder as developed in this work. A large input layer takes the measurements over d cycles, and it
linearly decreases over four layers to an output which is the size of the number of data qubits. (f) A possible correction being sampled from
the prediction given by the ANN-based syndrome decoder. The appropriate correction is then applied to the IBM device.

connectivity of, at most, 3 [30]. However, IBM has developed
increasingly large devices on HH lattices, without the original
optimization of boundaries [31], shown in Fig. 1(a), as the
original code layout was incompatible with being realized in
the bulk of a HH lattice. This created a discrepancy between
the HH code proposed in Ref. [30] and the HH layout of
physical qubits in IBM devices. To address this disparity,
we have modified the existing HH code, by adjusting the
original prescription’s boundaries to fit with the bulk (see the
Methods section for details on the adjustment made). This
conforms with the IBM quantum processor layout, which is
a crucial step in the direct implementation and benchmarking
of our ANN decoder on IBM devices. A recent work by
Sundaresan et al. has also looked at the modified HH code for
distance 3 measurements [32]. However, our work is distinct,
as we investigate HH code threshold plots and implementation
comparison between distance 3 and 5 codes based on direct
measurements on IBM devices.

HH adjustment. Across the structure of the HH code, qubits
are labeled as either data, flag, or measurement qubits. These
different qubit types are what facilitate the locating of errors
in the HH code. These form the basis of the stabilizer for-
malism for QEC codes. Although IBM quantum processing
devices have been developed for some years, the HH code
which directly corresponds to the physical layout has not

been discussed often, with only a few current works directly
implementing the adjusted HH structure on superconducting
transmon qubits [32,33]. Within the main text, it is stated that
the HH boundary optimization was not included when IBM
physically realized their quantum devices.

In Supplemental Material Fig. S1 [34], the boundary op-
timization shown on the left is removed on the right. The
structure shown on the right-hand side is physically imple-
mentable on IBM devices. Within the adjusted HH lattice on
the right of Supplemental Material Fig. S1 [34], there are three
types of stabilizer generator: the X -type Bacon-Shor style
operators,

SX =
∏

n

Xn, jXn, j+1,

the weight-four Z-type plaquette operators, found in the bulk,

SZ = Zi, jZi+1, jZi, j+1Zi+1, j+1,

and the weight-two Z-type edge operators,

SZ = Z2m,1Z2m+1,1, Z2m−1,d Z2m,d ,

where i, j ∈ N � d − 1, m ∈ N � d−1
2 , and n ∈ N � d , and

i + j = even in the second set. Here, i, j refer to the lattice
of data qubits, with i as rows and j as columns. The stabilizer
group, as used in QEC codes, is sufficiently defined by the
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stabilizer generators which form the entire group after all
multiple combinations. Given the boundary conditions of the
device, the edge operators are found along the top and bottom
of the lattice when arranged in the alignment of Supplemental
Material Fig. S1 [34]. This is to ensure that operators do not
act on nonexistent qubits. The result of measurement of the
stabilizers across the lattice is the syndrome measurement.
These generators mutually commute, allowing for their col-
lective simultaneous measurement. Given that there are many
ancillary qubits on the lattice, gauge operators are defined to
localized areas to measure the local parity, and the stabilizers
of each kind measure the parity of gauge operators of each
kind. The gauge operators are defined as

GX = Xi, jXi+1, jXi, j+1Xi+1, j+1,

X1,2m−1X1,2m, Xd,2mXd,2m+1

and

GZ = Zi, jZi+1, j

for X and Z gauge operators, respectively, where i, j ∈ N �
d , m ∈ N � d−1

2 . A constraint of i + j = odd must be used
for the first term in the X gauge operator set. The measure-
ments of these gauge operators and hence stabilizers can be
facilitated by the gauge operator circuit diagrams illustrated
in Supplemental Material Fig. S2 [34]. Supplemental Material
Fig. S4 [34] illustrates the overall layout of a d = 5 adjusted
HH code with some data errors and corresponding stabilizer
measurements.

In Supplemental Material Fig. S4 [34], the yellow and
green stabilizers are shown for illustrative purposes. Examples
of data qubit errors are shown and the corresponding stabi-
lizers are ‘lit up’ from dull to bright, via the measurement
of the gauge operators. The eigenvalues associated with the
stabilizer operators in Supplemental Material Fig. S4 [34] are

[−1 +1 −1 +1 −1 +1 +1 +1 −1 −1 +1 −1]

[−1 −1 +1 +1] (1)

corresponding to the Z and X operator, respectively. These are
simplified to

[1 0 1 0 1 0 0 0 1 1 0 1]

[1 1 0 0] (2)

for ease of ANN training. In Eq. (2), a zero is given where
no change has occurred and 1 is given when a stabilizer
change has occurred: −1 eigenvalue to +1 eigenvalue. When
multiple errors occur within the same parity measurement of
a single stabilizer, it may have its eigenvalue inverted twice,
returning to its original state. Therefore, only stabilizers, at
the end of chains have their values changed, as illustrated in
Supplemental Material Fig. S4 [34]. This is less obvious for
the Z errors, as the nature of the Bacon-Shor stabilizer allows
for chains to be continued anywhere across entire columns.

Errors across the lattice which are of the same form as the
stabilizer elements, generators or otherwise, commute with all
stabilizer generators and hence do not change the underlying
information in the lattice. This means that the encoded state of
the lattice may only be affected by a global phase and encoded
information is unaltered. Given that the state is unaltered,
gates of the same kind can be applied to the lattice wherever

required, to correct for errors. This can be used to create sets
of equivalent error chains from the same start and end points
on the lattice.

ANN construction and training. In the case of square sur-
face code lattices, it has been shown that ANN syndrome
decoders can offer highly promising performance when sug-
gesting suitable corrections [17,19,35–38], including testing
on experimental data [25]. The low-level decoders developed
in Refs. [17,35,36] were built in a similar manner to this work.
They each show the ability of an ANN to learn the relation-
ship between syndrome data and corrections after being given
multiple training instances. Many ANN varieties have been
developed for square surface codes, including dense Feed
Forward Neural Networks (FFNN), Long Short Term Mem-
ory Networks (LSTM), and Convolutional Neural Networks
(CNN). Varsamopolous et al. showed that although slower
than the FFNN, the LSTM was more accurate at decoding
on average and both were faster and more accurate than the
MWPM baseline [19]. Meinerz et al. and Gicev et al. have
independently shown that implementing convolutional layers
allows an ANN decoder to be compatible with larger code
distances unseen in training [18,20]. These results showed that
an ANN syndrome decoder is able to fit any size QEC square
surface code.

The ANN developed for this work was built with dense
layers, meaning each neuron within each layer is intricately
connected with each neuron in the previous layers. The
choice for the number of hidden layers is based on the
decoder performance. Limited overfitting of training data
occurred when two hidden layers were included. Utilizing
exclusively dense layers is the simplest layer structure of a
neural network and requires no additional pruning or alter-
ations [17]. This methodology allows for the quick proof
of concept construction of an ANN syndrome decoder for
physical devices and can give suitable corrections with mini-
mal pre/postprocessing. Given that the input layer takes the
entirety of the syndrome measurement at once, there is no
need to explicitly distinguish between bulk stabilizers and
boundary stabilizers when training the network. The network
is able to learn the direct relationship between observed syn-
drome patterns and appropriate corrections without needing to
perform auxiliary tasks after corrections are applied—similar
to the MWPM algorithm. The MWPM algorithm can provide
exact corrections by pairing −1 eigenvalue stabilizers without
the need for any pre/postprocessing, but it lacks in the speed
of suggestion, especially as the distance of the code increases.

At the smallest distance, 3, the size of input and output
layers are the same, yet the input layer size grows signifi-
cantly faster than the output layer when the distance of the
code is increased. Each entry in the input corresponds to
a single stabilizer measurement, with the total equaling the
number of stabilizers, n multiplied by the number of cycles,
d: d

2 (d2 + 2d − 3). Similarly, each output pair corresponds to
a single data qubit requiring X and Z correction, respectively.
The total output size is 2d2.

Each layer is activated with the ReLU activation func-
tion, excluding the final layer which incorporates a Sigmoid
function, to return values between 0 and 1. The Bina-
ryCrossEntropy loss function and ADAM optimizer functions
were used, allowing the network output to be interpreted as
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a probability that an error was present at each qubit. During
training and testing, 96 Intel Xeon Platinum 8274 CPU cores
were used and four NVIDIA V100-SXM2-32GB GPUs were
used. Each value in the output of the final layer will be a
value between 0 and 1, which are then processed in two ways.
First, the values are truncated such that each value in the
correction suggestion is exactly 0 or 1, which corresponds to a
given correction being not required or required, respectively.
If this correction is consistent with the final syndrome mea-
surement cycle, the truncated prediction is kept. If not, the
predictions given are sampled using a Bernoulli Trial, and this
is repeated until an appropriate correction is given [36]. Sam-
pling of a prediction could take many re-tries if the network
is uncertain with its prediction. Therefore a cut-off point is
used, where after n re-samples, if no appropriate correction is
given, re-sampling is stopped and it is assumed that a logical
error has occurred in that instance [36]. Although there is
theoretically a 50% chance that a logical error has occurred,
for benchmarking purposes, the occurrence of a logical error
is assumed and the additional logical errors are reflected in
Fig. 3. Re-sampling can be a major overhead computationally,
furthering the need to cut off early, before qubits decohere
within the structure. Given that this work only considered
small distances of the HH QEC code, truncation of predictions
often produced an appropriate correction—not always requir-
ing re-sampling. The coherence time of current qubits is on
the order of microseconds and this work’s re-sample time is
also on the order of microseconds, forcing re-sampling to be
avoided as much as possible [39]. This dense ANN methodol-
ogy is fast enough to produce corrections within the coherence
time of physical qubits in the lattice for these small distances
[39]. The average decode time per instance for MWPM is
approximately 1 ms compared to 0.3 ms for the ANN in this
work. The time taken to find corrections increases with code
distance and may not be appropriate for large distance codes.
Instead, CNN techniques can be employed for decoding large
distance codes [18,20,40,41].

Results and discussion. Figure 1(b) schematically illus-
trates a distance 3 patch of the adjusted HH code shape as
described within our work, where data qubits (orange) store
useful information and ancilla qubits (gray) are used to facil-
itate syndrome measurements. These measurements are used
to locate errors on physical qubits within the HH lattice. Typ-
ically, the syndrome measurements are collected in multiple
rounds before they are decoded to find appropriate corrections
for data qubit errors and also in the syndrome measurement
process itself. Figure 1(c) schematically shows many cycles
of the HH code being executed and corresponding syndromes
measured for each cycle. The circuits that are used to measure
the syndrome in both the X and Z basis are shown in Fig. 1(d),
with the physical qubits numbered in Fig. 1(b) illustrated
within a dashed box.

The data collected from syndrome measurement over sev-
eral cycles is processed by a classical syndrome decoding
method. This prescribes adequate corrections to fix physical
errors in data qubits and restore the logical state of the lat-
tice. The construction of an efficient and scalable syndrome
decoder is a challenging computational problem and has re-
cently been the focus of intensive research [42,43]. One of
the leading syndrome decoder algorithms, MWPM, calculates

FIG. 2. Benchmarking of the adjusted HH code with MWPM.
Both the threshold and pseudothreshold for X logical errors (left) and
Z logical errors (right) for the adjusted HH code are shown, decoded
by MWPM as implemented by PyMatching. The vertical dash line
indicates the crossover point for d = 3 and 5 curves.

corrections by matching pairs of changed stabilizers. It has
received extensive development in many square lattice surface
code studies [16,28,44–47]. Chamberland et al. implemented
the MWPM algorithm to the original HH layout to compute
logical error rate curves for both X and Z logical errors [30].

We benchmarked the adjusted HH code using the MWPM
decoder from the Python package PyMatching [28] and com-
pared it to the work of Chamberland et al. [30]. In Fig. 2,
odd distances, d , of the code between 3 and 11 are tested and
the lowest clear crossover point can be seen at approximately
0.0007 in the X logical error plot on the left. This will be
the benchmark for thresholds for the adjusted HH QEC code,
as only distances 3 and 5 are tested by demonstration on
IBM devices. Note that the threshold if computed based on
increasing code distance would be slightly higher (∼0.001).
We used MWPM as implemented by PyMatching to con-
firmthe X logical error threshold of 0.0045 of Chamberland
et al. [30] and a very similar threshold of 0.005 was found.
Details of this can be found in Supplemental Material Sec. S1
[34]. The addition of 2d − 2 extra ancilla qubits and 2d − 2
of CNOTs has lowered the threshold physical error probability
further by a small amount.

Despite promising performance, it has been regularly
discussed that the MWPM algorithm may not be fast
enough for quantum state coherence times on current devices
[29,35,48,49]. Even the best adaptations of this algorithm are
slow in the large distance regime of QEC codes. The develop-
ment of fast and scalable syndrome decoders have been a topic
of significant research, with proposals attempting to address
the real-time decoding challenge [43]. Machine Learning
(ML)-based syndrome decoder construction has gained signif-
icant momentum in recent years, with some studies indicating
that a faster and scalable syndrome decoding method may be
possible by leveraging the computational efficiency and flex-
ibility of ANN algorithms. In terms of the HH architecture,
there is no current demonstration on the measured syndrome
data from IBM devices. Some theoretical studies has explored
the implementation of dense ANN- and CNN-based decoders
for the original HH code proposed by Chamberland et al., yet
their work is not directly applicable to the IBM hardware due
to the aforementioned adjustment required to do so [50,51].
Our work is the first to implement and benchmark an ANN de-
coder on the adjusted HH code through theoretical simulations
and demonstration on IBM devices based on cloud access.
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The ANN decoder developed in this work was constructed
using the Python package TensorFlow [52]. The decoder
consists of an input layer, two hidden layers, and an output
layer. More details about the construction of the network are
provided in Methods section. In Fig. 1(e), a dense ANN is
illustrated, where the number of neurons in each layer linearly
decreases from the input layer to the output layer. The size of
the input layer is adjusted to feed in each X and Z stabilizer
measurement separately, for each measurement cycle. The
size of the output layer allows a value for both X and Z errors
for each physical qubit.

Our ANN decoder was rigorously trained on tens of mil-
lions of simulated noise patterns, using uniform depolarizing
Pauli channels. The uniform depolarizing noise model was
simulated with an even chance, p

3 , to select from the three
Pauli gate errors X , Y, and Z . Each qubit can experience
each of these errors, and each CNOT on the lattice can ex-
perience some tensor product of two Pauli gate errors and
the identity, excluding I ⊗ I . No bias or other error factors
were included in this training. During training, circuits were
modeled such that when Pauli errors occur on a state, |ψ〉,
it may be denoted as E |ψ〉, where E is the combination of
errors on a single qubit. The goal of error correction is to
detect and apply the appropriate correction to |ψ〉 to turn the
string of errors E into the identity, I , or to return the lattice
to an equivalent logical state. We compute a correction Ec

such that the correction succeeds if EcE ∈ G, where G is the
corresponding gauge group. This is simulated within this work
by tracking each error which occurs on every qubit and multi-
plying the Pauli gate errors, where two of the same give the
identity; X 2 = Y 2 = Z2 = I , and XZ = ZX = Y up to a
global phase.

The ANN decoder developed in our work provides ap-
propriate corrections based on the syndrome measurements
over d cycles of the adjusted HH code. The ANN is able to
functionally learn how stabilizer inversions are related to error
chains within the lattice, including on the boundaries of the
lattice where chains abruptly end. This work has explicitly
shown that a dense ANN syndrome decoder can input an
exact stabilizer syndrome measurement and return a predic-
tion related to an appropriate correction on par or better than
suggestions from the MWPM algorithm.

First evaluation of the model was done with a similar error
model to the training: a uniform depolarizing noise model.
The underlying physical error, p, was varied to test the per-
formance at different rates. Further, the decoders were then
tested on imported device error models from IBM quantum
experience; each physical error rate was given for qubits and
two-qubit gates which was then used as the underlying error
probability p. This was implemented for each individual qubit
and CNOT, instead of uniformly across the lattice. Finally,
the circuits as defined in Fig. 1(d) were constructed to fit
distance 3 and 5 HH QEC codes and executed on multiple
IBM devices. Figure 3 displays IBM demonstration and theo-
retical results from our ANN syndrome decoder. The decoder
is tested on a simulated lattice of qubits in the form of IBM
devices which suffer from uniform circuit-based depolarizing
noise (blue and orange line plots) and also on device noise
models derived from error rates provided by five of the IBM
quantum processors (marked with open circle points). In these

(a) (b)

(d)(c)

FIG. 3. Neural network decoder implementation on adjusted HH
code. Threshold plot for the adjusted HH code decoded by an ANN
showing error rates of the X logical operator (a) and Z logical
operator (b). Each point refers to an error model derived for each
IBM device. The horizontal value of the points shown are the overall
error rate of the specific subgraph location chosen, and the horizontal
uncertainty shows the range of overall error rates of each possible
subgraph location on each device, with the point placed on the
median heuristic subgraph score. (c), (d) The HH QEC code IBM
measurement circuit plots., in thich the top right-hand corner of
(a) and (b) is enlarged, and the points which refer to the circuits
running on the IBM devices are also marked. Unfilled circles refer
to the simulated noise model corrections, and filled circles refer to
the transpiled circuits run on devices.

plots, similar crossover behavior is observed, and thus it can
be inferred that the ANN syndrome decoder is able to de-
code the HH QEC code with the same overall properties as
the MWPM algorithm. Note that the threshold for the ANN
syndrome decoder is approximately 0.0005 for X logical er-
rors, and hence reduced by a small amount compared to the
MWPM threshold of 0.0007 from Fig. 2(a). In the future,
more sophisticated ML-based syndrome decoders, such as
CNN decoders, can be designed to improve the threshold and
scale to larger distances [20,38,40,51].

In Figs. 3(a) and 3(b), the blue circle markings correspond
to distance 3 subgraphs and orange for distance 5. Each data
point has an alphabetical label showing the name of IBM de-
vice: b = ibm_brisbane, c = ibm_cusco, n = ibm_nazca, s =
ibm_sherbrooke, and se = ibm_seatt le. The horizontal uncer-
tainty for each marking corresponds to the possible values of
average physical error for each available subgraph location,
chosen with a heuristic described in Supplemental Material
Sec. S2 [34], with the marking corresponding to the median
location. Interestingly, the markings are in the approximate
region of the simulated noise curves. This suggests that the
ANN syndrome decoder is likely to be able to decode actual
noise approximately as well as simulated noise. Due to the
preceding threshold error rates of current physical machines,
distances above 5 were not tested, since this would only in-
crease the logical error rate and may not provide additional
insight.

L032004-5



HALL, GICEV, AND USMAN PHYSICAL REVIEW RESEARCH 6, L032004 (2024)

Figures 3(c) and 3(d) plot results based on direct
measurements from the IBM quantum processors. The
plots show both device noise simulations (open circles)
from Figs. 3(a) and 3(b), as well as IBM demonstration
points (colored circles) for a direct comparison. For the
data points based on IBM measurements, the adjusted HH
QEC code syndrome measurement circuits were created
and run on physically realized IBM devices. Each circuit
was initialized twice, once for X measurements and once
for Z measurements, and 10,000 shots were run for each
case. The number of logical errors which occurred after the
pass through of the ANN syndrome decoder was lower on
average that the simulated noise models of the same devices
for distance 3, and roughly similar for distance 5. Given that
the points are still all within the same area or lower, it would
follow that if the devices error rates were below the threshold
of approximately 0.0005, then increasing the distance of the
code, and using a suitable ANN syndrome decoder, would
facilitate fault-tolerant quantum computation [45].

Note that in Fig. 3(b), the device derived error models
seem to consistently provide lower logical error rates than
equivalent uniform error models. This suggests that there is
some intricate phenomenon occurring which may be related
to subgraph location choice. Compared to what is expected
under the uniform noise model, this results in the reduction
of the rate of Z logical errors, which corrupt X logical op-
erator values. This is not observed in Fig. 3(d), however,
as the measured data from IBM devices is not lower than
the simulated uniform noise curve on average. Crosstalk and
relaxation errors are missing in the simulated noise model
but are possibly present on the physically realized devices,
perhaps leading to this variation between IBM devices and
simulation [33,53].

Conclusions. Despite the expeditious advances in quantum
hardware, fault-tolerant quantum computation still requires
significant research in the coming years to achieve scalable
practical applications to real-world problems. However, this
work, to the best of our knowledge for the first time, showed

that the adjusted HH code that matches the IBM quantum
machine structure is able to be decoded by both the MWPM
algorithm and an ANN syndrome decoder. A dense ANN
was shown to be compatible with the adjusted HH code and
to perform measurements in accordance to the error rates
present on the devices. The IBM demonstration results in this
work showed that stabilizer circuit decoding approximately
followed the theoretical curve’s trend. It is therefore likely
that lowering the physical error rate below the threshold will
allow for arbitrary suppression of logical errors with code
distance increase. This work’s dense-style ANN lays the foun-
dation of ANN decoding on physically realized IBM quantum
machines.

In the future, our work could be extended with the bench-
marking of larger distance code implementations on IBM
devices to demonstrate the expected drop in logical error rates
with respect to code distance. However, this would require
larger physical devices and devices with error rates below the
code threshold. A second line of study could be to implement
and test more sophisticated ML-based decoders—such as
CNN syndrome decoders—on quantum devices. In summary,
our work has opened new avenues for experimentally realized,
ML-based syndrome decoder implementation on quantum
processors. This will be instrumental in realizing fault-tolerant
quantum computing in the near future, where larger size and
lower error rate devices are anticipated to be available.
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