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Hidden quantum criticality and entanglement in quench dynamics
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Entanglement exhibits universal behavior near the ground-state critical point where correlations are long
ranged and the thermodynamic entropy is vanishing. On the other hand, a quantum quench imparts extensive
energy and results in a build up of entropy, hence no critical behavior is expected at long times. In this work,
we present a new paradigm in the quench dynamics of integrable spin chains which exhibit a ground-state
order-disorder phase transition at a critical line. Specifically, we consider a quench along the critical line which
displays a volume-law behavior of the entropy and exponentially decaying correlations; however, we show
that quantum criticality is hidden in higher-order correlations and becomes manifest via measures such as the
mutual information and logarithmic negativity. Furthermore, we showcase the scale invariance of the Rényi
mutual information between disjoint regions as further evidence for genuine critical behavior. We attribute the
emergent quantum criticality to the soft mode not getting excited in spite of the quench. Moreover, the results
presented here are universal to models whose low-energy or long-wavelength dynamics are well described by
a free-fermionic field theory. Our results are amenable to an experimental realization on different quantum
simulator platforms, particularly the Rydberg simulators.
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Introduction. Entanglement characterizes nonclassical cor-
relations in a quantum state and has a wide variety of appli-
cations in quantum computing, networking, and metrology.
Furthermore, entanglement provides a powerful diagnostic for
quantum phase transitions [1–4]. For a pure state, it can be
quantified by the von Neumann entropy SA of a given subsys-
tem A. For a one-dimensional (1D) spin chain, we generically
have [5]

SA = a|A| + b ln |A| + const, (1)

with |A| the subsystem size and a, b constants independent
of |A|. Highly excited states (or finite-temperature states)
typically obey a volume law with a �= 0, reflecting the ther-
modynamic entropy of the state. In contrast, the ground state
of gapped Hamiltonians exhibit an area law where SA is a
constant independent of system size (i.e., a, b = 0). In both
cases, only short-range correlations are present in the state.
On the other hand, a leading logarithmic term emerges at a
quantum critical point in the ground state—as well as quantum
scars [6–8]—with b a universal coefficient (while a = 0). For
a conformal field theory (CFT), this coefficient is b = c/3
with c the central charge [9]. The logarithmic scaling of entan-
glement entropy is typically a powerful indicator of criticality
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which is more conventionally diagnosed with power-law
correlations [10]. Conversely, the absence of universal log-
arithms means no critical behavior. For instance, thermal
states do not exhibit logarithmic corrections [11], consistent
with the fact that there are no 1D phase transitions at finite
temperature [12].

How does this paradigm change for nonequilibrium states?
Here, we consider the stationary states of an isolated system
upon a sudden quench. Generic quantum systems are widely
believed to thermalize [13–15], hence the volume law emerges
while universal logarithms do not [16–19]. In contrast, inte-
grable systems evade thermalization and approach a stationary
state at long times [20–24]. However, even in this case,
the long-time stationary states typically exhibit exponentially
decaying correlations [25,26] and extensive energy/entropy
[27–32]. A rather special exception is coupled harmonic os-
cillators where subleading logarithms appear in the dynamics
[33,34], due to their zero modes harboring an arbitrary large
entropy [34,35]. Current-carrying steady states could also lead
to subleading logarithms [36–38]. However, generic settings
of quench dynamics do not exhibit criticality at late times,
akin to thermal states, hence a �= 0 while b = 0.

In this work, we present a new paradigm for entanglement
and criticality in the long-time stationary state of quench
dynamics. We consider the anisotropic XY chain as a paradig-
matic integrable model and show that a quench along the
critical line leads to a volume law plus logarithmic cor-
rections. While the latter indicate criticality, characteristic
correlation functions decay exponentially. However, we show
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that a form of quantum criticality is hidden in higher-order
correlation functions, captured via quantum information mea-
sures such as mutual information and logarithmic negativity.
We attribute this critical behavior to the absence of an excita-
tion of the soft mode at criticality. This behavior is expected
in any free-fermion model whose long-wavelength dynamics
are governed by a free-fermionic field theory highlighting its
inherent universality.

Model. We consider the quench dynamics in the
anisotropic XY model given by the Hamiltonian

H (h, γ ) = −
∑

j

1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 + hσ z

j , (2)

where σα (α = x, y, z) are the Pauli operators. Here, h is the
transverse field, and γ defines an anisotropy parameter. The
ground-state phase diagram of this model is shown in Fig. 1
(top): an order-disorder phase transition occurs at hc = 1 for
any value of γ . Quench dynamics of the XY model has been
studied extensively [39–46]. A general sudden quench can
be parametrized as a sudden change in the parameters of
the Hamiltonian defined in Eq. (2): (h0, γ0) → (h, γ ); the
initial state is the ground state of H (h0, γ0) and evolves under
H (h, γ ). Without loss of generality, we fix γ = 1 in the post-
quench Hamiltonian.

Here, we investigate the critical properties of the station-
ary state at late times. Indeed, recent works have shown
that quantum phase transitions leave their fingerprints on
quench dynamics [47–51]. However, a quantum quench im-
parts extensive energy and entropy and generically leads to
exponentially decaying correlations. Hence, genuine critical
behavior (e.g., the divergence of correlation length, scale in-
variance, etc.) is lacking. Contrary to this picture, we show
that, depending on the initial state, the long-time station-
ary state could in fact exhibit critical behavior. To highlight
the role of the initial state, we consider two different ini-
tial states. (i) Noncritical, (h0, γ0) = (2, 1) corresponding to
a disordered state; and (ii) critical, (h0, γ0) = (1,−1). The
two quench protocols are schematically represented in the
top panel of Fig. 1. We study the stationary state near the
(post quench) critical point h = hc (dotted line in Fig. 1).
Left (right) columns in Fig. 1 correspond to the first (second)
protocol, respectively.

Let us start by discussing longitudinal correlation func-
tions. While in a critical ground state (γ > 0), they fall
off algebraically, ρxx

l ≡ 〈σ x
j σ

x
j+l〉 ∝ l−1/4; away from critical-

ity they decay exponentially, ρxx
l ∼ exp(−l/ξx ), with ξx ∼

1/|h − hc| the correlation length. In contrast, quench dynam-
ics always leads to a disordered stationary state (〈σ x〉 = 0)
and a finite correlation length (as predicted from CFT [26]),
although the latter features a kink at the critical point; see
Figs. 1(a) and 1(b). A finite correlation length seems to in-
dicate a lack of criticality; however, the critical behavior
is hidden in higher-order correlations that are captured via
information-theoretic measures.

Next, we turn to the von Neumann entropy of a connected
block of spins A (= A1 ∪ A2) of size 2L; see Figs. 1(c) and
1(d) [52]. Regardless of the quench protocol, the entropy of
the stationary state obeys a volume law in agreement with
CFT [27]. A logarithmic term, if any, would appear to the

FIG. 1. (Top) Ground-state phase diagram of the XY model as
a function of h the transverse field and γ the anisotropy factor;
h = hc ≡ 1 defines the critical line. The arrows schematically repre-
sent two quench protocols starting from a noncritical (h0 > hc) or a
critical (h0 = hc) initial state. The following quantities are plotted in
the long-time stationary state as a function of h along the horizontal
dotted line: (a), (b) longitudinal correlation length (the solid line
is the analytical result from [26].); (c), (d) von Neumann entropy
density SA/2L of a region of size 2L (the solid line is the analytical
result from [27]); (e), (f) mutual information IA1:A2 ; and (g), (h) upper
bound on log-negativity ÊA1:A2 for two adjacent regions of size L;
see the schematics. Different curves in panels (c)–(h) correspond to
different system sizes; see panel (c). Solid (purple) lines in (c) and
(d) are the analytical prediction in the limit L → ∞. Both IA1:A2 and
ÊA1:A2 exhibit strong dependence on subsystem size near the critical
point (h = hc), but exhibit contrasting behaviors (a sharp dip vs a
peak) for h0 �= hc and h = hc; the data in the insets (f) and (h) are
consistent with IA1:A2 ∼ 1

6 ln L and ÊA1:A2 ∼ 1
8 ln L.

subleading order in Eq. (1). To this end, we consider the mu-
tual information between two (sub)systems A1 and A2, IA1:A2 =
SA1 + SA2 − SA1∪A2 , which measures the total amount of cor-
relations. Figures 1(e) and 1(f) show the mutual information
between the two adjacent regions. Both quench protocols
are sensitive to the critical point, but exhibit very different
trends in the stationary state. For the first protocol [Fig. 1(e)],
the mutual information is bounded but exhibits a dip at the
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critical point, which becomes sharper as L → ∞. In-
terestingly, IA1:A2 ≡ I (L, h) displays a finite-size scaling
near h = hc:

I (L, h) = I (∞, h) − F[(h − 1)L], (3)

with F (x) a scaling function [52]. In contrast, for the sec-
ond protocol, the mutual information diverges as I ∼ 1

6 ln L
at the critical point (just like the critical ground state); see
the inset in Fig. 1(f). Translated to the entanglement en-
tropy, this means that a critical-to-critical quench results in
both volume and logarithmic terms in Eq. (1). Such log-
arithmic scaling is indicative of criticality [53–56], as we
further argue below. Away from the critical point and in the
limit L → ∞, we find I ∼ − 1

6 ln |h − hc| [52]. Mimicking
the ground state, we define a “mutual information correla-
tion length” ξMI as I ∼ 1

6 ln ξMI [57]. We then conclude that
ξMI ∼ 1/|h − hc| diverges in the stationary state, although
ξx ∼ O(1). Indeed, mutual information does not overlook any
hidden correlations which could be invisible to two-point
correlations, a property that could be useful for quantum data
hiding [11,58–60].

Next, we address the (classical vs quantum) nature of cor-
relations. To this end, we consider an entanglement monotone
known as the logarithmic (log)negativity defined as EA1:A2 =
ln Tr|ρT2

A | where A = A1 ∪ A2, and T2 represents partial trans-
position with respect to A2 [61,62]. For technical reasons, we
calculate a relatively tight upper bound Ê (� E) on log nega-
tivity [52,63,64]. Figures 1(g) and 1(h) show that Ê behaves
similarly to mutual information. In particular, Ê ∼ 1

8 ln L
grows logarithmically with L in the critical-to-critical quench;
see the inset in Fig. 1(h). We conclude that the correlations
captured by the mutual information are indeed quantum in
nature.

Fermionic picture. To find insight into our results, we con-
sider an exact mapping to free fermions via the Jordan-Wigner
transformation c j = (

∏
m< j σ

z
m)(σ x

j − iσ y
j )/2 [52]. The result-

ing fermionic Hamiltonian is (restoring γ )

H =
∑

k

Hk = −
∑

k

(cos k − h)τ̂ z
k + γ sin k τ̂

y
k , (4)

where τ̂ z
k = c†

kck − c−kc†
−k and τ̂

y
k = i(ckc−k + c†

kc†
−k ) are

akin to Pauli operators acting in an even parity sector [52]; it
is similar for the prequench Hamiltonian with γ , h → γ0, h0.
We are interested in the soft mode (k → 0) with vanishing en-
ergy near criticality, h → hc. It captures the long wavelength
properties of the system. The corresponding Hamiltonian in
this limit is given by Hk→0 = −(1 − h)τ̂ z

k away from criti-
cality (h �= hc), while Hk→0 = −γ k τ̂

y
k at the critical point

(h = hc). Now, under a critical-to-critical quench, the low-
energy eigenbasis of the quench Hamiltonian is unchanged
from the prequench Hamiltonian. Therefore, the soft mode
does not get excited, resulting in quantum-critical behavior.
The absence of soft mode excitation further reflects on the
long-distance fermionic correlations in the stationary state.
The latter is observed in a correlator gst

l ≡ i〈ax
ja

y
j+l〉, where

ax = c j + c†
j and ay = i(c†

j − c j ) are Majorana fermions [52],

and is expressed as

gst
l = 2 + 4l

−3π + 4π l (l + 1)
−−−→
l→∞

1

π l
. (5)

This, while compared with the critical ground state, ggs
l =

−2/(π + 2π l ) → −1/(π l ) as l → ∞, indicates that the
asymptotic behavior of gst

l is identical to that of the ground
state up to a sign. This provides further evidence of quantum
criticality in a critical-to-critical quench. The sign in gst

l results
from a sign change in Hk→0 during the quench protocol. In
contrast, in a noncritical-to-critical quench, the Hamiltonian
operator changes from τ̂ z to τ̂ y. Since these operators are
mutually unbiased [65], the soft mode heats up to infinite
temperature, leading to the exponential decay of gst

l . This
accounts for the lack of genuine critical behavior in the latter
quench scenario.

In addition to the fermionic correlation function, mu-
tual information is also independent of the ultraviolet cutoff
[66] and captures long-range correlations [67]. Let us first
consider the mutual information I f

A1:A2
corresponding to the

fermionic lattice model. Given that the model is Gaussian
and exhibits the same long-range correlations as the critical
ground state [Eq. (5)], we conclude that I f

A1:A2
∼ 1

6 ln L. We
remark that highly-excited states of free fermions can be
constructed where mutual information scales logarithmically
[42,68]. Here, we have shown that such behavior emerges
naturally in a critical-to-critical quench. For the spin model,
note that I f

A1:A2
= IA1:A2 for adjacent regions, since the corre-

sponding spin operators can be written in terms of fermions
in the same region [4]. It follows that IA1:A2 ∼ 1

6 ln L for the
critical-to-critical quench, consistent with our numerics. Our
results are consistent with CFT calculations where it was
shown that the entanglement of the initial state survives in
dynamics [69]; however, this conclusion does not hold in a
quench to a noncritical point even if the initial state is critical
and highly entangled [see Figs. 1(f) and 1(h)].

Next, we note that a sharp dip emerges in mutual infor-
mation and log negativity in the noncritical-to-critical quench
[Figs. 1(e) and 1(g)]. This behavior is due to the discontinuity
in the behavior of the soft mode: away from a critical point
h �= hc, the soft mode remains unexcited, while quenching to
a critical point h = hc it heats up to infinite temperature.

Hidden criticality. The critical nature of the model, while
manifest in terms of fermions, becomes hidden when exam-
ined through longitudinal spin correlations. This surprising
feature is attributed to the Jordan-Wigner string operator.
On the other hand, the connected transverse spin correla-
tions are directly determined from fermionic correlations;
in the critical-to-critical quench, they scale as 〈σ z

j+lσ
z
j 〉c =

−gst
l+1gst

1−l ∼ 1/π2l2 as l → ∞, identical to the critical
ground state. In spite of this, we argue that the universal
logarithm in the information measures cannot be attributed
just to the algebraic decay of transverse correlations. First, if
long-range correlations only involve σ z operators, they will
be of a classical nature, but this would be incompatible with
the logarithmic divergence of log negativity. Furthermore,
two-point correlations alone cannot violate the area law for
the mutual information if they decay faster than 1/l [52]. In
contrast with transverse correlations, the fermionic two-point
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FIG. 2. Scaling behavior of disjoint Rényi information I (2)
A1:A2

in
the stationary state of quench dynamics. Schematics represent two
disjoint regions A1 and A2 each of length L separated by a distance d .
Disjoint Rényi information I2 is plotted for (a) noncritical-to-critical
quench, and (b) critical-to-critical quench. The latter exhibits scaling
invariance, indicative of criticality. In each case, h0, γ0, γ are the
same as Fig. 1.

correlations in Eq. (5) decay as 1/l , which, in the spin lan-
guage, are given in terms of a string operator:

〈
σ x

j σ
x
j+l

∏
j<m< j+l

σ z
m

〉
∼ − 1

π l
. (6)

This explicitly shows that criticality is hidden in higher-order
spin correlations.

Scaling invariance of disjoint Rényi mutual information.
A direct signature of criticality is scale invariance due to the
divergence of the correlation length. While correlation func-
tions decay exponentially, information-theoretic measures are
a suitable candidate to display such scale invariance. We in-
spect the mutual information between two disjoint regions of
size L separated by a distance d . For technical reasons, we
consider the Rényi mutual information I (α)

A1:A2
defined analo-

gously from the Rényi entropy, R(α)
A = 1

1−α
ln TrAρα

A and take
α = 2 for simplicity. Critical behavior, if any, dictates

I (2)
A1:A2

= I (d/L), (7)

with I a scaling function which only depends on the ratio
d/L, independent of any intrinsic scales. In Fig. 2, we show
that the noncritical-to-critical quench shows no such scaling,
but the critical-to-critical quench is manifestly scale invariant.
This provides further evidence that the latter quench leads
to genuinely quantum-critical behavior. However, the scale
invariance noted is markedly distinct from that of a critical
ground state [52].

Universality. Quantum criticality emerges due to the
nonexcitation of the soft mode as we argued in our discussion
following Eq. (4). This reasoning applies not only to the
nearest-neighbor Ising model, but also to any free-fermion
model where the soft mode exhibits similar behavior (an
example is given by beyond-nearest-neighbor Ising models
that can be mapped to free fermions [52]). Such models are
described at long wavelengths by a free-fermionic field theory

given by [70]

H =
∫

dx

[
c

2
(	†∂x	

† − 	∂x	) + �	†	

]
. (8)

Here, the parameter � denotes the distance from the criti-
cal point; for the Ising model considered so far, � ∼ h − 1.
A similar construction to Eq. (4) shows that the critical-to-
critical quench does not excite the zero mode (here defined
by 	k→0). Our conclusions even apply to long-range variants
of such models (e.g., long-range Kitaev model [52]). Univer-
sality is at the heart of equilibrium phase transitions—our
work features an example of universal critical behavior in
quench dynamics and far from equilibrium. A final remark is
in order: critical quench dynamics studied in the Luttinger liq-
uid [71,72] also result in post-quench power-law correlations
indicative of criticality. However, the models considered here
are distinguished by their Ising symmetry and ground-state
symmetry-breaking phase transition.

Experimental realization. The quench experiments studied
here may be experimentally realized in a variety of quantum
simulator platforms. Particularly, we envision 1D arrays of
Rydberg atoms trapped using optical tweezers as the ideal
platform to study these Hamiltonians [73]. These systems
have long coherence times, tunable interactions, and have
been used to implement a variety of spin models as well as
universal quantum computing [74]. To investigate the hid-
den criticality in experiment, a challenging aspect is the
preparation of the critical state which may be possible using
variational algorithms [75]. The measurement of entangle-
ment, such as the Rényi entropy of a quantum state, can
be performed using the statistical correlations in randomized
measurements [76,77]. Finally, we note that while the results
in this paper have focused on the stationary state of the quench
dynamics, we expect the essential features of the hidden crit-
icality, especially its scaling behavior, to be manifest in the
intermediate time dynamics.

Conclusion and outlook. We have studied the critical be-
havior in the long-time stationary state of an integrable spin
chain upon a sudden quench. We have shown that, for critical-
to-critical quenches, the stationary state exhibits quantum
critical behavior which cannot be detected through the lo-
cal order parameter and is instead hidden in higher-order
correlations, which we identify through information-theoretic
measures. Our findings open up a new frontier for in-
vestigating quantum criticality in quench dynamics beyond
the ground-state order-disorder phase transitions. Our con-
clusions immediately apply to free fermion models whose
long-wavelength dynamics is described by free-fermionic
field theory. Furthermore, it is natural to expect that these
results hold at intermediate times even for interacting (i.e.,
nonintegrable) spin models [50]. This interesting direc-
tion will be investigated in future work. Finally, exploring
connections with data hiding in quantum information is
worthwhile [58,59].
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