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Extracting off-diagonal order from diagonal basis measurements
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Quantum gas microscopy has developed into a powerful tool to explore strongly correlated quantum systems.
However, discerning phases with topological or off-diagonal long range order requires the ability to extract these
correlations from site-resolved measurements. Here, we show that a multiscale complexity measure can pinpoint
the transition to and from the bond ordered wave phase of the one-dimensional extended Hubbard model with
an off-diagonal order parameter, sandwiched between diagonal charge and spin density wave phases, using only
diagonal descriptors. We study the model directly in the thermodynamic limit using the recently developed
variational uniform matrix product states algorithm, and draw our samples from degenerate ground states related
by global spin rotations, emulating the projective measurements that are accessible in experiments. Our results
will have important implications for the study of exotic phases using optical lattice experiments.

DOI: 10.1103/PhysRevResearch.6.L022064

Introduction. Quantum gas microscopy for ultracold atoms
in optical lattices, in which high-resolution real-space snap-
shots of the many-body system are accessible, is a prominent
tool for studying strongly correlated systems [1–3]. These
projective measurements can be analyzed “by hand” with
traditional counting to compute observables, both local or ex-
tended spin and charge correlations [4–8]. The snapshots are
often termed “diagonal” since they comprise measurements
of density observables niσ = 〈c†

iσ ciσ 〉, where c†
iσ (ciσ ) is the

spin-σ fermion creation (destruction) operator at site i, which
have matching row and column indices of the Greens function
Gσ

ii .
The same is true for the outcome of large-scale pro-

grammable quantum simulators based on Rydberg atoms,
which allow arranging a large number of qubits in arbitrary
lattice geometries and controlling the Hamiltonian evolution
of the system [9–15]. A crucial open question is whether the
fact that these experiments do not at present capture “off-
diagonal” information encoded in the full Gσ

i j will limit the
insight they can yield.

Recent advances in machine learning methods [16–18]
hold promise for answering this question. Convolutional neu-
ral networks and hybrid supervised-unsupervised approaches
have been used to classify quantum gas microscopy data
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in emulations of the two-dimensional Fermi-Hubbard model
[19], to visualize and identify multiparticle diagonal corre-
lations [20,21], and to detect new diagonal ordered phases
in Rydberg atom quantum simulators [22]. Momentum-space
images of cold atoms have also been analyzed to identify
quantum phase transitions [23,24].

Machine learning methods are able to capture order pa-
rameters or relevant thermodynamic quantities in classical
as well as quantum systems, and therefore detect symmetry-
breaking phases [25–32]. In contrast, it is much harder to
identify topological phase transitions involving off-diagonal
long range order. In the realm of classical statistical physics,
the two-dimensional XY and q-state clock models have
been investigated to identify Berenzinskii-Kosterlitz-Thouless
(BKT) transitions [33–35]. However, much less is known for
BKT-type quantum phase transitions.

The simplest context in which this issue can be ex-
plored is that of quasi-one-dimensional materials, e.g.,
organic conductors, carbon nanotubes [37–41], for which the
one-dimensional extended Hubbard model is a minimal de-
scription [42–47]:

H = −t
∑

i,σ

(c†
i,σ ci+1,σ + c†

i+1,σ ci,σ )

+U
∑

i

ni,↑ni,↓ + V
∑

i,σσ ′
ni,σ ni+1,σ ′ , (1)

where U and V are on-site and nearest-neighbor Coulomb
interactions and t = 1 sets the unit of energy. An infinitesi-
mally small U drives a transition to a regime with quasilong
range spin order [47]. We will refer to this as a “SDW,” but
emphasize that the ground state spin correlations decay as
a power law. Similarly, an infinitesimally small V induces
charge density wave (CDW) order with staggered empty and
doubly occupied sites [47]. However, much less obvious is the
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FIG. 1. (a) Energy Ei on two bonds Bi(i = 1, 2) associated with one two-site unit cell and (b) von Neumann entanglement entropy Si

computed via partitioning along these two bonds vs nearest-neighbor interaction V at fixed U = 5 and U = 6. (c) Phase diagram of the
one-dimensional extended Hubbard model at half filling in the U -V plane. Phase boundaries are determined using the structural complexity
C (blue diamond) and corroborated by the entanglement entropy S (red circle) at select U ’s. The blue shaded region denotes the BOW phase
which is characterized by off-diagonal long-range order. The orange star indicates a tricritical point where the nature of BOW-CDW transition
switches from second order to first order, based on Ref [36]. The red square indicates a direct first-order transition from SDW to CDW at
U = 10, determined using the structural complexity C. Bond dimension D = 2000 is employed.

existence, between these two phases, of a narrow bond ordered
wave (BOW) region with alternating large and small kinetic
energy on adjacent sites, and a BKT-type transition separat-
ing it from the SDW phase [36,45,48–53] [see Fig. 1(c)].
Converged results on the exact location of this BKT-type
transition have not been obtained [54–57]. The model thus
offers a unique opportunity to test machine learning tools for
examining subtle quantum phase transitions characterized by
nondiagonal order.

In this paper, we use the state-of-the-art variational uniform
matrix product states (VUMPS) algorithm [58–60] to obtain
the ground state of the model at half filling, directly in the
thermodynamic limit (TDL). We then emulate projective and
diagonal measurements on optical lattice experiments by sam-
pling spin-resolved occupancy snapshots from the VUMPS
wavefunction. These snapshots are first analyzed using prin-
cipal component analysis (PCA), and then using a recently
proposed structural complexity measure [61,62]. We find that
while PCA accurately captures the first and second order tran-
sitions between the BOW and CDW phases and the associated
CDW order parameter, it fails to identify differences between
the SDW and BOW samples. The structural complexity, on
the other hand, starts off with a long bitstring consisting of
concatenated samples, and through a series of coarse-graining
steps is able to deduce the location of both transitions.

Variational Uniform Matrix Product States. Inspired by
tangent space ideas [58,63,64], VUMPS optimizes a trans-
lational invariant matrix product state (MPS) directly in the
TDL, in contrast to the more traditional infinite size density
matrix renormalization group (iDMRG) [65–67] algorithm
which starts from a small system and grows the state one site
at a time.

Similar to DMRG, the energy minimization problem is
reformulated as a series of local eigenvalue problems of effec-
tive Hamiltonians projected into the MPS basis. In practice a
linear solver is used to perform the sum of the formally infinite
number of Hamiltonian terms to obtain the effective Hamilto-
nians. By working directly with a translational invariant ansatz

in VUMPS, we can remove the solitonic excitation induced by
the use of open boundary conditions [55,57]. In practice, all
of our VUMPS calculations of the extended Hubbard model
use a single-site update with a two-site unit cell, and we
constrain our states to conserve U (1) particle number and spin
projection symmetry [59,68]. We also constrain our states to
be in the Sz = 0 symmetry sector. Results of convergence with
bond dimension are shown in Supplemental Material [69].

Figure 1(a) shows the energy E on two bonds Bi (i = 1, 2)
that are associated with a two-site unit cell, computed using
VUMPS. It shows clear signals of both phase transitions. For
each fixed U , energies E1 and E2 inside one unit cell are
exactly equal to each other in the SDW phase when V is small.
As V is gradually increased, E1 and E2 split, which reflects the
broken translational symmetry of the BOW phase. The phase
boundary between SDW and BOW can be determined quanti-
tatively by setting a small threshold, e.g., where |E1 − E2| ∼
10−5. As V is further increased, the smooth or sudden changes
in the energy per bond characterize the second-order (U = 5)
or first-order (U = 6) phase transitions from BOW to CDW.

We can use the two bonds in a unit cell to partition the infi-
nite system into two half-infinite subsystems and compute the
von Neumann entanglement entropy Si. As shown in Fig. 1(b),
in the BOW phase, Si has different values computed using
different partitionings. This corresponds to the spontaneously
dimerized phase of the spin chain and the Z2 degeneracy of
the two types of polarization [36,52]. In sharp contrast, the
entanglement entropies computed in different ways of parti-
tioning have exactly the same value in the SDW and CDW
phases. Therefore, the point where entanglement entropies
deviate from one another can be used to locate the BOW phase
boundaries, which gives results consistent with those obtained
from the two energies.

Sampling. We obtain our emulated experimental data by
sampling finite subsystems of the translational invariant states
found by VUMPS. To obtain a sample, we repeat the tensors
of the unit cell, and sample the resulting subsystem as one
would sample a finite MPS [70,71]. More specifically, we
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FIG. 2. Principal component analysis of the samples generated at U = 6 and different values of V ∈ [2.8, 3.3] in a uniform grid with
separation �V = 0.1. (a) The relative weight of the eigenvalues of the covariance matrix for two values of concatenated samples Nc (see
[69]). The inset shows the amplitude of the first principal component for Nc = 200, averaged over the concatenated samples. (b) Projection
of the input features to the first two principal components both when Nc = 1 and Nc = 200. The color indicates the value of V to which
each projected feature belongs. (c) Average projection of the input features corresponding to a fixed V to the first (blue) and second (orange)
principal components for Nc = 200. The shaded region shows the variance of the average, measuring the spread of the projected input features
at a fixed V . Vertical dashed lines indicate the phase transition points obtained form the entanglement entropy.

start by tracing our system down to a single site and sampling
from the resulting density matrix, projecting onto the local
state that was found and iterating the procedure over the finite
subsystem. The unit cell is repeated sixteen times, providing
samples that correspond to a chain of length L = 32 sites. For
each value of U and V , Ns = 50 000 samples are collected.
The sampled spin-resolved occupancy is stored in a feature
array x of length 2L, where even and odd entries represent the
spin-up and spin-down occupancy for each lattice site.

Spontaneous Symmetry Breaking Considerations. The
states found by VUMPS spontaneously break the SU(2) sym-
metry of the model, and the spin direction of the state found
by VUMPS will depend on details of the optimization, such as
the initial state. Therefore, getting multiple samples from the
same state obtained by VUMPS can be biased by the arbitrary
spin direction of the state. To reduce this effect, we apply a
random local SU(2) spin rotation uniformly to each site of the
state before we obtain each sample.

While the continuous SU(2) symmetry is restored when
producing the samples, the discrete Z2 symmetry present
in BOW and CDW phases is broken in the VUMPS wave
function [see Figs. 1(a) and 1(b)]. Even if the experimental
procedure does not break the Z2 symmetry in the CDW phase
(the wave function is the homogeneous linear combination
of both configurations), each individual sample will reflect
which of the two ground states it comes from. There, the
symmetry can be explicitly broken by post processing the
samples, i.e., by translating by one site those that do not share
the same pattern. Furthermore, the use of an even number
of lattice sites, together with open boundary conditions (as
commonly done in experiments), will break the Z2 symmetry
in the BOW phase. Open boundary conditions effectively pro-
vide a pinning field in the kinetic energy, forcing the strong
bonds to be adjacent to the edges of the lattice [57] (see [69]
for a demonstration using exact diagonalization on chains of
finite length). Therefore, the conclusions obtained with our
emulated projective measurements are applicable to experi-
mental data without loss of generality.

Principal Component Analysis. Fixing the value of U , we
run PCA on samples generated for different values of V to
explore fixed-U cuts of the phase diagram. As a dimensional
reduction method, PCA projects samples onto directions of
largest variance in the data. It has been applied to detect phase
transitions based on Monte Carlo samples for classical and
quantum models [25,30,32,72].

We find that the spread of the projected samples at fixed
V can be reduced, leading to a better resolution, if the input
features x contain Nc concatenated spin-resolved samples.
Figure 2(a) shows the relative weight of the eigenvalues of the
covariance matrix of data, which represents the variance along
the principal components, for samples generated at U = 6 and
different values of V for Nc = 1 and Nc = 200. The increase
in concatenated features reveals only one relevant principal
component. The inset of Fig. 2(a) shows the average of the
first principal component, revealing its average action on the
spin-resolved occupancy as the π component of the Fourier
transform of the total charge distribution. This quantity is the
order parameter for the CDW phase.

Figure 2(b) shows the effect of the concatenation of the
input features on their projection to the first two principal
components. We observe that the first principal component
resolves two clusters. The first one corresponding to samples
in SDW and the BOW phases, and the second one containing
samples from the CDW phase. Figure 2(c) shows, for a fixed
value of U and V , the average projection of the input features
to the first and second principal components (Nc = 200). As
expected by the connection of the first principal component
with the CDW order parameter, PCA can only resolve the
BOW-CDW phase transition and its nature, first or second
order (see [69] for the PCA of the samples at different values
of U ). However, it shows no signal for the BKT-type transition
between SDW and BOW phases.

Multiscale Structural Complexity. Recently, the multi-
scale structural complexity measure [61] has been used to
obtain off-diagonal information about quantum states through
projective measurements in a single basis [62]. As shown
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FIG. 3. (a) Procedure for computing the structural complexity. Ns samples are produced for a single ground state for a fixed value of U and
V . The samples are then concatenated together, or translated by one lattice site and concatenated together. The multiscale structural complexity
is computed for both resulting bitstrings. One coarse-graining step is shown in the box, consisting in the computation of the average of adjacent
groups of 2k bits. (b) Multiscale structural complexity C as a function of nearest-neighbor interaction V at fixed U = 5, U = 6, and U = 10.
The connected blue circles and red squares correspond to the upper and lower branches of the complexity measure in the BOW phase. The
two branches are obtained by computing the structural complexity from the samples extracted directly from the emulated ground-state wave
function and the samples obtained after translation by one lattice site as shown in panel (a).

schematically in Fig. 3(a), the idea consists of concatenating
all available samples for the same quantum state (creating
a bitstring), performing several coarse-graining steps, and
computing the dissimilarity Dk between consecutive coarse-
graining steps k and k + 1 [62,69]. These dissimilarities are
added, except for the first step, to obtain the so-called multi-
scale structural complexity C.

For each (U,V ) point, the Ns spin-resolved samples are
concatenated in two ways: (i) concatenation without shifting
and (ii) concatenation after translating all samples by one
site (two bits with spin resolution) considering a periodic
boundary for the bitstring. These form two sets of bitstrings
of length 2 · L · Ns each.

As shown in Fig. 3(b), the multiscale structural complexity
captures both phase transitions. The two sets of complexity
analyses give essentially the same, almost constant, C (up to
a constant shift) inside the SDW phase. As V is increased,
the transition to a BOW phase is clearly indicated by the
splitting of the complexity measures into two branches. One
branch increases as V is increased while the other branch
decreases, corresponding to the two types of polarization of
strong and weak kinetic energy bonds in the BOW phase. The
higher (lower) value of C is associated with a higher (lower)
number of high kinetic energy bonds in the chain of length
L. As we keep increasing V , the two branches collapse into a
single curve, indicating the transition to the CDW phase. The
absence of the BOW phase for U = 10 is indicated by the lack
of bifurcation of the complexity measure.

It is worth noting that if we generate samples with equal
probability from degenerate states in the BOW phase, the
complexity does not bifurcate in the BOW phase like it does
in Fig. 3(b). This is shown in Supplemental Material [69]. It
is then concluded that for the resolution of the BKT-type tran-
sition from the complexity analysis of single-basis projective
measurements, we need samples that come from only one of
the degenerate ground states. As discussed above, this can be
achieved by imposing open boundary conditions [57,69] or
diagonal edge pinning fields [55,73,74].

Phase Diagram. Figure 1(c) compares the phase bound-
aries determined by the entanglement entropy Si (red trian-
gles) with those determined using the structural complexity C,
computed from samples directly (blue squares). The complex-
ity analysis gives accurate results and quantitatively agrees
with the off-diagonal observables computed from the wave
function in the TDL within error bars. Our results are also
consistent with previous works [36,52]. Furthermore, obtain-
ing the ground-state wave function in the TDL and combining
local observables with machine learning approaches can shed
light on the challenges of quantitatively locating the BKT-type
transition [52,53,55–57].

Conclusion. In this work, we use the VUMPS algorithm
to generate the 1D ground state wave function of the ex-
tended Hubbard model directly in the TDL, which allows us
to determine phase boundaries with high precision without
considering boundary effects and finite-size scaling. We sam-
ple real-space snapshots of finite length and use them along
with unsupervised learning methods to characterize the BKT-
type phase transition between SDW and BOW phases as well
as the first-order and second-order phase transition between
BOW and CDW phases. We find that off-diagonal long-range
order cannot be detected by the PCA even after concatenation
of samples. However, using the structural complexity analy-
sis, the off-diagonal long-range order can be detected using
spin-resolved fermion density snapshots if these snapshots
are generated from one of the degenerate ground states of
the BOW phase. We argue that in optical lattice experiments,
this can be achieved by imposing open boundary condi-
tions. Our results indicate the potential of machine learning
techniques in revealing microscopic mechanisms and hid-
den orders using projective measurements of corresponding
thermal density matrix in quantum gas microscopes. While
detection of phases with off-diagonal long-range order using
diagonal descriptors has been demonstrated, further work is
required to see if ML methods such as multiscale complexity
can also differentiate between BKT and second order transi-
tions from which they emerge. Likewise, it should be noted
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that while the structural complexity effectively locates tran-
sitions, it does not directly yield the physical nature of the
order.
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