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Buckling instability in a chain of sticky bubbles
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A slender object undergoing an axial compression will buckle to alleviate the stress. Typically the morphology
of the deformed object depends on the bending stiffness for solids, or the viscoelastic properties for liquid
threads. We study a chain of uniform sticky air bubbles that rise due to buoyancy through an aqueous bath. A
buckling instability of the bubble chain with a characteristic wavelength is observed. If a chain of bubbles is
produced faster than it is able to rise, the dominance of viscous drag over buoyancy results in a compressive
stress that is alleviated by buckling the bubble chain. Using low Reynolds-number hydrodynamics, we predict
the critical buckling speed, the terminal speed of a buckled chain, and the geometry of the buckles.
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Introduction. Slender objects, like strands of hair, rope,
or blades of grass easily buckle when compressed along the
axial direction. Buckling can occur on a multitude of length
scales from macroscopic, like a rope coiling when hitting the
ground [1,2] as shown in Fig. 1(a) for a falling chain; to mi-
croscopic, like the bending of flagella while micro-organisms
swim [3–6]. If the stress on the slender object is normal to the
cross section of the object, the object will undergo a regular
deformation, for example a rope fed at a constant speed into a
cylindrical tube will bend with a characteristic wavelength de-
termined by the friction and bending stiffness of the rope [7].
Interestingly, this phenomenon is not limited to solid materials
and can also be seen with viscous jets. Take for instance the
familiar example of a stream of honey which coils when it falls
onto toast shown in Fig. 1(b) [8–15]. Here the viscosity of the
liquid resists the bending of the thread, and a regular coiling
is observed [14]. In addition to buckling and coiling due to
the compressive stress induced by a barrier, viscous drag can
induce buckling of slender structures driven through a viscous
liquid, as shown in the work by Gosselin et al. for solid
threads [16], and Chakrabarti et al. for gelling structures [11].
Coiling and buckling arises in diverse areas from orogeny in
geosciences, to the coiling of DNA structures, and is of com-
mon concern to those building architectural structures [17].
Furthermore, coiling and buckling of slender fibers has contin-
ued to be explored for applications in three-dimensional (3D)
printing, preparation of metamaterials, and electrospinning on
scales ranging from centimetric to nanometric [18–24].
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In addition to the two examples shown in Figs. 1(a) and
1(b), in panel (c) we see the buckling of a chain of air bub-
bles that rise due to buoyancy, which is the subject of this
study. Previous studies have focused on the shape [25,26]
and trajectories [27–30] of rising bubbles and jets of bubbles,
as well as the role of droplets and bubbles in the dynamics
of multiphase systems [31–33]. Recent work by Atasi et al.
is an example of the complexities encountered with jets of
bubbles and the role of surfactants in the liquid phase. Here
we experimentally investigate the buckling of a chain of ad-
hesive, uniform air bubbles in an aqueous bath. The sticky
bubbles are produced at the bottom of the chamber from a
small orifice [see schematic in Fig. 2(a) and images 2(b)–2(f)].
The adhesion between the bubbles is crucial: by producing the
bubbles quickly such that each subsequent bubble is produced

(a) (b) (c)

FIG. 1. Buckling instabilities resulting in coiling: (a) Buckling of
bead chain dropped at ∼0.2 m/s (bead diameter 1.5 mm). (b) Viscous
coiling of Lyle’s golden syrup (liquid thread diameter ∼1 mm).
(c) Image from the experiment showing the buckling of a chain of
air bubbles in an aqueous fluid rising due to buoyancy and collecting
at the air/bath interface at the top (bubble diameter ∼50 µm).
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FIG. 2. (a) Schematic of the bubble chamber and imaging setup. Front view shows the micropipette, and a short section of bubbles
to illustrate the reflections. Top view shows the mirror angles used to image the two orthogonal planes. (b)–(f) Images of a bubble chain
undergoing a buckling instability as the bubble production speed is increased from left to right ranging from 7.8 mm/s to 27.2 mm/s. Each
panel shows images of the same chain taken at two orthogonal planes to allow for three-dimensional reconstruction. Faster bubble production
speed increases the buckling amplitude. The scale bar corresponds to 250 µm. The three-dimensional reconstruction of a short segment [size
of reconstruction is shown in panel (c) by the red dashed box] of the bubbles is shown below the corresponding experimental images (b)–(f).
Reconstructions are rotated to show the angle with maximal buckling amplitude (left side), and the corresponding orthogonal angle. The
schematic shown in (g) provides the relevant geometric values: bubble radius R, amplitude A, and coordinate axis z.

before the previous bubble has risen by a distance of one
diameter, the two adhere due to short-range depletion forces.
Producing multiple bubbles in a row creates a linear chain
[Fig. 2(b)]. Upon increasing the bubble production speed fur-
ther, the hydrodynamic drag force increases, and at some point
exceeds the buoyant force for a given length. At this point the
linear chain is no longer stable, and buckling is induced by a
compressive force due to viscous drag acting on this granular
system of sticky bubbles [Fig. 2(c)].

Previous work on the buckling of solid and liquid threads
[1,11,14] found that a bending resistance is critical to the
phenomenon. However, with the bubble chain there is no
intrinsic cost to bending: the bubbles have no solid-solid
friction, nor do the bubbles have the viscous resistance of a
liquid thread to bending; yet, a characteristic buckling length
emerges. The physical mechanism for the buckling seen in
Figs. 1(a) and 1(b) is fundamentally different to that observed
in the bubble chain. We first investigate the balance between
the hydrodynamic drag and buoyancy to obtain a criterion for
the onset of buckling. We then explore the relationship
between bubble size, production speed, and viscosity, and
determine the terminal velocity of the rising undulated chain
of bubbles. Finally, we use hydrodynamic drag to explain the
dependence of the buckling amplitude and wavelength on the
rate at which the bubble chain is produced. The model, which
relies on simple geometric and hydrodynamic arguments, is
sufficient to explain the experimental results.

Typical images of the buckling experiment are shown
in Figs. 2(b)–2(f) (see video in the Supplemental Material
[34]), with relevant parameters shown in Fig. 2(g). A chain
of bubbles with radius R is produced at speed q, and rises

with terminal speed v, and a buckling amplitude A. The air
bubbles are prepared by pushing air though a small glass
micropipette with an opening (diameter ∼10 µm) into an
aqueous bath with surfactant, sodium dodecyl sulfate (SDS),
and salt (NaCl) (see Appendix A). The SDS concentrations
used in these experiments range from 0.035 M to 0.28 M, and
are well above the critical micelle concentration (CMC) [35].
We emphasize that the surfactant serves two purposes in our
experiment. First, the surfactant stabilizes the bubbles against
coalescence. Second, excess SDS forms micelles in the solu-
tions which controls the adhesion between the bubbles via the
depletion interaction [36]. The adhesion stabilizes the chain
against breaking apart due to viscous stresses and buoyancy.
The differing SDS concentrations are accompanied by a small
change in the viscosity of the aqueous bath [37] due to the
presence of micelles [38]. The viscosity of the three solutions
was measured independently and are 1.5, 1.6, and 2.0 mPa s
(see Appendix A). The solution has a density ρ ≈ 1 kg/m3.
NaCl is added to the solution to screen electrostatic interac-
tions. The pressure through the micropipette is kept constant
for the trials by using a syringe and plunger. For the small
amounts of air being expelled through the micropipette rela-
tive to the air volume in the syringe, we can treat the amount
of air as an infinite reservoir with a constant pressure, which
results in a constant bubble size [39,40]. Changing the size
of the micropipette orifice creates bubbles with radii ranging
from 16 µm < R < 38 µm. At these small length scales, the
bubbles have a large enough Laplace pressure to be treated as
hard spheres. In these experiments, the Reynolds number is
Re = ρRv/μ < 1 for all 105 experiments, and viscous forces
dominate over inertial ones.
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The aqueous bath is contained in a cell with two mirrors set
at 22.5◦ with respect to the back plane of the reservoir so that
one camera can simultaneously image two orthogonal planes
of the bubble chain [see Fig. 2(a)]. The orthogonal views
[Figs. 2(b)–2(f)] are used to reconstruct the three-dimensional
shape of the chain (Appendix B). The reconstructions are
shown in Fig. 2 below each corresponding experiment in
(b)–(f); however, the reconstructions are rotated so that the
maximal amplitude of the chain is shown on the left, and the
minimal amplitude on the right. It is clear that the buckling
takes place predominantly in a two-dimensional plane. We
do not observe stable helix formation and suspect that this
is due to the small compression accessible in the experiment
[41] or hydrodynamic stabilization (entrainment) of the two-
dimensional structure. There is a symmetry breaking which
sets the buckling plane, and from our experiments we find that
this is determined by the angle at which the bubbles emerge
from the orifice, or any small oscillations in the pipette.

Critical production speed for buckling onset. We first focus
on the critical speed at which the bubble chain buckles. At low
bubble production speeds q, the adhesive bubbles naturally
align in the vertical direction due to the buoyant force �Fb. In
fact, if stationary, the chain is under tension due to buoyancy.
However, since the bubble chain is created with a speed q,
there is also a drag force acting downwards �Fd (q) which de-
pends on q. The tension in the chain switches to a compressive
force at a critical speed qc when the magnitude of the drag
force of the chain exceeds the magnitude of the buoyant force.
With no bending stiffness to the chain, a compressive force
acting on the chain is the minimal requirement for the chain
to buckle and therefore the chain will buckle at critical speed
qc, where the chain transitions from being in tension to being
in compression, or when �Fb + �Fd (q) = 0.

For a given section of chain with n bubbles and length
l = 2Rn, the force due to buoyancy is �Fb = 4πR3�ρgn/3;
where �ρ is the difference in density between the air and
the bath and g is the acceleration due to gravity. Given the
small Reynolds number in these experiments, the hydrody-
namic drag takes the general expression of �Fd = −ccqμl;
where cc is a dimensionless drag coefficient tangential to the
chain which is of order 1 using slender-body resistive-force
theory [3,42–44]. Thus our criterion for buckling is given by
4πR3�ρgn/3 − ccqcμl = 0, and we obtain

qc = 2πR2�ρg

3ccμ
. (1)

Following Eq. (1), in Fig. 3 we plot qμ/�ρg as a function
of R2. Unbuckled (dark blue) and buckled (pink) chains are
plotted to form a phase diagram bounded by the line given
by Eq. (1). As expected, for q < qc the chain is in tension
and no buckling is observed, while for q > qc buckling is
observed. Since the slope of the phase boundary is given
by 2π/3cc, the only fit parameter is the dimensionless drag
coefficient cc = 1.2 ± 0.1, which compares well to the ex-
pectation of a constant of order 1 [3,42,44]. The excellent
agreement between the data and theory indicate that we can
predict the critical bubble production speed for the onset of
buckling in a chain of bubbles. We note again that here there

Buckled

Unbuckled

FIG. 3. A phase diagram showing the chain production speed
q normalized by the ratio of inertial forces to viscous forces, as a
function of the bubble radius R squared. The dark blue data points
indicate an unbuckled chain, where the light pink data points indicate
buckled chains. The error bars indicate the measurement uncertainty
in the radius of the bubbles, the viscosity, and chain production
speed. The black line corresponds to the predicted theoretical rela-
tionship in Eq. (1).

is no bending resistance and the buckling onset is the result of
hydrodynamics.

The terminal velocity of the chain. As the bubbles are
produced, the effect of the increased production speed is
only sustained over the first small number of bubbles due to
hydrodynamic drag; this is sensible and consistent with the
observation that when one tries to push the end of a rope, the
buckling happens near the location of the push. Well above
the bubble production orifice, each of the bubbles only moves
in the vertical direction and does not translate along the arc
length of the bubble chain, i.e., each bubble only has a vertical
component to its velocity. Since the Reynolds number is small
for this system and there will be fluid entrained between the
spaces of the bubbles, we approximate the buckled chain as
a slender ribbon moving upwards through the liquid. Because
the chain is moving with a constant speed, we balance the
buoyant force acting on the bubbles with the drag force acting
on the ribbon to obtain a terminal velocity v.

We consider the buoyant force per unit length along
the vertical direction of the chain and write this as
�Fb
z = 4πR3�ρg

3 · dn
dz , where dn/dz represents the number of

bubbles per unit vertical length. Since the bubble chain is
being produced with a speed q and the ribbon of chain is
moving vertically with a speed of v, we have that dn

dz = q
v

· 1
2R .

We can approximate the drag on the ribbon, using resistive-
force theory, as �Fd

z = −cr μ v, where cr is the drag coefficient
of the ribbon. Again, we expect the drag coefficient to be of
order 1; however, it is a strong assumption to take cr constant
irrespective of the aspect ratio of the ribbon. Nevertheless, the
corrections are typically small [45], especially since here the
maximum aspect ratio of the ribbon cross section is ∼4 (max-
imum amplitude is ∼2 bubbles). We find that the assumption
is sufficient to capture the essential physics as will be clear
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µ = 1.5 mPa s
µ = 1.6 mPa s
µ = 2.0 mPa s

FIG. 4. Plot of v as a function of (R2q�ρg/μ)1/2 in accordance
with Eq. (2) to test the dependence of the terminal speed of the
undulated chain of bubbles on the experimental parameters. Bubble
sizes range from ∼16 µm < R < 38 µm, viscosities are indicated
in the legend and correspond to SDS concentrations of 0.035 M,
0.14 M, and 0.28 M. The black dashed line is the best fit of Eq. (2).

below. Setting �Fb + �Fd = 0 we obtain the terminal velocity

v =
(

2π

3cr
· R2 q �ρ g

μ

)1/2

. (2)

To test Eq. (2), we plot the velocity v as a function of
(R2q�ρg/μ)1/2, for various values of q, R, and μ. Although
the change in viscosity is relatively small (1.5, 1.6, and 2.0
mPa s), the drag depends on viscosity and must be taken into
account [see Eq. (2)]. As expected, we see in Fig. 4 that
the terminal speed increases with increasing chain production
speed. The expected relationship defined in Eq. (2) and the
measured data show excellent agreement, with the only free
parameter being the drag coefficient for the ribbon cr = 0.72
± 0.09. Although the hydrodynamic drag has been modeled
with a single drag coefficient cr , clearly the assumption proves
to be an adequate approximation for the undulating chain with
small amplitudes shown in Fig. 2, and we find that cr ≈ cc.

Buckling amplitude and wavelength. From Fig. 2, one can
see that the buckling amplitude A increases with increasing
chain-productions speed q, while the wavelength λ decreases
with increasing q. The buckling results from an excess of
chain length that is produced relative to the speed that the
chain can move upwards. We make the simple ansatz that
the amplitude must scale as q − qc since buckling can only
happen when q > qc (i.e., A = 0 for q < qc). Because q − qc

is a speed, we must multiply by a characteristic timescale τ

to get a lengthscale. Given that the relevant parameters in the
problem are R, �ρ, g, and μ, we have τ ∼ μ

R�ρg and can write
the amplitude as [46]

A ∝ (q − qc) · μ

R�ρg
. (3)

In Fig. 5(a) we test Eq. (3) and plot A as a function
of (q − qc)μ/R�ρg. For a variety of bubble sizes, bubble

(a) (b)

µ = 1.5 mPa s
µ = 1.6 mPa s
µ = 2.0 mPa s

µ = 1.5 mPa s
µ = 1.6 mPa s
µ = 2.0 mPa s

FIG. 5. (a) The buckling amplitude A as a function of (q −
qc )μ/R�ρg collapses the data in accordance with Eq. (3). The solid
black line shows the line of best fit to the small amplitude data
with a slope of 1.8 ± 0.6. (b) The relation between the ratio A/λ

and q/v. The black line shows the model prediction with a slope of
0.04 ± 0.01. Bubble sizes range from 16 µm < R < 38 µm, viscosi-
ties are indicated in the legend.

production speeds, and viscosities, the experimentally ob-
tained amplitude closely agrees with the predicted relation-
ship for all but the largest amplitudes where the simple scaling
model fails. At large differences between the production
speeds we see a deviation from the prediction, indicating that
the simple scaling is insufficient to capture the unaccounted
nonlinear behavior at the largest production speeds.

The shape of the buckled chain can equivalently be
described by the wavelength using simple geometric relation-
ships between A, λ, v, and q. In order to obtain an analytic
solution, we approximate the undulatory ribbon as a sawtooth
profile. The approximation introduces an error that is at most
∼3.5%, in comparison to a more rigorous arc length of a
sinusoid, but yields an analytic solution. We relate the time
that the chain rises by a distance of λ, to the arclength of
chain produced in that time. Then the arclength of chain, per
unit wavelength, is lλ/λ = q/v. For a sawtooth profile, we
obtain the simple expression 16(A/λ)2 = (q/v)2 − 1. We note
that the ratio A/λ vanishes when q = v; this is intuitive since
A → 0 and λ → ∞ as the bubble production speed decreases
to the velocity at which the chain rises: the chain becomes
straight. In Fig. 5(b) we see that this simple relationship is in
good agreement with the data with a best-fit slope of 1/27
which differs from simple geometric model by ∼1.6. We
attribute the difference due to the sawtooth approximation,
as well as differences in the measurement of A and λ (see
Appendix B).

Conclusions. We have studied the buckling instability that
a slender chain of bubbles undergoes when traveling through
a viscous bath. The instability arises when the drag force
of the rising chain of bubbles exceeds the buoyant forces.
After the buckles are formed, the chain moves as a ribbon
through the bath and the terminal velocity can be calculated
using a simple balance between buoyancy and drag. We find
that the model well describes the experiments for the buck-
ling onset, predicted terminal velocities, the amplitude of the
buckling, and the relationship between the amplitude and the
wavelength. We have studied a system that shows buckling
that is akin to many other familiar systems, like honey coiling
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on toast, the coiling of a falling rope, or the bending of a
fiber pushed into a viscous fluid. However, the fundamen-
tal origin of the buckling is fundamentally different. Unlike
other systems, in which buckling arises from a cost associ-
ated with bending, to our knowledge this is the first study of
drag-induced buckling with no intrinsic cost to bending—a
buckling instability with a characteristic lengthscale emerges
as a result of hydrodynamics.
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Research Council of Canada. C.L.L. acknowledges funding
from the Vanier Canada Graduate Scholarship.

Appendix A: Bubble production. The bubbles are created
by forcing air through a pulled-glass micropipette into an
aqueous bath composed of water (HPLC, Sigma-Aldrich),
NaCl (Caledon, 1.5% w/w), and sodium dodecyl sulfate
(SDS, Bioshop, with concentration ranging from 0.035 M
to 0.28 M or 1% to 8% w/w). We note that at these high
SDS concentrations, the surface tension is independent of the
concentration and can be assumed constant [35]. To create
small air bubbles such that the dynamics are slow enough
for the Reynolds number to be small, the orifice to produce
the bubbles must also be small [39,40]. Glass capillary tubes
of initial thickness 1 mm in diameter (World Precision In-
struments Inc.) are heated and pulled with a pipette puller
(Narishige PN-30). After pulling, the tip of the pipette is long
and flexible and has a diameter of 30 µm. The air bubbles
produced by these pipettes are still too large. To produce
smaller bubbles, the pipettes are manually pulled a second
time. Here, we heat the tip of the pipette by putting it into
contact with a hot platinum wire where the glass locally melts
and sticks to the wire. The pipette is pulled from the wire using
the natural flexibility of the pipette, forming a narrower cone
at the end with diameters ranging from ∼10 µm to 25 µm.

The viscosity of the aqueous bath is calculated using
Stokes’ law for the rise of a single bubble through the liquid.
The terminal velocity is vt = 2

9
ρgR2

μ
[47], which allows us to

calculate the viscosity for different SDS concentrations. The
viscosity of the three aqueous baths are 1.5 mPa s, 1.6 mPa s,
and 2.0 mPa s for SDS concentrations of 0.035 M, 0.14 M,
and 0.28 M.

Appendix B: Imaging and analysis. The bubble chain was
imaged simultaneously from two orthogonal planes, with two
mirrors set at 22.5◦ to the normal plane at the back of the
chamber. Figure 2(a) shows the geometry of the chamber with
a micropipette inserted through the top of the bath. The mi-
cropipette produces bubbles in the center of the chamber, and
the left and right mirror show the reflection. Images are taken
with a lens (Edmund Optics, 2x Ultra Compact Objective)
with a narrow depth of field, so that when the reflections are
in focus the physical bubbles are not visible in the center of
the image. Image analysis was carried out as follows. The
quantity q, the chain production speed, was determined by
counting the number of bubbles produced for a given period
of time, and multiplying by the diameter of the bubbles. The
terminal speed v was extracted by binarizing the image, track-
ing the center of the chain, then using autocorrelation between
subsequent frames to extract the distance traveled in pixels.
The speed was averaged over the course of the video to extract
the distance moved in the vertical direction per frame. The
bubble radius R was found using template matching. A sample
bubble is cropped, then a template-matching function is used
to find likely locations of the bubbles. Starting at the bottom
of the frame where the bubbles are produced, we match the
bubble along the chain from the right and left side and using
trigonometry for the two orthogonal directions, we calcu-
late the distance between the center of subsequent bubbles.
From this distance, we can determine the radius. The am-
plitude of the buckling A is determined by averaging all of
the images for a given video. Averaging blurs the image as a
function of time, and a horizontal cross section of the intensity
indicates the outer edges of the bubble chain. Subtracting off
the bubble radius and reconstructing the averaged data in three
dimensions gives the average buckling amplitude. We define
a buckled chain as one with a sustained buckling amplitude of
greater than 0.2 R. We measured the wavelength with ImageJ
over 5 wavelengths. Lastly, we note that at high bubble pro-
duction speeds the chain can break up further away from the
orifice, which we attribute to the larger viscous drag acting on
the edges of the chain compared to the center. For this reason
the image analysis window is limited to sections between the
orifice and the location of breakup.

[1] L. Mahadevan and J. B. Keller, Coiling of flexible ropes, Proc.
R. Soc. London A 452, 1679 (1996).

[2] M. K. Jawed, F. Da, J. Joo, E. Grinspun, and P. M. Reis, Coiling
of elastic rods on rigid substrates, Proc. Natl. Acad. Sci. USA
111, 14663 (2014).

[3] J. Gray and G. J. Hancock, The propulsion of sea-urchin sper-
matozoa, J. Exp. Biol. 32, 802 (1955).

[4] A. T. Chwang and T. Y. Wu, A note on the helical movement of
micro-organisms, Proc. R. Soc. London B 178, 327 (1971).

[5] O. du Roure, A. Lindner, E. N. Nazockdast, and M. J. Shelly,
Dynamics of flexible fibers in viscous flows and fluids, Annu.
Rev. Fluid Mech. 51, 539 (2019).

[6] E. M. Purcell, The efficiency of propulsion by a rotating flagel-
lum, Proc. Natl. Acad. Sci. USA 94, 11307 (1997).

[7] J. Miller, T. Su, E. D. V., J. Pabon, N. Wicks, K. Bertoldi, and
P. Reis, Buckling-induced lock-up of a slender rod injected into
a horizontal cylinder, Int. J. Solids Struct. 72, 153 (2015).

[8] M. Skorobogatiy and L. Mahadevan, Folding of viscous sheets
and filaments, Europhys. Lett. 52, 532 (2000).

[9] N. M. Ribe, M. Habibi, and D. Bonn, Stability of liquid rope
coiling, Phys. Fluids 18, 084102 (2006).

[10] G. Barnes and R. Woodcock, Liquid rope-coil effect, Am. J.
Phys. 26, 205 (1958).

[11] A. Chakrabarti, S. Al-Mosleh, and L. Mahadevan, Instabilities
and patterns in a submerged jelling jet, Soft Matter 17, 9745
(2021).

[12] M. Habibi, S. H. Hosseini, M. H. Khatami, and N. M. Ribe,
Liquid supercoiling, Phys. Fluids 26, 024101 (2014).

L022062-5

https://doi.org/10.1098/rspa.1996.0089
https://doi.org/10.1073/pnas.1409118111
https://doi.org/10.1242/jeb.32.4.802
https://doi.org/10.1098/rspb.1971.0068
https://doi.org/10.1146/annurev-fluid-122316-045153
https://doi.org/10.1073/pnas.94.21.11307
https://doi.org/10.1016/j.ijsolstr.2015.07.025
https://doi.org/10.1209/epl/i2000-00470-4
https://doi.org/10.1063/1.2336803
https://doi.org/10.1119/1.1996110
https://doi.org/10.1039/D1SM00517K
https://doi.org/10.1063/1.4863673


CARMEN L. LEE AND KARI DALNOKI-VERESS PHYSICAL REVIEW RESEARCH 6, L022062 (2024)

[13] N. M. Ribe, H. E. Huppert, M. A. Hallworth, M. Habibi, and D.
Bonn, Multiple coexisting states of liquid rope coiling, J. Fluid
Mech. 555, 275 (2006).

[14] L. Mahadevan, W. S. Ryu, and A. D. Samuel, Fluid ‘rope trick’
investigated, Nature (London) 392, 140 (1998).

[15] N. M. Ribe, Coiling of viscous jets, Proc. R. Soc. London A
460, 3223 (2004).

[16] F. P. Gosselin, P. Neetzow, and M. Paak, Buckling of a beam
extruded into highly viscous fluid, Phys. Rev. E 90, 052718
(2014).

[17] N. M. Ribe, M. Habibi, and D. Bonn, Liquid rope coiling, Annu.
Rev. Fluid Mech. 44, 249 (2012).

[18] I. Mehdipour, H. Atahan, N. Neithalath, M. Bauchy, E.
Garboczi, and G. Sant, How clay particulates affect flow cessa-
tion and the coiling stability of yield stress-matched cementing
suspensions, Soft Matter 16, 3929 (2020).

[19] J. K. Nunes, H. Constantin, and H. A. Stone, Microfluidic tailor-
ing of the two-dimensional morphology of crimped microfibers,
Soft Matter 9, 4227 (2013).

[20] K. H. Y., M. Lee, K. J. Park, S. Kim, and L. Mahadevan,
Nanopottery: Coiling of electrospun polymer nanofibers, Nano
Lett. 10, 2138 (2010).

[21] P.-T. Brun, B. Audoly, N. M. Ribe, T. Eaves, and J. R. Lister,
Liquid ropes: A geometrical model for thin viscous jet instabil-
ities, Phys. Rev. Lett. 114, 174501 (2015).

[22] M. K. Jawed, P.-T. Brun, and P. M. Reis, A geometric model for
the coiling of an elastic rod deployed onto a moving substrate,
J. Appl. Mech. 82, 121007 (2015).

[23] Q. Liu and K. K. Parker, A viscoelastic beam theory of polymer
jets with application to rotary jet spinning, Extreme Mech. Lett.
25, 37 (2018).

[24] T. Han, D. H. Reneker, and A. L. Yarin, Buckling of jets in
electrospinning, Polymer 48, 6064 (2007).

[25] M. K. Tripathi, K. C. Sahu, and R. Govindarajan, Dynamics
of an initially spherical bubble rising in quiescent liquid, Nat.
Commun. 6, 6268 (2015).

[26] B. Lalanne, O. Masbernat, and F. Risso, Determination of in-
terfacial concentration of a contaminated droplet from shape
oscillation damping, Phys. Rev. Lett. 124, 194501 (2020).

[27] G. Mougin and J. Magnaudet, Path instability of a rising bubble,
Phys. Rev. Lett. 88, 014502 (2001).

[28] V. Mathai, X. Zhu, C. Sun, and D. Lohse, Flutter to tumble tran-
sition of buoyant spheres triggered by rotational inertia changes,
Nat. Commun. 9, 1792 (2018).

[29] W. L. Shew and J.-F. Pinton, Dynamical model of bubble path
instability, Phys. Rev. Lett. 97, 144508 (2006).

[30] O. Atasi, M. Ravisankar, D. Legendre, and R. Zenit, Presence of
surfactants controls the stability of bubble chains in carbonated
drinks, Phys. Rev. Fluids 8, 053601 (2023).

[31] R. A. Verschoof, R. C. A. van der Veen, C. Sun, and D. Lohse,
Bubble drag reduction requires large bubbles, Phys. Rev. Lett.
117, 104502 (2016).

[32] J. Guzowski, R. J. Buda, M. Costantini, M. Ćwiklińska, P.
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