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Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale
quantum simulators of lattice gauge theories which, among other goals, aim at improving our understanding on
the nonperturbative mechanisms underlying the confinement of quarks. In this work, considering periodically
driven arrays of Rydberg atoms in a tweezer ladder geometry, we devise a scalable Floquet scheme for the
quantum simulation of the real-time dynamics in a Z2 LGT, in which hardcore bosons/spinless fermions are
coupled to dynamical gauge fields. Resorting to an external magnetic field to tune the angular dependence of
the Rydberg dipolar interactions, and by a suitable tuning of the driving parameters, we manage to suppress
the main gauge-violating terms and show that an observation of gauge-invariant confinement dynamics in the
Floquet-Rydberg setup is at reach of current experimental techniques. Depending on the lattice size, we present a
thorough numerical test of the validity of this scheme using either exact diagonalization or matrix-product-state
algorithms for the periodically modulated real-time dynamics.
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Introduction. Gauge theory provides us with the basic lan-
guage to understand the fundamental interactions [1]. Such
theories arise from promoting global symmetries, e.g., SU (3)
[SU (2)L × U (1)] for the strong (electroweak) interactions,
to local ones by the introduction of gauge fields coupled to
matter [2]. The discretization of gauge theories on a space-
time lattice not only provides a natural cutoff, but a means
to go beyond perturbative calculations [3], which is crucial
to understand phenomena such as quark confinement [4].
In spite of the enormous progress of imaginary-time Monte
Carlo methods for lattice gauge theories (LGTs), epitomized
by the verification of the quark-model prediction of the hadron
masses [5], finite-density and real-time phenomena are still
beyond reach [6]. An approach to overcome these limitations
arises from realizing that the lattice is not compelled to be
a mathematical construct, but may indeed have a physical
reality. Recent advances in quantum technology provide an
effective avenue to implement the above program. By a care-
ful experimental design, one can tailor the lattice and control
the real-time matter dynamics to mimic the target model, thus
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realizing a LGT quantum simulator (QS) [7,8]. These QSs can
be thought of as special-purpose quantum computers [9], and
their use for LGTs has recently raised the interest of a broad
and diverse community (see the recent reviews [10–17]).

In spite of recent experimental progress [10–17], current
technologies are still far from allowing large-scale QSs of the
standard model of particle physics. This limitation is either
due to the accumulation of errors for QSs operating in digital
mode, or to the limited flexibility of QSs operating in the ana-
log mode. To exploit the full potential of analog QSs, which
are in principle more amenable for scaling in the presence of
errors [18,19], it is of primary importance to devise novel
schemes that engineer the high-weight terms characteristic
of gauge theories in timescales that are faster than current
decoherence sources. To devise these fundamental schemes as
building blocks of more complicated models, the community
is focusing on models in reduced spacetime dimensions and
simpler gauge groups [20–24], which can still provide im-
portant insights. The Z2 LGT is a paradigmatic case in this
regard [24]. On one hand, it is a playground to understand
confinement (deconfinement) in (1+1) dimensional chains
[25,26] (ladders [27,28]). At the same time, the Z2 LGT
in 2+1 dimensions serves to understand central questions
in condensed matter as topological order [29,30], confined
and Higgs phases [31,32], and the interplay of superconduc-
tivity and charge deconfinement [33,34]. In the context of
QSs, targeting these simpler LGTs dispenses with additional
complications in higher dimensions and non-Abelian gauge
groups. Although LGTs can sometimes be simulated effec-
tively, e.g., integrating the gauge fields [35,36] or vice versa
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FIG. 1. Rydberg tweezer array. (a) The external magnetic field
B0 makes an angle θm = 54.7o with respect to the z axis. The projec-
tion of B0 onto the xy plane where the atoms reside, B⊥

0 , makes an
angle of 45o with the x axis. (b) Angular distribution of the XY cou-
plings as a function of the angle φi j between the interatomic vector
Ri j and B⊥

0 , which vanish at the critical angles φi j = ±45o, ± 135o.
(c) Ladder configuration of the Rydberg atoms trapped in optical
tweezers. The atoms are arranged on the vertices of isosceles right
triangles of sides d and base b = √

2 d . The interactions are repre-
sented as colored lines according to the color scheme of panel (b).
Dashed lines highlight the critical directions of the vanishing XY
terms, which forbid a direct coupling between even-even and odd-
odd spins. In this paper, we drive the odd atoms detuning according
to Hdrive = ∑

i odd
ηωd

2 cos(ωd t + ϕi )σ z
i , with η ≈ 2.4 and φ2i+1 = i π

2 .

[37,38], developing schemes where matter and gauge fields
correspond to physical degrees of freedom of the QS is essen-
tial to observe their interplay in confinement, as emphasized in
recent proposals based on neutral atoms [39] and trapped ions
[40]. Although these proposals can be, in principle, scaled up
[41–48], so far, experiments have demonstrated only building
blocks of the full theory [49,50].

In this work, we provide a scalable analog QS for the Z2

LGT based on Rydberg atoms in optical tweezers [51,52]. We
shall focus on a scheme which encodes a spin-1/2 variable in
a pair of nearby Rydberg levels of opposite parity |↑〉i = |r〉i,
|↓〉i = |r′〉i. In this case, the dipolar interactions are described
by an XY model with long-range 1/R3 couplings, see Fig. 1.
Below, we describe how to obtain the desired LGT by periodi-
cally driving the atoms, exploiting Floquet engineering [53] in
a way that effectively gauges the global symmetry of the XY
model, transforming it to a local Z2 gauge symmetry, where
some atoms represent matter, and some others gauge fields.

Target model. Our goal is to achieve the Z2 LGT

HZ2 =
N∑

n=1

Jt
(
a†

n τ z
n+ 1

2
an+1 + H.c.

) + μ(−1)na†
nan + hτ x

n+ 1
2
,

(1)

where Jt is the tunneling strength, and h (μ) plays the role of
the electric-field coupling strength (particle mass). The matter
content corresponds to hardcore bosons that can be created
(annihilated) a†

n(an) at the lattice sites, such that double oc-
cupancies are forbidden (a†

n)2 = (an)2 = 0. The gauge fields
are described by magnetic-type (electric-type) Pauli operators
τ z

n+1/2(τ x
n+1/2) on the links, allowing for a local symmetry

[HZ2 , Gn] = 0, Gn = τ x
n−1/2 exp{iπa†

nan} τ x
n+1/2. As is cus-

tomary, hardcore bosons can be mapped to fermions through a

Jordan-Wigner transformation an = 
m<neiπc†
mcm cn, such that

a further phase transformation cn → cnei π
2 n maps Eq. (1) onto

the Kogut-Susskind Z2 LGT on a chain [54,55].
Nearest-neighbor Floquet scheme. Before delving into the

additional complexity of the dipolar Rydberg case, we illus-
trate our Floquet scheme for nearest-neighbor interactions.
This case corresponds to the XY chain [56] with dynamical
longitudinal hi

l and transverse hi
t fields

HXY =
Na∑

i=1

J (σ+
i σ−

i+1 + H.c.) + hi
lσ

z
i + hi

tσ
x
i , (2)

where σα
i , α = x, z,± are diagonal and ladder operators of the

Pauli algebra, and we take h̄ = 1 such that all couplings in (2)
have units of Hz. Since we aim at generating three-body terms
(1) from two-body interactions (2), second-order processes
O(J2) should outweigh first-order ones O(J ). Moreover, to
achieve gauge invariance, the scheme should single out a
specific set of terms from all possible second-order processes.
We shall see that both of the above problems can be overcome
through a selective driving protocol.

Specifically, we consider a Floquet scheme that drives the
odd spins with a time-periodic longitudinal field of frequency
ωd, strength ηωd, and phase ϕi, together with a static stag-
gered part hi

l = 1
2 [(−1)iδh + ηωd cos(ωdt + ϕi )]δi,odd. The

even spins are instead subject to a static transverse field hi
t =


2 δi,even. To achieve the aforementioned selective dressing, we
first need to inhibit the gauge-breaking first-order terms. For
this, we exploit a spin-version of the coherent destruction of
tunneling [57,58], through which O(J ) terms get dressed by
the absorption/emission of energy packets ε� = �ωd, � ∈ Z,
from/into the driving field. By using a very fast modulation
ωd � J , these processes become off resonant, and the XY
coupling gets dressed by the � = 0 term as J → JJ0(η). Thus,
by setting the relative amplitude to zero of this Bessel func-
tion, the first-order terms get suppressed.

At second order O(J2/ωd ), we get three types of processes:
assisted tunnelings between odd sites σ+

2n−1σ
z
2nσ

−
2n+1, assisted

tunnelings between even sites σ+
2nσ

z
2n+1σ

−
2n+2, and two-body

terms arising from back and forth spin flips. The effective
Hamiltonian reads

Heff =
∑
i even



2
σ x

i +
∑
i odd

(−1)
i+1

2
δh

2
σ z

i +
∑
〈i, j,k〉

J2

ωd
χikσ

+
i σ z

j σ
−
k ,

(3)

where 〈i, j, k〉 is a nearest-neighbor triplet. Here, we have
introduced a dressing parameter that contains all second-order
processes where � “quanta” are virtually absorbed from and
emitted into the driving field

χik =
∑
�>0

2i

�
J2

� (η) sin[�(ϕk − ϕi )]. (4)

We note that, in spite of the sum in Eq. (3) including all
possible triplets, χik is nonzero only for i = k both odd,
as all other cases “see” the same driving phase ϕi − ϕk =
0 mod2π . We thus achieve the desired selectivity by a de-
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FIG. 2. Dressing parameter. χ̃ik = −i χik is depicted as a func-
tion of the phase difference �ϕik and relative driving strength η. Here
νn denotes the nth zero of J0(x). For η = ν1, χ̃ik has a maximum
(minimum) at �ϕik = 60o (−60o).

structive interference, canceling all second-order processes
but those with ϕi = ϕk . These processes correspond to the
tunneling of an excitation between odd spins depending on
the population of the intermediate even spin (see the Sup-
plemental Material [59]). In order to maximize such assisted
tunneling, it is convenient to choose η = ν1 ≈ 2.405 and
ϕ2n+1 = n π

3 , where ν1 denotes the first zero of the Bessel
function J0(η) (see Fig. 2). With this choice χ2n−1,2n+1 =
χ ≈ −0.63 i, the dressed second-order dynamics is slower
by a factor of |Jχ/ωd| ≈ 0.06. Equation (1) can be fi-
nally obtained by identifying matter (gauge fields) with the
odd (even) spins, such that Na = 2N + 1: an = σ−

2n+1, a†
n =

σ+
2n+1, τ z

n+1/2 = σ z
2n, τ x

n+1/2 = σ x
2n, together with the follow-

ing parameters:

Jt = J2

ωd
χ, h = 

2
, μ = δh. (5)

After presenting our Floquet QS scheme, we provide nu-
merical benchmarks that support its validity. We consider an
initial state that allows to discuss confinement. In the LGT lan-
guage, such a state corresponds to a pair of dynamical charges
at positions n1 and n2 connected by an electric-field string
|ψ0〉 = |0,− · · · −, 1n1 ,+, 0,+ · · · +, 1n2 ,−, 0,− · · · −, 0〉,
where τ x|±〉 = ±|±〉. This initial state belongs to the neutral
gauge sector Gn|ψ0〉 = |ψ0〉 ∀n = 1, N . We consider the case
 = 0, δh = 0, and simulate the real-time dynamics of the
periodically modulated XY chain (2) of 2N + 1 = 21 spins
using matrix-product-state algorithms (TEDB) [60–63]. In
Fig. 3, we display the obtained time evolution: indeed, the
charges do not spread indefinitely but instead perform periodic
oscillations around their initial positions, accompanied by
the stretching and compressing of the electric string. Indeed,
when  = 0, the effective Z2 model (1) is characterized
by a nonzero electric coupling h = 

2 . In this case, pairs of
particles separated by a positive electric string experience an
attracting potential that grows linearly with the string length,
and are confined into mesonlike bound states [25,64]. The
relative coordinate wave-function solves a Wannier-Stark
equation, and thus Bloch oscillations arise [40,64,65]. The
observed dynamics is effectively restricted to the neutral
gauge sector, in agreement with Eq. (1), within errors which
come from higher-order Floquet terms. The amount of

FIG. 3. Z2 confinement. Two particles are initialized at positions
i = 3, 9 and connected by an electric-field string. Here, h = Jt and
μ = 0. Left and right panels correspond to the contour plots of
the charge distribution 〈ρn(t )〉 = 〈ψ (t )|a†

nan|ψ (t )〉 and the electric
field 〈τ x

n+1/2(t )〉, where the evolution of |ψ (t )〉 under HXY(t ) with
ωd = 30J is approximated using MPS with bond dimension = 20.

gauge-breaking grows with time, but remains below 15%
violation of the condition Gn|ψ0〉 = |ψ0〉 ∀n = 1, N—see the
Supplemental Material [59].

Dipolar Floquet-Rydberg scheme. After presenting the
ideal nearest-neighbor Floquet scheme, we provide de-
tails for the implementation through Rydberg-atom arrays
[51,52]. We note that the Rydberg levels |r〉 and |r′〉 we
refer to are r = nLJ , m and r′ = n′L′

J ′ , m′, having oppo-
site parity and dipole-allowed transitions, e.g., L = S or P
and L′ = P or D with �J,�m ∈ {0,±1}. In this case, the
leading dipolar interactions [66,67] encompass pairwise
excitation-transfer (ri, r j ) = (r, r′) ↔ (r′, r) even for a van-
ishing electric field [68–73]. This energy transfer can be
described by a dipolar version Hdip

XY of the XY model (2), with
J �→ Ji j . The couplings Ji j display an angular dependence
Ji j = J3(3 cos2 θi j − 1)/R3

i j , where θi j is the angle between the
interatomic vector Ri j and an external magnetic field B0 (fix-
ing the atoms quantization axis) [70,71,74,75]. For instance,
|Ji j |/2π ∼ 1–10 MHz for 87Rb atoms with n, n′ ∼ 50–60
at Ri j ∼ 10-15 µm distances, which exceed the linewidths
set by the Rydberg lifetimes even at room temperatures
T1 ∼ 100–200 µs [76].

In principle, the long-range terms could lead to addi-
tional gauge-violating processes. Therefore, we selectively
address even-even/odd-odd and odd-even interactions. We
can suppress the even-even/odd-odd processes by taking
the magnetic field B0 along a specific direction relative to
the Rydberg array. For B0 ‖ Ri j (B0 ⊥ Ri j), the interactions
are antiferromagnetic Ji j > 0 [70,72] (ferromagnetic Ji j < 0
[73]). As exploited in [75], when B0 is directed along the plane
containing a Rydberg ladder, the XY couplings between dis-
tant spins making an angle θi j = θm := 54.7o vanish, yielding
approximately a dimerized XY model.

In our context, this arrangement would suppress the gauge-
violating processes involving even-even (odd-odd) spins. On
the other hand, the dimerization would activate higher-order
terms in the high-frequency Floquet expansion, limiting the
timescale of validity of the QS (see the Supplemental Mate-
rial [59]). To overcome this problem, we propose to lift the
quantising field such that B0 is out of plane at an angle θm

with the normal vector to the Rydberg ladder (here corre-
sponding to the z axis)—see Fig. 1. With this choice, besides
suppressing the undesired even-even (odd-odd) couplings, the
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higher-order Floquet terms due to the dimerization do not
contribute. Defining φi j as the angle that Ri j makes with the
projection of the quantizing field into the Rydberg array B⊥

0 ,
we find that Ji j = J3(2 cos2 φi j − 1). Therefore, when φi j =
φm := 45o, the atoms on the upper (bottom) leg of the ladder
correspond to the vertices of isosceles right triangles, whose
sides have length d and whose base have length b = √

2 d ,
which lies along the legs of the ladder. This choice results in
Ji j = 0 for pairs of atoms within the same leg, which corre-
spond to the undesired even-even (odd-odd) spin couplings.
The expression for the nonzero XY couplings is

Ji j = −J3 r

d3

(
2

1 + r2

)5/2

, r = i − j, (6)

where the indices i and j must be odd and even, respec-
tively (see the Supplemental Material [59]). We thus see
that |Ji,i±1| = J3/d3, such that there is no dimerization, and
no higher-order gauge-breaking terms in the Floquet scheme
associated to it. Additionally, the couplings |i − j| > 1 are
highly suppressed by the dipolar law.

Following the same driving protocol as for the nearest-
neighbor Floquet scheme, we obtain the effective Hamiltonian

Heff =
Na∑

i, j,k=1

Ji jJjk

ωd
χikσ

+
i σ z

j σ
−
k , (7)

where the long-range nature of the XY couplings sets an
assisted tunneling involving generic spin triplets [not neces-
sarily nearest-neighbors as in the scheme adopted for (3)].
We note that the dressing parameter χik is still given by
Eq. (4), and we can again exploit the destructive-interference
selectivity, such that the tunneling only occurs between odd
spins i = k mediated by an even spin at j. However, there are
additional longer-range terms of this form that would break
the gauge symmetry, the largest being σ+

2n−1σ
z
2nσ

−
2n+3 and

σ+
2n−1σ

z
2n+2σ

−
2n+1. We get rid of the former by appropriately

choosing the driving phases according to ϕ2n+1 = n π
2 [see

Eq. (6)], while the latter are much smaller J1,4/J1,2 ≈ 0.05,
which follows from Eq. (6). By sticking to the previous choice
for the driving amplitude η = ν1, we find that χ2n−1,2n+1 =
χ ≈ −0.5i. One can use the effective tunneling in Eq. (5), and
map the Floquet-Rydberg QS to the target Z2 LGT as before.

As done for the n.n. model, now we benchmark our
scheme by comparing the Floquet effective dynamics with
the time-evolution of the original Rydberg system. Due to the
long-range nature of the microscopic model, we resort to exact
numerical methods, limiting the system sizes up to Na = 9
spins. We consider the initial state with a single charge |ψ0〉 =
|11,−, 0,− · · · −, 0〉, and calculate numerically the time-
evolution operator by a Trotter expansion within one period
of the drive UT = ∏

i e−iHdip
XY(ti )δt , where we have taken δt =

T/410 to minimize the numerical errors. The stroboscopic
dynamics is obtained as |ψ (nT )〉 = U n

T |ψ0〉, with n ∈ N. The
results are compared with the effective gauge-invariant dy-
namics of Eq. (1), which have an exact solution in terms of
a Wannier-Stark ladder in the single-charge sector. In the case
of two matter sites and a single link, we find that the large-
frequency ωd � J regime perfectly realizes the expected
gauge-invariant evolution (see Fig. 4). Indeed, the dynam-

FIG. 4. Gauge-invariant dynamics and gauge violation. The
left panel displays the driven dynamics (solid line) and the effec-
tive gauge-invariant dynamics (dots) arising from the initial state
|L〉 = |1, −, 0〉, in the Na = 3, ωd = 30J3/d3 case. The driven evo-
lution is in full-agreement with the expected periodic oscillations of
〈a†

nan(t )〉, 〈τ x (t )〉. The right panel corresponds to the average per-
cent error ε̄(t, ωd ) accumulated during the evolution from the state
|ψ0〉 = |11, −, 0, − · · · −, 0〉, in the case Na = 9. For each value of
the driving frequency ωd , only times up to 3π/Jt (ωd ) are explored.
The dashed line corresponds to a 10% threshold of gauge violation.

ics is restricted to the subspace spanned by |L〉 = |1,−, 0〉
and |R〉 = |0,+, 1〉, which are gauge-invariant according to
Gn = (−1)a†

nan τ x, with local charges qn = (−1)n. The tun-
neling dynamics leads to Rabi oscillations between |L〉/|R〉,
provided that the electric field is periodically switched on/off
|+〉/|−〉 to comply with gauge invariance. As figures of merit,
we display the real-time evolution of the Z2 charge 〈(−1)a†

nan〉,
and the electric field 〈τ x〉.

The agreement with the Z2 gauge-invariant dynamics can
be affected by two main sources of error. The first corresponds
to gauge-breaking processes that arise from the higher orders
in the large-frequency Floquet expansion. The second derives
from the long-range XY couplings. To estimate the amount of
gauge violation, we extend our simulations to the case of nine
spins, and allow to sweep the driving frequency. We evaluate
the average percent error ε̄(t, ωd ) = 100

Na

∑
n | 〈Gn (t,ωd )〉−qn

qn
|. As

shown in Fig. 4, the amount of gauge violation is below a 10%
threshold for values of J3

d3 t that are compatible with currently
achieved experimental times. We note that, as ωd is increased,
the agreement between driven and effective dynamics grows,
as a result of the (1/ωd )� suppression of (� + 1)th order
terms in the high-frequency expansion. To further stabilize
the agreement to the gauge-invariant dynamics over longer
time scales, one could resort to gauge-protection schemes to
penalize gauge-violating processes [77,78].

So far, we have focused on the gauge-invariant tun-
neling stemming from Heff (7). The required longitudinal∑

i even

2 σ x

i and transverse
∑

i odd(−1)
i+1

2
δh
2 σ z

i fields, as well
as the time-periodic modulation, require local addressing in
the Rydberg platform. This can be achieved by using laser
beams suitably diffracted using acousto-optic deflectors. The
lasers addressed to the even atoms should drive Raman tran-
sitions with a two-photon Rabi frequency  that is resonant
with the two Rydberg energy levels ωL,1 − ωL,2 = ω0, e.g.,
[79]. For the odd atoms, on the other hand, a pair of coun-
terpropagating laser beams far off resonant ω̃L,1 − ω̃L,2 =:
ωd � ω0, lead to differential ac-Stark shifts with contribu-
tions stemming from each of the laser beams, which have been
previously used to induce a local constant longitudinal field
in a two-atom XY model [72]. For our purposes, these local
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ac-Stark shifts must be tuned to account for the staggering δh.
Since we consider a pair of laser beams, there is also a trav-
eling standing-wave pattern coming from their interference,
which can be exploited for the time-periodic longitudinal
field. The amplitude of this modulation ηωd is controlled by
the crossed-beam two-photon Rabi frequencies, whereas the
phase depends on the wave vectors ϕi = (kL,1 − kL,2) · Ri.
These laser-induced terms can be of the same order as the
XY couplings, which requires using high-power lasers to al-
low for large detunings from other excited states, such that
δh,, ηωd ∼ 0.1–10 MHz. We note that, while local address-
ing single atoms can in general introduce decay channels,
resulting in an effective reduction of the lifetime of the Ry-
dberg states, such effect would be negligibly small within the
required range of parameters [72].

Conclusions and outlook. We have devised a protocol for
the analog quantum simulation of a Z2LGT through Flo-
quet engineering, and shown that it can be realized with
Rydberg atoms trapped in optical tweezers. The proposed
protocol generates specific gauge-invariant three-body terms
(1) from two-body gauge-breaking couplings (2) by exploiting
a selective dressing that makes use of time-periodic Floquet

modulation and a destructive interference that depends on
the relative inhomogeneous phase of the modulation. The
strong dipole-dipole interactions in Rydberg atoms make
them ideally suited to realize this gauge-invariant dressing,
as the weaker second-order processes in Eq. (5) can still be
faster than typical decay times. On the other hand, we note
that our scheme can be directly translated to trapped-ion or
superconducting-qubit platforms, in which effective XY mod-
els have also been demonstrated. Provided that leading noise
sources are minimized further, our proposal for a Z2LGT QS
could also work there.
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