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Quantum dots exhibit a variety of strongly correlated effects, e.g., they can emulate localized magnetic
impurities that form a Kondo singlet with their surrounding environment. Interestingly, in double-dot setups,
such magnetic impurities couple to each other by direct Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction,
which wins over the Kondo physics. In this work, we investigate a double-dot device where the dots are coupled
via off-resonant ballistic modes, dubbed electronic cavity modes. Within this cavity-double-dot system, we study,
using variational matrix product state techniques, the competition between Kondo formation and the combined
coherent orbital hybridization and RKKY-like interaction that the cavity facilitates. Specifically, we find that
Kondo can form on each dot individually whereby the cavity can either (i) destroy the Kondo via the RKKY
that mediates a singlet state on the two dots, or (ii) lead to an exotic orbital macrsoscopic superposition of the
Kondo forming on each of the dots. We dub the latter “Kondo cat”. En route to this key finding, we rigorously
study the many-body phase diagram of the system, as well as compare it with the case of coupling the dots via
an incoherent RKKY channel. The realization of a Kondo cat can facilitate applications in metrology, and reveal
the spin coherence length in mesoscopic devices.
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Introduction. The study of quantum dot systems draws
continuous activity in condensed matter physics due to their
potential applications in quantum information processing
[1,2] and their tunable ability to explore strongly correlated
effects [3,4]. A prominent example of strongly correlated
physics in quantum dots is the Kondo effect [5]. It manifests
when a dot’s electron acts as a spin-degenerate magnetic
impurity that is screened by the surrounding environment,
leading to the formation of a macroscopic dot-environment
spin singlet [3,6–8]. Apart from Kondo-like effects, double-
dot systems are interesting due to the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction, which mediates effective
coupling between distant impurities [9–11]. Combined, the
two opposing effects compete: the Kondo effect tends to
screen local moments and the RKKY interaction tends to
order local moments. Understanding this competition holds
immense implications for comprehending correlated electron
systems and has been widely investigated in a variety of
systems [12–20].

The RKKY interaction can also serve as a knob for quan-
tum applications [21]. Here, one seeks to coherently control
the spin states of the dots and implement local quantum
operations, while keeping the ability to transfer quantum in-
formation between the system’s building blocks. To this end,
it is useful to keep the quantum dots separate in order to
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allow for precise control and manipulation of their individual
properties [22]. Note, however, that in separated double dot
systems, the central separating lead harbors partially sup-
pressed RKKY interaction that coexists with a superexchange
interaction [23]. This complicates its harnessing as a coherent
entanglement bus. As such, there is a variety of alternative
proposals for coupling distant dots, e.g., via the edge modes
of the quantum Hall effect [24–26], using superconducting
cavities [27–32], or replacing the central lead with a large,
yet interacting dot [33].

Interestingly, coherent coupling between distant dots was
experimentally achieved using a large open dot that has a
structured density of states [34]. The structure harbors ballistic
whispering gallery (standing) modes that are embedded in the
larger expanse of states in the system [35–38], akin to quan-
tum corrals [39,40]. We dub the standing modes appearing
in the experiment electronic cavity states. The cavity modes
are taken as a discrete set of spin degenerate levels due to
screening in the large expanse of the device [36]. The first
experimental realization of an electronic cavity coupled to
a single dot showed a competition between a “molecular”
dot-cavity singlet formation and the Kondo effect [35,36,41].
These results laid the foundation for employing all-electronic
dot-cavity devices in quantum information processing appli-
cations and as a platform for the fundamental study of strongly
correlated physics.

In this work, we comprehensively study the cavity-
mediated strongly correlated states in a separated double-dot
device. We observe the emergence of both RKKY-like in-
teractions between distant dots and a nonlocal superposition
of spin-Kondo singlets in either of the dots. Our study in-
volves tomography of the double dot system [41] based on
exact numerical techniques. When possible, our results are
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FIG. 1. System and charge stability diagram. (a) Double-dot
system [cf. Eq. (1)] composed of two spinful single-level dots,
�∈L,R (yellow circle) with on-site energy ε

�
and interaction U

�
.

They are tunnel-coupled (black lines) to their respective leads (gray
semicircles) with tunneling amplitudes t

�
. The two dots are addi-

tionally tunnel-coupled (blue/red lines) to a central common lead
with amplitudes t̃�. (b) The central box has energy spacing δ with
two limiting cases: (1, blue) a metallic lead when δ→0, and (2,
red) an electronic cavity when δ∼U . In reality [34], the electronic
cavity is open, as depicted by broadened levels. (c) Charge stability
diagram of the double-dot system (1). (d) Charge stability diagram
of the cavity-double-dot system (2), where the cavity is truncated
to a single-energy level εc = 0.75U (δ→∞) for t̃D = 0.1U . As the
cavity is detuned from the Fermi level, its occupation is nC ≈ 0. The
population of the two dots is marked by (nL, nR). The gray dotted
line and white and black × mark the regions discussed below, see
Figs. 2 and 3.

supported by analytical derivation of the double-dot system’s
configuration. First, we provide an exact solution to the in-
terplay among Kondo, RKKY, and ferromagnetic interactions
in a double-dot system coupled to a central continuous lead
[23]. Next, we delve into the coherent physics that arises
when the system is coupled to a detuned cavity. Here, we
capture variants of the standard Kondo and RKKY effect,
alongside predicting a fascinating nonlocal Kondo effect. Our
results provide a comprehensive map of the many-body effects
arising in separated double dots and inspire their experimental
realization.

Model. Our double-dot system is composed of two An-
derson impurity models [42], each coupled to its lead
(environment) and a central common lead, see Fig. 1(a). Its
effective model, derived in Ref. [36], reads

H =
∑

�

(
H� + H �

lead

) + H δ
C +

∑
�

(
H lead�−�

tun + HC−�
tun

)
, (1)

where �∈{L, R} denotes the left and right dot. Each dot
Hamiltonian H�=

∑
σ ε� n�σ + U� n�↑n�↓ describes an impu-

rity with a spin-degenerate electron level at energy ε�, and
electron-electron charging energy U� . Here, n�σ denotes
the dot level’s occupation number with spin σ∈{↑,↓}. The

left and right leads are noninteracting continuous reservoirs
H �

lead=
∑

kσ εk�
c†

k�σ
ck�σ

, where we denote ck�σ
(c†

k�σ
) as the

fermionic annihilation (creation) of an electron with momen-
tum k and spin σ in the �th lead. Each dot is coupled to its lead
via H lead�−�

tun = ∑
�kσ t�d†

σ ck�σ
+ H.c. with energy-independent

tunneling amplitudes t�. We consider the central region as
a set of noninteracting and equally spaced energy levels
H δ

C= ∑
jσ (εC + jδ)c†

jσ c jσ , where the fermionic operators c jσ

(c†
jσ ) are defined as those of the � leads. The central region

is tunnel-coupled to both dots HC−�
tun = ∑

� jσ t̃�d†
�σ c jσ + H.c.

with energy-independent tunneling amplitudes t̃�. In the fol-
lowing, for clarity, we consider identically tuned dots U

�
≡

U, t
�
≡ tD , t̃

�
≡ t̃D , and denote ε

�
≡ εD whereas the dot’s en-

ergy levels are equal. In the limit of vanishing level spacing
δ→0, denoted as system (1), the central region corresponds
to a lead, see Fig. 1(b). In the situation where δ∼U , denoted
as system (2), the levels of the central region are discrete
and correspond to a multimode electronic cavity, used in the
Kondo-box problem [43].

We start analyzing the charge stability diagram of the
double-dot system in the limiting situations; (1) the separated
double-dot system, and (2) the cavity-double-dot system, see
Figs. 1(c) and 1(d). We assume that coupling to the leads
is vanishing and exactly diagonalize the remaining “closed”
impurity system. In case (1), for tD ≈ t̃D ≈ 0, the diagram
of the closed two-dot system HDD = ∑

� H�, with 〈nDD〉 =
〈nL + nR〉, exhibits a standard Coulomb blockade on each of
the dots individually, separated by “resonance lines” where
the particle number on the double dot is ill defined. In case
(2), the closed system is composed of the two dots and the
discrete cavity levels. Here and in the following, we truncate
and consider a cavity with a single energy level. Coupling the
cavity to the dots, t̃D �=0, we obtain an “artificial molecule”
with Hamiltonian HCDD = ∑

�(H� + HC−�
tun ) + H δ

C, which for
|t̃�|>0 creates avoided crossings as the levels with the same
total number of electrons 〈nCDD〉 = 〈nC + nL + nR〉 hybridize
via the cavity.

Methodology. To analyze the many-body physics in our
system, we calculate the “ground state” of the open system
(impurity plus leads) using a numerical NRG-MPS method
[41,44–49]. We consider the system at equilibrium (zero bias
voltage μL = μR = μC). We then trace out the leads and ex-
tract the elements of the double-dot impurity’s reduced 16×16
density matrix, ρDD. The entirety of the 256 matrix elements
collectively serve as a comprehensive descriptor (order pa-
rameters) for the type of strongly correlated states that form
between the dots and their leads and can be probed using
tomography methods [41]. In analytically treatable cases, we
harness a Schrieffer-Wolff transformation (SWT) [50,51] to
predict which values of ρDD mark which many-body state.
In Table I, we summarize the values of the density matrix
elements |〈s, s′|ρDD|s′′, s′′′〉| corresponding to the variety of
effects (i)–(v) identified in this work [52], where |s, s′〉 =
|s〉L⊗|s′〉R and s, s′∈{0,↑,↓,↑↓} denote the spin configura-
tion of the left and right dot. The (i)–(v) effects are depicted
in Fig. 2(a). Note that we apply the NRG-MPS tomography
method to both cases (1) and (2). In the former, we introduce
an additional lead to the environment by changing the NRG-
MPS decomposition [52].
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FIG. 2. Crossovers between ground states. (a) Competing hybridization mechanisms (dashed circle): (i) Standard spin Kondo between the
left dot and its lead, (ii) dot-dot hybridization via the central lead, (iii) two separate dot-lead spin Kondo, (iv) cavity-mediated RKKY dot-dot
singlet, and (v) Kondo cat. (b)–(d) NRG-MPS tomography results of the reduced double-dot impurity matrix elements 〈s, s′|ρDD|s′′, s′′′〉. Out
of the 256 matrix elements, we highlight those with a contribution |〈s, s′|ρDD|s′′, s′′′〉|>0.1 and plot the other elements with thin gray lines.
The circular numbered markers correspond to the elements in Table I. The line width represents the degeneracy of the configuration; onefold:
thin, twofold: standard, fourfold: thick. (b) System (1) with εL = −U/2, t̃D = 0.1. Note that we sum over the (anti)ferromagnetic contributions
(dotted line), cf. discussion in the main text. (c) System (2) with εL = εR = −U/2 [cf. white × in Fig. 1(d)] and tD = 0.1U . Gray line marks
the boundary between the left region (where the Kondo gap dominates the RKKY gap) and the right region (where the RKKY gap dominates
the Kondo gap). (d) System (2) with εL = εR = 0.005U [cf. black × in Fig. 1(d)] and tD = 0.1U . Gray lines mark the regions with a different
total number of electrons for the closed cavity-double-dot system, nDD ≈ 2, 1, 0. We set the NRG chain length of each lead N = 80, the MPS
bond dimension D = 500, and the leads are assumed to have a constant density of states d0 = 1/(2U ).

Double-dot system; case (1). We first consider the case
where εL = −U/2, and tune the level of the right dot εR ,
see Fig. 2(b). Here, the left dot is singly occupied, while
the right moves from being empty to singly occupied, as
εR decreases, cf. Fig. 1(c). For the double-dot impurity, our
NRG-MPS tomography procedure produces 256 values. The
configuration in the empty right dot region is a fingerprint
for a Kondo singlet formation between the left dot and its
lead, as predicted from standard SWT [3,52], cf. Table I and
Fig. 2(ai). As the right dot becomes more occupied, the value
of the order parameter 〈0, σ |ρDD|0, σ 〉 decreases, whereas
the value of another order parameter

∑
σ 〈σ, σ |ρDD|σ, σ 〉 +

〈σ, σ̄ |ρDD|σ, σ̄ 〉 + 〈σ, σ̄ |ρDD|σ̄ , σ 〉 grows to become domi-
nant and all the other matrix elements are close to zero. The
resulting configuration in this region identifies dot-dot hy-
bridization mediated by the central lead, where ferromagnetic
superexchange coexists with antiferromagnetic RKKY-like
interactions [23,52], cf. Fig. 2(aii). Note that we depict the

TABLE I. Dot-dot density matrix 〈s, s′|ρDD|s′′, s′′′〉 configuration
corresponding to the (i)–(v) effects illustrated in Fig. 2(a), as calcu-
lated by exact diagonalization and SWT [52]. We omit the other 246
density matrix elements, as they are = 0 in (i)–(v).

(i) (ii) (iii) (iv) (v)

1© 〈0, σ |ρDD|0, σ 〉 0.5 0 0 0 0.25
2© 〈σ, 0|ρDD|σ, 0〉 0 0 0 0 0.25
3© 〈σ, σ |ρDD|σ, σ 〉 0 0.25 0 0
4© 〈σ, σ̄ |ρDD|σ, σ̄ 〉 0

⎫⎬
⎭ ∑ = 1 0.25 0.5 0

5© 〈σ, σ̄ |ρDD|σ̄ , σ 〉 0 0 −0.5 0

sum over the contributions of the (anti)ferromagnetic terms
due to the degenerate ground state in the εL<0 case [52]. Such
a crossover was discussed analytically [53] and resembles the
one observed experimentally in the case of a large central dot
[33,54]. Here, we move beyond perturbative approaches and
capture these effects (including the crossover between them)
using a numerically exact method on the full (open) system.
This is the first key result of our work.

Cavity-mediated RKKY; case (2). We consider now the
cavity-double-dot system in the εL = εR = −U/2 regime (we
henceforth consider the two dots with identical energy level
εD ), where both dots are singly occupied. In Fig. 2(c), we tune
the dot-cavity coupling t̃D and plot the tomography values.
As t̃D increases, the term 〈σ, σ̄ |ρDD|σ, σ̄ 〉 increases, while
the term 〈σ, σ |ρDD|σ, σ 〉 decreases toward zero and the term
〈σ, σ̄ |ρDD|σ̄ , σ 〉 appears. The ρDD configuration for small t̃D
is the fingerprint of Kondo singlets forming between each
dot and their respective lead independently, cf. Table I, and
Fig. 2(aiii). As the first two terms gap out and the third term
appears, we observe the fingerprint of a cavity-mediated sin-
glet that forms on the two dots [52], cf. Table I and Fig. 2(aiv).
Crucially, the singlet can be attributed to a “coherent RKKY
interaction”, unlike the standard RKKY mechanism that in-
volves a continuum. Such coherent hybridization engenders
a so-called exchange blockade [34], further distinguishing it
from conventional RKKY behavior.

The formation of two separated Kondo effects opens a gap
that is twice that of the Kondo gap for a single dot system [52]

�2-Kondo =
√

2π |tD |2Ud0 exp

(
ε

D
(ε

D
+ U )

2|tD |2Ud0

)
, (2)
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where d0 is the leads’ density of states. Similarly, the dot-dot
singlet formation opens a gap [52]

�RKKY ≈ 48t̃4
D

/
(U + 2εC )3. (3)

The vertical gray line in Fig. 2(c) marks the critical t̃D value
above which a dot-dot singlet formation is expected, as the
RKKY dominates the Kondo gap �RKKY>�2-Kondo. This
value is in good agreement with the crossover observed with
our NRG-MPS results discussed above. A signature of such
a dot-dot singlet formation was experimentally detected [34],
with a theoretical description that was limited to the closed
system. Here, we predict that the singlet can form in the
realistic many-body setting and win against competing hy-
bridization channels with the leads. It would be interesting to
experimentally tune the cavity level εC in this detuned regime
and observe the appearance of Kondo singlets. This is the
second key result of our work; we numerically resolve the
coherent long-range coupling between distant dots in the open
cavity-double-dot system.

Kondo cat. As shown in Fig. 1(d), the coupling to the cavity
opens a gap in the εD ≈ 0 region and the total occupation of
the double dot system is nDD ≈ 1. We now set the dots’ energy
levels to εL = εR = 0.005U , and tune the dot-cavity coupling
strength t̃D, see Fig. 2(d). The empty-dot term 〈0, 0|ρDD|0, 0〉
decreases toward zero for increasing dot-cavity coupling as
the exchange gap opens and the dots become more occu-
pied. Conversely, the term 〈σ, σ̄ |ρDD|σ, σ̄ 〉 increases as both
dots become singly occupied. In the midst of the parameter
scan, terms with total double-dot occupation close to one
〈0, σ |ρDD|0, σ 〉 and 〈σ, 0|ρDD|σ, 0〉 are dominant.

To better understand this signature, we consider the hy-
bridized orbits regime that appears around εD ≈ 0 and opens
a gap [52]

�orb = 2t̃2
D

/
(εC − εD ), (4)

leading to nDD ≈ 1 for εD−�orb< min(0, 2εD ), when the en-
ergy is lower than the energy of the empty and doubly
occupied states [in Fig. 2(d), this occurs within the vertical
gray lines]. We find that the ground state of the dot-dot system
in the nDD ≈ 1 configuration is spin degenerate and the non-
local magnetic moment on either of the dots is screened by its
respective lead [52]. Thus, the system is in a nonlocal orbital
superposition of two macroscopic states: both describe a filled
dot spin state that is screened by its lead (Kondo singlet) while
the other dot is empty. We dub this configuration a “Kondo
cat”.

Our NRG-MPS tomography results capture such a Kondo
cat formation in the midst of the nDD ≈ 1 regime, see Table I
and Figs. 2(av) and 2(d). We note that the nonzero finger-
prints for the Kondo cat are lower than the expected 0.25
value and the terms 〈σ, σ̄ |ρDD|σ, σ̄ 〉, 〈σ, σ̄ |ρDD|σ̄ , σ 〉 have
a nonvanishing contribution. Thus, the Kondo cat coexists
with the exchange-coupled RKKY considered before. With
contemporary control over both the cavity and the dots levels,
the Kondo cat is within experimental reach and can serve as a
meter for the spin coherence length scales in the system [34].
This is the third key result of our work; we predict an exotic
Kondo effect, where a nonlocal superposition of macroscopic
Kondo effects arises. The Kondo cat formation fundamentally
sets our system apart from standard double-dot systems [33].

FIG. 3. Crossovers between the (2) and (1) limits. NRG-MPS
tomography results of the cavity double-dot system as a func-
tion of the number of cavity energy levels Nlevs, δ = 0.25U/Nlevs.
As in Fig. 2, we highlight the elements with a contribution
|〈s, s′|ρDD|s′′, s′′′〉|>0.1. (a) System (2) with εL = εR = −U/2, t̃D =
0.15U . (b) System (2) with εL = εR = U , t̃D = 0.15U . We use NRG
chain length N = 40 and MPS bond dimension D = 300. (Other
parameters and markers are as in Fig. 2).

Dependence on the central region’s level spacing. We
observed two distinct effects associated with the coherent
dot-dot coupling as mediated by the cavity [case (2)]: the
cavity-mediated RKKY and Kondo cat regimes. We now ex-
amine the crossover between the limiting scenarios (2) and
(1) in these regimes, see Fig. 3. We set equidistant cavity
levels Nlevs = 1, 2, . . ., where the spacing is determined by
δ = 0.25U/Nlevs [55]. In Fig. 3(a), we consider the regime,
where for Nlevs = 1 the cavity-mediated RKKY effect (iv) is
observed. For increasing cavity levels, we observe that the
antiferromagnetic terms go toward zero. Concurrently, the
ferromagnetic terms become more dominant. Therefore, we
observe how the RKKY effect is suppressed by ferromag-
netic superexchange, cf. Table I. Differently from the δ ≈ 0
case, the antiferromagnetic order parameters are negligible.
In Fig. 3(b), we consider the regime, where for Nlevs = 1 the
Kondo cat (v) is observed. For increasing cavity levels, we
observe that the configuration of the Kondo-cat-like param-
eters is rapidly suppressed. Concurrently, the configuration
of the RKKY-like interaction becomes dominant. The Kondo
cat effect is suppressed by the RKKY interaction, cf. Table I.
Notably, the observed crossovers occur at Nlevs<20 for both
regimes, which is significantly lower than in the continuous
limit Nlevs→∞ of system (1).

Conclusion. We find a rich variety of many-body states
within a double-dot system, with a particular focus on the
competition of Kondo with RKKY-like effects and predict an
exotic nonlocal Kondo impurity. We demonstrate the potential
of tomography analysis [41] in understanding and distin-
guishing between the different strongly correlated states. To
accomplish this, we apply and expand the NRG-MPS method-
ology to encompass complex multi-impurity multireservoir
setups. Throughout the work, we employ typical values for
the coupling parameters that enable the experimental explo-
ration of the RKKY regime and detection of the Kondo cat
regimes in the cavity-double-dot setup [34,35]. The coupling
of quantum dots to cavity modes potentially extends to sil-
icon [56] or bilayer graphene [57,58] devices. Future work
will focus on finding transport observables sensitive to the
different many-body ground states. Our findings motivate the
potential application of Kondo-box-like-double-dot systems
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as quantum simulators, quantum information processors, and
in metrology, e.g., when measuring the spin coherence length
in the device [59,60].
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