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Interaction-enhanced many-body localization in a generalized Aubry-André model
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We study the many-body localization (MBL) transition in a generalized Aubry-André model (also known
as the GPD model) introduced by Ganeshan, Pixley, and Das Sarma [Phys. Rev. Lett. 114, 146601 (2015)].
In contrast to MBL in other disordered or quasiperiodic models, the interaction seems to unexpectedly enhance
MBL in the GPD model in some parameter range. To understand this counterintuitive result, we demonstrate that
the highest-energy single-particle band in the GPD model is unstable against weak disorder, which leads to this
surprising MBL phenomenon in the interacting model. We develop a mean-field theory description to understand
the coupling between extended and localized states, which we validate using extensive exact diagonalization and
modified density matrix renormalization group (DMRG-X) numerical results.
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Introduction. Interacting many-body systems should man-
ifest the eigenstate thermalization hypothesis (ETH) with
long-time thermalization [1–3]. ETH, however, seems to
fail generically in one-dimensional (1D) tight-binding mod-
els with random or quasiperiodic disorders, at least for
finite-size systems, although the situation is unclear in the
thermodynamic limit [4–7]. Such a phenomenon is known as
many-body localization (MBL) [8–10]. MBL has been numer-
ically and experimentally verified in numerous 1D disordered
and quasiperiodic systems with moderate interactions, with
the general finding that the disorder strength necessary for
inducing MBL is much larger in the interacting system than
in the corresponding noninteracting system [8–12]. For ex-
ample, the noninteracting 1D Anderson model is localized
for any finite disorder, whereas the corresponding interacting
Anderson model undergoes MBL for large disorder [13]. This
is expected as an interaction tends to thermalize the system
by sharing energy and information among the constituents,
leading to ergodicity as postulated in ETH (all noninteracting
systems are trivially nonergodic, whereas the nonergodicity in
MBL is nontrivially violating ETH). Another example is the
well-known Aubry-André (AA) quasiperiodic model, which
has all states localized or extended for a critical “disorder”
(i.e., quasiperiodic potential strength) larger or smaller than 1
for the noninteracting model [using the convention in Eq. (2)
below], whereas the corresponding interacting model exhibits
MBL for disorder larger than 1.7 [11,12,14,15].
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Nonetheless, an important question is whether exceptions
to the above scenario can be constructed. In the strong
interaction regime, an enhanced localization was observed
numerically and explained by treating all but the interaction
term as perturbation [11,12,16,17]. In this Letter, however, we
only focus on the moderate interaction regime, where such a
perturbation theory does not apply. To address this question,
here we describe and analyze a surprising counterintuitive
situation arising in the Ganeshan–Pixley–Das Sarma (GPD)
model [18], where finite interactions may lead to enhanced
MBL in the sense that MBL occurs “early” with the critical
disorder strength for the MBL in the interacting GPD model
being lower than that in the noninteracting model. This is
unexpected as an interaction is thought to oppose MBL and
not induce it. Since the GPD model has already been studied
experimentally [19], our predictions are directly verifiable in
the laboratory. Note that there have been some earlier works
discussing the role of interaction in MBL in specific instances,
but our Letter is unique in pointing out the generic role of flat
bands and interactions in MBL [20–23]. Our work provides
important insights into the competition between localized
and extended degrees of freedom in interacting many-body
dynamics.

The GPD model. We start with the GPD model, introduced
in Ref. [18],

HGPD =
∑

j

(
tc†

j c j+1 + H.c.
) +

∑

j

Vjn j, (1)

where t is the hopping strength, which is the energy unit in
this work. The on-site potential is

Vj = 2V cos(2πq j + φ)

1 − α cos(2πq j + φ)
, (2)

where q = (3 − √
5)/2 (equivalent to the golden ratio), V

is the potential strength, α ∈ (−1, 1), and φ ∈ (0, 2π ) is a
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FIG. 1. (a) Quasiperiodic potential of the GPD model in an L =
26 system. (b) Fractal dimension of the single-particle GPD model
(U = 0) in an L = 610 system. We take φ = 0, and use the periodic
boundary condition to avoid localized edge states. Here (and in all
the figures), the α of Eq. (2) is −0.8, and the line defining SPME is
given by E = 5(V − 1)/2.

random phase. The quasiperiodic potential is illustrated in
Fig. 1(a).

For α = 0, the GPD model reduces to the AA model, which
carries no single-particle mobility edge (SPME). However,
generic perturbation to the AA model can induce an SPME
[12,24–26], and the GPD model with nonzero α is also known
to carry an exact SPME given by αE = 2(1 − V ) [18]. To
show this, we calculate the fractal dimension of the single-
particle eigenstates in Fig. 1(b) for α = −0.8. The fractal
dimension is defined by � = − limL→∞ ln(

∑
j |ψ j |4)/ ln L,

where ψ j is the wave function, and we take L = 610 in the
numerical calculation of the fractal dimension. Consequently,
we have � → 1 for extended states and � → 0 for localized
states. As shown in Fig. 1(b), the extended and localized states
are separated by the exact SPME, and the system is fully
localized at Vc0 = 2.

An “early” MBL. We now consider the spinless interacting
GPD model at half filling [27–30]. Specifically, the interact-
ing GPD Hamiltonian is given by H = HGPD + U

∑
j n jn j+1,

where U is the interaction strength. Throughout this Letter
we will take φ = 0, α = −0.8, and adopt the open boundary
condition, unless specified otherwise. We use two standard
diagnostics to obtain the MBL phase diagram in this model:
the entanglement entropy (EE) and the mean gap ratio. Here,
we use the von Neumann entropy given by S = −trL[ρL ln ρL]
and ρL = trR|ψ〉〈ψ |, where trL, trR denote the partial trace
over the left and the right half of the system, respectively.
In addition, the mean gap ratio 〈r〉 is defined as the av-
erage value of ri = min{δEi, δEi+1}/ max{δEi, δEi+1}, where
δEi = Ei+1 − Ei is the energy gap between two adjacent
energies. In the thermal phase, the EE of the eigenstate

FIG. 2. (a) and (b) show the entanglement entropy and the mean
gap ratio averaged over the middle quarter of the spectrum for various
V in an L = 18 system. (c) and (d) show the same two quantities
averaged over the middle quarter of the spectrum for U = 1 in
systems of various sizes. The insets show the collapse of data as a
function of (V − Vc )L1/ν , where Vc = 0.789, ν = 1.019 for the EE
and Vc = 0.762, ν = 1.001 for the mean gap ratio. The result is
averaged over 5000, 1000, 200, and 20 random phase realizations
for L = 12, 14, 16, and 18, respectively.

approaches the Page value ST = (L ln 2 − 1)/2 [31] and 〈r〉 =
0.53 for the Gaussian orthogonal ensemble. In the MBL
phase, we have S/ST → 0 and 〈r〉 = 0.38 for the Poisson
distribution.

In Figs. 2(a) and 2(b), we calculate the EE and the mean
gap ratio averaged over the middle quarter of the spectrum
for V = 1.5. In Figs. 2(c) and 2(d), we obtain the same
quantities for U = 1. One prominent feature in these results
is that the system seems to have an “early” MBL transition
as shown in Figs. 2(a) and 2(b). For very weak interactions
(U � 1), the EE is approximately SSlater = Next(2 ln 2 − 1),
where Next is the number of the extended single-particle
eigenstates [32]. However, as the interaction U increases,
the system becomes localized rather than thermalized, as
shown by the drastic decrease of the EE. Further, we find
that the mean gap ratio is always 0.38, suggesting that the
system directly enters the MBL phase from the noninteracting
limit. To further verify this “early” MBL transition, we take
U = 1 and analyze the finite-size effect in Figs. 2(c) and
2(d) by collapsing the data as a function of (V − Vc)L1/ν .
Both of them indicate an MBL transition around Vc ≈ 0.78,
which is much smaller than the full single-particle localization
transition at Vc0 = 2. Furthermore, we find that the critical
exponent ν is about 1, in agreement with those studied in
the other MBL systems [17,33]. We thus see that the MBL
transition in this model happens consistently at a critical disor-
der strength well below the single-particle localization point.
Such a feature is in stark contrast with the MBL transition
found in all other models, where MBL happens at a critical
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FIG. 3. (a) The fractal dimension of all eigenstates in a single-
particle GPD model under the perturbation of Eq. (3). The black
dashed line represents the putative MBL transition point Vc = 0.78.
(b) The wave function of one Wannier function and its fitting. (c) The
localization length of the localized eigenstates and the Wannier func-
tions. Here, we take φ = 0 and L = 610.

disorder substantially larger than that for the noninteracting
case [8–13].

Fragile flat bands. To explain this surprising “early” MBL
transition, we take a closer look at the single-particle prop-
erties of the GPD model. From Fig. 1, we see that for V ∈
(0.85, 2), most eigenstates in the model are already local-
ized, and only the highest-energy band remains extended.
Moreover, we find numerically that this flat band contains
approximately qL states, so nearly 40% of the states are
extended for V ∈ (0.85, 2). Moreover, compared to other
bands, the width of this extended band is very small. It turns
out that this extended band is very fragile against external
perturbations, which distinguishes the GPD model from some
other extensively studied models, such as the AA model [32].

We demonstrate this feature by adding to the single-particle
GPD model an additional weak random disorder,

δV = V
∑

j

δh jn j, (3)

where δh j is uniformly distributed in [−1/10, 1/10]. We find
that, as a result of the above perturbation, the highest-energy
band in the GPD model becomes completely localized for
V > 0.85, as shown in Fig. 3(a). Intuitively, this observation
can be understood by noticing that the width of the flat band
w is much smaller than the band gap 
 between this flat
band and the other states, making this flat band susceptible
to perturbations. In particular, as long as the disorder satisfies
w � δV � 
, first-order perturbation theory leads to the fol-
lowing effective Hamiltonian, Heff = PδV P, where P is the
projection operator of the flat band. Therefore, the system
tends to localize the flat-band states in the presence of any
disorder, as shown in Fig. 3(b). These localized eigenstates

constitute a localized basis of the flat band, so they can be
regarded as the Wannier functions for this flat band. Keep
in mind, however, that there is no standard definition of a
Wannier function in a quasiperiodic system. Consequently,
the shape of the Wannier functions is highly dependent
on the perturbation we select. Nonetheless, the localization
centers of any two Wannier functions are separated by at
least two lattice sites, regardless of the choice of perturba-
tion [32]. To quantify the extent of localization, we extract
the localization length ξ of the Wannier functions by fitting
the wave function to ψ j ∝ exp(−| j − j0|/ξ ), as shown in
Fig. 3(b). Our results in Fig. 3(c) show that all the Wannier
functions are deeply localized states with ξ ∼ 1. Hence, the
single-particle GPD model with α = −0.8 resembles a deeply
localized system disguised by weak tunneling that can be
destroyed by the disorder. In fact, the fragile flat band is
only prominent for large α (i.e., |α| close to 1) and small q,
and therefore our discussion below is strictly carried out in
this limit.

A mean-field description of interaction-enhanced MBL.
The early MBL transition suggests that the extended or-
bitals in the flat band, amounting to 40% of all the orbitals,
are localized by the other localized single-particle states.
Based on our discovery of the fragile flatband in the GPD
model, an intuitive argument for the early MBL transition is
that quantum fluctuations coming from the localized orbitals
serve as the additional disorder and localize the extended
flat band as the interaction is turned on. This heuristic view-
point can be theoretically formulated by a mean-field (MF)
theory. The MF theory is essentially a set of nonlinear self-
consistent equations, and the physics can be explained by
the MF theory if the solution of the self-consistent equa-
tions agrees with the numerically calculated many-body
eigenstates.

Let us construct a complete and deep-localized basis uti-
lizing the Wannier functions together with the other localized
orbitals. Each lattice site can be associated with a unique basis
orbital localized on this site. Under this basis, the model of
Eq. (1) can be rewritten as

H (new)
GPD =

∑

j

ε j ñ j +
∑

i �= j

Ui j ñiñ j

︸ ︷︷ ︸
dominant

+
∑

i, j∈flat
i �= j

ti j f †
i f j +

′∑

i jkl

Ui jkl f †
i f †

j fk fl

︸ ︷︷ ︸
perturbative

, (4)

where f j annihilates the basis orbital localized on site j, and
ñ j = f †

j f j is the particle number of the orbital j. In addition,
j ∈ flat denotes the Wannier functions of the flat band, and∑′

i jkl denotes that three of the four indices i jkl are different.
The first term in Eq. (4) is the energy of the orbital, and the
second is the diagonal part of the interaction in this basis,
serving as the additional disorder. These two terms contribute
the dominant part of the Hamiltonian. The third term comes
from the weak tunneling between the Wannier functions, and
we estimate that ti j ∼ w/2 ∼ O(10−1). Finally, the last term
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is the off-diagonal part of the interaction, and thus

Ui jkl ∼ U exp[−(max{i, j, k, l} − min{i, j, k, l})/ξ ]

� U exp(−2/ξ ) ∼ O(10−1).
(5)

Hence, the last two off-diagonal terms are perturbative, sug-
gesting that the MF theory should work well. Although we
choose a specific basis in this argument, the self-consistent
equations are basis independent, and so are the MF solutions.
Our numerical results below show that the precision of the MF
solution is much better than O(10−1). The above argument
also applies to MBL in other models, and we specifically show
for the AA model [32].

Accuracy of the MF solution. We now demonstrate nu-
merically the accuracy of the MF theory. We fix V = 1.5,
which is smaller than the single-particle localization transi-
tion point. The standard MF theory targets low-temperature
physics, and thus we need to calculate the ground state of the
self-consistent equations HMF(|ψ〉)|ψ〉 = E |ψ〉, where |ψ〉
is a Slater determinant, E is the energy, and HMF(|ψ〉) is
given by

HMF(|ψ〉) = t
∑

j

(
c†

j c j+1 + H.c.
) +

∑

j

Vjn j

+ U
∑

j

(〈ψ |n j−1|ψ〉 + 〈ψ |n j+1|ψ〉)n j

− U
∑

j

(〈ψ |c†
j c j+1|ψ〉c†

j+1c j + H.c.
)
. (6)

Here, we omit the constant in the MF Hamiltonian. How-
ever, to analyze the “early” MBL transition, we must obtain
the highly excited solution of the self-consistent equations,
which is notoriously difficult in generic models. To derive
the highly excited states, we can start from the product state
of the localized orbitals, replace the nonlinear terms, and
maximize the overlap between the next state and the current
state, a procedure resembling the modified density matrix
renormalization group (DMRG-X) algorithm [34,35]. If the
iteration converges, we then generate an MF state from the
initial Fock state. We elaborate on this procedure and provide
an improved algorithm in the Supplemental Material [32].
We emphasize that despite the similarity between DMRG-X
and our modified MF theory, these two algorithms focus on
very different aspects. First, although DMRG-X is expected to
provide a more quantitatively accurate approximation, the MF
theory provides a more intuitive understanding of the physics
behind the numerical results. Second, the MF theory is much
faster numerically than the DMRG-X algorithm. Finally, the
MF theory can actually provide more accurate initial states for
the DMRG-X algorithm.

To illustrate the power of our MF theory, we first study a
particular MF solution, the MF Néel state |Z2〉 generated by
the Néel-like Fock state f †

0 f †
2 f †

4 · · · |0〉. In Fig. 4, we compute
the fidelity of the MF Néel state F (t ) = |〈Z2|Z2(t )〉| in an
L = 18 system using exact diagonalization (ED) and L = 26
system using the kernel polynomial method (KPM) [36]. The
fidelity in both systems remains surprisingly high (>0.997)
and does not decay after 1000 tunneling times. This implies
that the MF Néel state is fairly close to one of the many-
body eigenstates. To compare the MF Néel state with the

FIG. 4. (a) and (b) show the fidelity F (t ) = |〈ψ |ψ (t )〉| of the MF
Néel state in an L = 18 (using ED) and an L = 26 system (using
KPM), respectively. (c) and (d) show the expectation of the particle
number in the MF Néel states and their corresponding eigenstates
derived by ED or DMRG-X. The system size is L = 18 in (c) and
L = 26 in (d). For the DMRG-X algorithm, the energy uncertainty
is 〈H2〉 − 〈H〉2 = 2.9 × 10−9. Here, we take φ = 0, V = 1.5, and
U = 1.

eigenstates, we use ED to obtain all eigenstates in the L = 18
system and choose the eigenstate with the highest overlap
(=0.9994) with the MF solution. As shown in Fig. 4, the
density profile of the exact eigenstate and that of the MF Néel
state are almost indistinguishable. For the L = 26 system,
we utilize the DMRG-X algorithm with the MF Néel state
being the initial state to generate the eigenstate. The DMRG-X
algorithm gives us a rather accurate result with the energy un-
certainty of 〈H2〉 − 〈H〉2 = 2.9 × 10−9. Similar to the result
in the smaller system, one can barely differentiate the MF
and the DMRG-X results. We also check that the overlap be-
tween the DMRG-X and the MF results is |〈ψMF|ψDMRG-X〉| =
0.9992. Note that in general, the density profile in the L = 18
chain is quite similar to that in the L = 26 chain, which shows
that the system is deep in the MBL phase. To analyze the
finite-size effect, we further validate that the agreement is still
excellent up to L = 68 [32].

MF theory for generic states. To further validate the MF
theory, we now investigate the agreement between generic
eigenstates and their corresponding MF solutions. Given that
we are focusing on the MBL regime, it is more appropri-
ate to characterize the quality of the approximation using
local quantities, such as particle density, rather than global
quantities, such as the overlap. Particularly, we plot f (δn),
the probability density of δn in Fig. 5 with normalization∫

f (δ)dδn = 1. This quantity is defined as the absolute value
of the particle number difference on a random site between
a random eigenstate and its corresponding MF state. To ef-
ficiently obtain the corresponding MF solutions of a given
eigenstate, we use the one-body reduced density matrix of
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FIG. 5. The probability density f (δn) of δn in the GPD model
and the inset shows the data in the semilog scale. For L = 14, 16, and
18, we consider all the sites and all the eigenstates obtained by ED.
For L = 26, we consider all the sites and use DMRG-X to generate
2000 random eigenstates. Here, we take φ = 0, V = 1.5, and U = 1.

the eigenstate 〈E |c†
i c j |E〉 as the initial state for the iteration

of the self-consistent equations. We find in Fig. 5 that δn is

highly concentrated around zero. What is more, the statistics
of the quantity manifest almost no finite-size effects, which
can be seen by comparison with the ED results in the smaller
systems and the DMRG-X results in the larger system. Hence,
the numerical results verify that the MF theory is a gen-
eral explanation for the “early” MBL transition in the GPD
model.

Conclusion. In this Letter, we studied a surprising
interaction-enhanced MBL, which is a special feature of
the GPD model. This phenomenon is explained by an
MF theory construction, which is validated by comparison
with numerical results obtained by ED and DMRG-X al-
gorithms. Given the recent experimental implementation of
the GPD model [19], our predictions can be experimentally
verified.
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