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Topological superfluid responses of superconducting Dirac semimetals
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We demonstrate that topological constraints do not only dictate the geometric part of the superfluid stiffness,
but can also govern the total superfluid stiffness. By introducing a general adiabatic approach for superfluid
responses, we showcase such a possibility by proving that the stiffness of a superconducting Dirac cone in two
dimensions (2D) is proportional to its topological charge. By relying on the emergent Lorentz invariance of Dirac
electrons, we unify the superfluid stiffness and quantum capacitance in these systems. Based on this connection,
we further predict a topological origin for the quantum capacitance of a Josephson junction where 2D massless
Dirac electrons are sandwiched between two conventional superconductors. We show that the topological
responses persist upon effecting strain, are resilient against weak disorder, and can be experimentally controlled
via a Zeeman field. Remarkably, the nonuniversal topological quantization of the two superfluid responses, yet
implies the universal topological quantization of the admittance modulus of the superconducting Dirac system
in units of conductance. The quantum admittance effect arises when embedding the superconducting Dirac
system in an ac electrical circuit with a frequency tuned at the absorption edge. These findings are in principle
experimentally observable in graphene-superconductor hybrids.
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The exploration of the interplay between topology and
quantum geometry through superfluid responses of time-
reversal invariant superconductors (SCs) [1] is currently in
the spotlight [2–7]. Such a pursuit got substantially boosted
after experiments in magic angle twisted bilayer graphene
(MATBG) provided evidences for a nonvanishing superfluid
stiffness despite the almost flat energy dispersion which
governs transport [8,9]. This quite unusual result was sub-
sequently understood in terms of lower bounds set by
topological invariants dictating the MATBG band structure
[10–15]. These bounds impose constraints on the so-called ge-
ometric contribution to the stiffness, which becomes relevant
when superconductivity is harbored by flat bands. However,
no topological constraints have been so far predicted for the
total superfluid stiffness. The potential discovery of systems
whose total stiffness is equal or proportional to a topological
invariant promises to deepen our understanding of topological
platforms and set the stage for novel applications.

In this Letter, we show that topological constraints
dictate the total superfluid stiffness of superconducting
Dirac semimetals (SDSs). Notably, a quantized total super-
fluid stiffness has already been theoretically predicted for
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superconducting graphene [16–19], which constitutes a pro-
totypical SDS in its Dirac regime [20]. However, the
quantization itself, along with its topological origin and
resulting implications have not yet been discussed. After
Refs. [16–19], the superfluid stiffness of a superconducting
Dirac cone (Dcone) reads at charge neutrality as

Dcone = �/π, (1)

and becomes quantized in units of � � 0, which is the in-
trinsic or proximity-induced conventional pairing gap felt by
graphene [21–27]. In the above, we set the reduced Planck
constant h̄ and the electric charge unit e to unity.

This quantization is rather puzzling as it cannot be ex-
plained by topological bounds of the type predicted for
MATBG since, here, the dispersions are strongly non flat,
and Dcone receives equal contributions from both interband
(geometric) and intraband (conventional) parts [4].

In this work, we resolve this conundrum by proving that
πDcone/� is a topological invariant. This result is a con-
sequence of nontrivial topology for a single Dirac cone in
the presence of a phase which twists its mass, similar to
the Jackiw-Rossi model [28]. As we further explain in our
companion work [29], the quantization is also a manifestation
of one-dimensional chiral anomaly [30,31]. These properties,
along with the arising Lorentz invariance, also render the
quantum capacitance cQ of a Josephson junction sandwiching
a Dirac cone topological and equal to

cQ,cone = Dcone/υ
2
D, (2)

where υD is the group velocity of the Dirac dispersion.
Both effects enjoy topological robustness as long as the

chiral symmetry of the Dirac Hamiltonian is preserved. To
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FIG. 1. Hybrids of strained graphene and superconductors
(SCs). Each graphene Dirac cone leads to a quantized super-
fluid stiffness D = −Jx/(∂xφ/2) = �/π and quantum capacitance
cQ = ρ/(∂tφ/2) = �/πυ2

D. A graphene cone sees a pairing gap
� and Fermi velocity υD. The quantized Dirac contributions can
be disentangled by tuning strain, a Zeeman energy B, and/or the
classical capacitance of the junction cC�.

back this claim, we show that Eqs. (1) and (2) persist upon
adding nonuniform strain which leads to an energy spec-
trum that consists of relativistic pseudo-Landau levels (pLLs)
[32–39]. We show that for the pLL flat bands, D and cQ
are purely of a geometric origin, and are solely carried by
the zeroth pseudo-Landau levels (0pLLs). Hence, we reveal
that the topological quantization dictating the total superfluid
stiffness of the SDS, further imposes the quantization for the
geometric part of the stiffness when the Dirac bands flatten
due to strain.

We propose to experimentally detect these SDS effects in
superconducting (un)strained graphene hybrids, such as the
ones shown in Fig. 1. The quantized contribution of the Dirac
electrons can be disentangled by applying a magnetic field
which couples to graphene electrons only through a Zeeman
energy scale B. The Zeeman energy sets the occupancy of the
energy levels of the SC. Hence, by manipulating its strength
|B|, one is in a position to controllably add or subtract the
contribution of the Dirac part of the band structure. Most
importantly, we bring forward that, at charge neutrality, the
smoking gun signature of the topological effects predicted
here is the observation of the universal topological quantiza-
tion of the admittance modulus Ymod of the SDS, when it is
embedded in an ac electrical circuit. Specifically, when the ac
frequency ω is tuned at the absorption edge 2�, Ymod equals
the number of Dirac cones in units of conductance.

We commence our analysis by unifying the superfluid
stiffness tensor elements Di j and the Josephson quantum ca-
pacitance (JQC) cQ in SDSs. The former quantities define the
coefficients which link the charge current J(r) to the spatially
dependent gauge invariant vector potential A(r) + ∇φ(r)/2,
where A(r) denotes the electromagnetic vector potential and
φ(r) is the superconducting phase. Therefore, we have the
defining relation:

Ji(r) = −Di j[Aj (r) + ∂ jφ(r)/2], (3)

where i, j = x, y for a two-dimensional system. The JQC
can be defined in an analogous fashion, through the excess
charge density ρc(t ) induced in a Josephson junction due to
the presence of the gauge invariant voltage V (t ) − ∂tφ(t )/2.
For a two-terminal Josephson junction as in Fig. 1(b),
V (t ) and φ(t ) define the voltage and phase biases imposed
across the junction. Therefore, we define cQ as the response

coefficient which satisfies the relation:

ρc(t ) = −cQ[V (t ) − ∂tφ(t )/2]. (4)

The apparent similarities between Eqs. (3) and (4) im-
ply that the charge and current responses can be unified
by here introducing the relativistic three-current given as
Jμ = Dμν (Aν − ∂νφ/2) with μ, ν = 0, 1, 2, metric tensor
diag{1,−1,−1}, and D00 = −cQ. Hence, the superfluid stiff-
ness and the JQC are proportional in systems with an
emergent Lorentz invariance. As a result, for superconduct-
ing massless Dirac electrons with a “speed of light” υD,
Lorentz invariance leads to the constraint Dxx,yy = υ2

DcQ,
which indeed holds for Eq. (2). Having settled the connection
between D and cQ in SDSs, we now proceed by examining
how nontrivial topology further imposes their nonuniversal
quantization.

Our starting point is the Hamiltonian for a generic two-
dimensional time-reversal invariant SC:

Ĥ (p) = ĥ(p)τ3 + �τ1, (5)

where τ1,2,3 denote Pauli matrices which are defined in Nambu
space. The latter is spanned by electrons with spin up and
momentum p, and, their time-reversed hole partners with spin
down and momentum −p. From Eqs. (3) and (4) we infer
that Dμν can be identified with the coefficients relating the
uniform curent Jμ induced by a nonzero spatiotemporally uni-
form phase gradient ∂μφ. In particular, to obtain expressions
for the superfluid stiffness tensor elements Di j , we consider
small deviations of the superconducting phase away from the
value φ = 0, i.e., φ(r) ≈ (∂xφ)x + (∂yφ)y, with ∂x,yφ being
constants. Subsequently, we phase twist the pairing term ac-
cording to �τ1 �→ �τ1e−iφ(r)τ3 and determine the spatially
uniform current component Ji within linear response to the
phase gradient ∂ jφ. In the same spirit, D00 is found using
linear response theory to a linearlyvarying time-dependent
phase of the form φ(t ) ≈ (∂tφ)t .

By adopting this alternative approach, in Ref. [29] we show
that Dμν can be expressed as suitable response coefficients of
the respective adiabatic Hamiltonian:

Ĥ(p, φ) = ĥ(p)τ3 + �τ1e−iφτ3 , (6)

where the superconducting phase φ is now viewed as an
additional synthetic momentum. Using the above adiabatic
Hamiltonian, Ref. [29] provides concrete expressions for the
elements Dμν . Specifically, for Di j we find [29]:

Di j = 2
∫

dP Tr[υ̂i(p)1τ F̂p jφ (ε, p, φ)], (7)

where “Tr” denotes trace over all internal degrees of free-
dom. For compactness, we employed the shorthand notation∫

dP ≡ ∫
BZ

d p
(2π )2

∫ +∞
−∞

dε
2π

, with ε ∈ (−∞,+∞) correspond-
ing to the frequency in imaginary time. The momenta are
generally defined in a two-dimensional Brillouin zone (BZ),
since the SC is considered to be a crystalline material. When
evaluating the superfluid stiffness carried by a Dirac cone, we
replace the BZ by R2 [29].

In Eq. (7), we also introduced the group velocity υ̂(p) =
∂pĥ(p) of the normal phase Hamiltonian ĥ(p), along with the
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adiabatic matrix Green function:

Ĝ−1(ε, p, φ) = iε + B − Ĥ(p, φ). (8)

We note once again that the Zeeman energy B sets the
Bogoliubov-Fermi level. The last ingredient of the adiabatic
approach is the matrix Berry curvature function:

F̂p jφ = 1/2(∂εĜ−1)Ĝ(∂φĜ−1)Ĝ(∂p j Ĝ−1)Ĝ − ∂φ ↔ ∂p j , (9)

where we suppressed the arguments of the Green functions for
notational convenience. In spite of the fact that our adiabatic
approach is fully equivalent to the standard method of eval-
uating the superfluid stiffness, it is unique in uncovering the
possible underlying topological properties of the system, since
it is already expressed in the terms of a curvature function in
a synthetic space [29].

We now proceed by recovering the result of Ref. [16]
shown in Eq. (1), and proving that πDcone/� is a topological
invariant. At charge neutrality, the chemical potential μ is
set to be zero and the normal phase Hamiltonian for a given
graphene valley λ = ±1 reads as [20]

ĥλ(p) = υD(pxσ1 + λpyσ2), (10)

where σ1,2,3 denote Pauli matrices acting in the sublattice
space spanned by the two interpenetrating triangular lattices
of graphene [20]. Note that, for graphene, electrons couple
to holes of different valleys [40]. Nonetheless, by a suitable
choice of basis, each valley of graphene is described by a
Hamiltonian of the form shown in Eq. (5).

The adiabatic Hamiltonian obtained for the λ = +1 valley
of the graphene model in Eq. (10) takes the form

Ĥcone(p, φ) = υD(pxσ1 + pyσ2)τ3 + �1σ τ1e−iφτ3 . (11)

Notably, the operator �̂ = σ3τ3 establishes a chiral sym-
metry {Ĥcone(p, φ), �̂} = 0̂. Its presence guarantees that there
exists a basis in which �̂ = 1σ τ3 and the adiabatic Hamilto-
nian becomes block-off diagonal according to Ĥcone(p, φ) =
Â(p, φ)τ+ + Â†(p, φ)τ− [41]. Here, we introduced the off-
diagonal matrices τ± = (τ1 ± iτ2)/2, along with the upper
off-diagonal Hamiltonian block:

Â(p, φ) = (−υD px,−υD py,� cos φ) · σ + i� sin φ1σ .

(12)

The topological properties of the adiabatic Hamiltonian
are encoded in the topological invariant w3 ∈ Z [41]. This
coincides with the winding number of Â(p, φ). We now write
w3 = ∫ 2π

0 dφ w3(φ)/2π , where we defined the winding num-
ber densities w3(φ) = ∫

d p w3(p, φ)/2π and

w3(p, φ) = tr[(Â∂px Â
−1) (Â∂py Â

−1) (Â∂φÂ−1)]. (13)

Notably, in the case of Dirac systems, w3(p, φ) and w3(φ)
are independent of φ. Consequently, besides w3, also w3(φ)
is quantized. In particular, for a phase twist of 2π we have
w3(φ) = w3. The behaviors of w3(p, φ) and w3(φ) become
relevant here since, for B = 0, we find [29]:

Dcone = −
∫

d p
(2π )2

E (p) w3(p, φ), (14)

where E (p) =
√

(υD p)2 + �2 and we made use of the fact
that Dxx,yy = Dcone and Dxy,yx = 0.

The above result highlights that the outcome for the super-
fluid stiffness is determined by the topological properties of
the adiabatic Dirac Hamiltonian. In fact, we are now in a po-
sition to prove that πDcone/� is a topological invariant itself.
For this purpose, we note that for the evaluation of w3(p, φ)
we can linearize Â with respect to φ according to Â(p, φ) 	
g(p) · σ + i�φ1σ . Here, we defined the vector g(p) = ( −
υD px,−υD py,�), where |g(p)| = E (p). Under these assump-
tions, we find

Dcone

�/π
=

∫
d p
4π i

E (p)tr
{
Â−1

0 (p)[∂px Â0(p)]
[
∂py Â

−1
0 (p)

]}
,

(15)

where we took into account that φ can be set to zero after ∂φ

is carried out. In the above, we introduced Â0(p) ≡ Â(p, φ =
0) = g(p) · σ which is a hermitian matrix with Â−1

0 (p) =
Â0(p)/|g(p)|2. The antisymmetry of the integrand under the
exchange px ↔ py further allows us to obtain the expression

Dcone

�/π
= 2

∫
d p
4π

ĝ(p) · [∂px ĝ(p) × ∂py ĝ(p)], (16)

with the unit vector ĝ(p) = g(p)/|g(p)|. When the momentum
space is compact, the above integral yields an integer, that co-
incides with the first Chern number of the negative eigenstate
of Â0(p). However, due to the Dirac nature of the adiabatic
Hamiltonian, the integral yields 1/2 [42]. Hence, the quanti-
zation of the superfluid stiffness directly probes the presence
of a Weyl point at the origin of the synthetic coordinate space
(px, py,�), since it is exactly there where Â0(p) and |g(p)|
become zero.

The origin of the nontrivial topology can be traced back to
the properties of the Hamiltonian in the absence of a phase
bias: Ĥcone(p) = υD(pxσ1 + pyσ2)τ3 + �1σ τ1. This Hamilto-
nian features two chiral symmetries effected by the operators
�̂ = σ3τ3 and �̂′ = τ2, which lead to a unitary symmetry
with the generating operator Ô = σ3τ1. Employing the unitary
transformation (�̂ + τ1)/

√
2 block diagonalizes the unitary

symmetry operator according to Ôτ = τ1σ and the Hamil-
tonian into the blocks Ĥτ (p) = τg(p) · σ. Since the occupied
bands of the two massive Dirac Hamiltonians yield opposite
fractional first Chern numbers with values τ/2, we conclude
that the superfluid stiffness is proportional to the difference of
these two first Chern numbers. The latter can be viewed as a
fractional “spin” [43] or dipole [29] first Chern number.

It is important to examine the robustness of the quantized
value of the superfluid stiffness against external perturbations.
We first investigate situations which preserve chiral symmetry,
as for instance the introduction of disorder in the pairing
gap and the application of strain. The impact of weak and
uncorrelated spatial disorder in the pairing gap is analyzed
in our Supplemental Material [44] within the first-order Born
approximation [45]. We find that the quantization persists, but
in the disordered case � is replaced by its spatially averaged
value.

We now consider the presence of strain which varies
linearly in space. This scenario is particularly interesting,
since the low-energy description of strained graphene solely
consists of pLLs which possess a perfectly flat dispersion,
therefore allowing us to make connections with topological
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constraints associated with quantum geometry. We adopt a
strain profile which conserves the py momentum and yields
the Hamiltonian [20,34,38,44]:

ĥB
λ (py) = ωB

[
�B√

2
p̂xσ1 + 1√

2�B

(
x + λpy�

2
B
)
σ2

]
, (17)

where ωB = √
2υD/�B. Here, �B denotes the pseudomagnetic

length. Each valley supports a single 0pLL which, for the
given choice of strain profile, is an eigenstate of σ3 with
eigenvalue −1. The remaining spectrum of ĥB

λ (py) consists
of two families of non-zero-energy pLLs, with eigenenergies
εσ,n(py) = σεn(py) = σωB

√
n for n � 1. Each pLL sees a

degeneracy per area which is equal to 1/2π�2
B for a single

valley and a single spin projection [20].
Since the energy dispersions are flat, it is more convenient

to deduce the contribution of each pLL to the stiffness using
the standard expression for the interband part Dinter [5]. In the
following we restrict to the λ = +1 valley and denote the cor-
responding pLL eigenvectors as |uα (py)〉, where α = (σ, n)
compactly labels the two quantum numbers. As we show in
Ref. [44], Dinter can be expressed as a sum of contributions
defined per level α:

Dα
inter = �

π

∫
d py

W
〈∂py uα (py)|M̂α (py)|∂py uα (py)〉Pα (py),

(18)

where W is the width of the sample. Here, Eα (py) =√
ε2
α (py) + �2, while Pα (py) = �[Eα (py) − |B|] controls the

occupation of each level, where � is the Heaviside step func-
tion. The operator M̂α (py) is defined as follows:

M̂α (py) = 2�

Eα (py)

ĥB
λ=+1(py) − εα (py)

ĥB
λ=+1(py) + εα (py)

. (19)

Equation (18) holds as long as ĥB
λ (py) + εα (q) for all pLLs,

which is exactly the case here as we explain in Ref. [44].
By employing Eq. (18) at charge neutrality and B =

0, we confirm that now only the 0pLLs contribute to
the stiffness, which is still given by Eq. (1). However,
the stiffness is now purely geometric. To show this, we
use that M̂0pLL(py) = 2(1̂ − |u0pLL(py)〉〈u0pLL(py)|). This al-
lows us to express the stiffness in terms of the quantum
metric of the 0pLL, i.e., g0pLL(py) = 〈∂py u0pLL(py)|(1̂ −
|u0pLL(py)〉〈u0pLL(py)|)|∂py u0pLL(py)〉 = �2

B/2. The result of
Eq. (1) is recovered by evaluating the integral

∫
d py/W by

accounting for the degeneracy of the pLLs.
The arising robustness of the superfluid stiffness for weak

strains is indeed expected as long as the Dirac points in (p, φ)
space of the adiabatic Hamiltonian persist. This holds when
the pLL degeneracy is much smaller than unity, since then,
the Dirac point is not removed but only “moves” in synthetic
space. As a matter of fact, our adiabatic approach is still valid
for weak strains and we can re-evaluate Eq. (14) for py �→
py + λx/�2

B and x �→ φ/∂xφ. We find that corrections to
Eq. (1) become negligible as long as ωB � � and �B is suffi-
ciently smaller than the sample’s width W for a strip geometry.

So far we have focused on an ideal (un)strained Dirac
cone. However, in realistic experiments the nonconical part
in graphene’s band structure also contributes and spoils the

universal behavior. Nonetheless, it is still possible to isolate
the quantized part by introducing an inplane Zeeman field,
which can selectively modify the occupation of the various
states. In Fig. 2 we present numerical results for the superfluid
stiffness of strained armchair graphene nanoribbons (GNRs)
at charge neutrality and varying B. Notably, when B crosses
the energy bands, the arising Bogoliubov-Fermi points lead to
an additional contribution to the intraband part of the super-
fluid stiffness, with the latter being obtained using the formula
[44]:

Dintra = −�

π

∫
d py

W

∑
α

�[∂pyεα (py)]2

2Eα (py)

d

dEα (py)

Pα (py)

Eα (py)
.

(20)

The results of Fig. 2 verify that fields |B| > � enable
the experimental detection of the quantized contribution of
the 0pLLs. In Fig. 2(d) we confirm the quantized jump
of the total stiffness across |B| = �, where any deviation from
the expected quantization is only due to numerical finite-size
effects. Our analysis reveals that, armchair GNRs are better
-suited for observing the quantized jump compared to zigzag
GNRs. This is because zigzag GNRs harbor additional edge
flat bands which appear even without strain [20] and spoil the
quantization [44].

Another aspect that remains to be addressed concerns the
impact of detuning away from charge neutrality due to a
nonzero chemical potential μ which leads to ε

μ �=0
0pLL(py) = −μ

and εμ �=0
σ,n (py) = σωB

√
n − μ for n � 1 and σ = ±1. Now, all

pLLs contribute to the stiffness. Specifically, the contribution
of the 0pLLs now becomes

Dμ �=0
λ,0pLL = �

π

1√
1 + (μ/�)2

1

1 − (
μ

ωB/2

)2 . (21)

Besides a renormalized �, an additional factor emerges
which diverges for |μ| = ωB/2. Thus, the stiffness can be
strongly enhanced by tuning the system to this resonance. In
fact, such resonances appear for all pLLs [44].

After investigating the superfluid stiffness, we now evalu-
ate the quantum capacitance [46–51] for a Josephson junction
fabricated by contacting an ideal strained monolayer graphene
hybrid [52–60] to a conventional SC, as shown in Fig. 1(b).
Using the model in Eq. (17) for strained graphene, we find
that the two-valley JQC at charge neutrality and B = 0 takes
the exact form [44]:

cB=μ=0
Q = 2 · �

πυ2
D

{(
�

2ωB

)
ζ [3/2, (�/ωB )2] −

(
ωB
2�

)2
}

(22)

with the Hurwitz zeta function ζ . Thus, at charge neu-
trality, weak strains ωB � � yield cQ → 2 · �/(πυ2

D) ≡
c0. This result marks the topological regime and is in
accordance with the value set by the emergent Lorentz
invariance. In contrast, for ωB � � only the 0pLLs con-
tribute with cQ/c0 → (ωB/2�)2 � 1. For � = 0.2 meV and
υD = 106 m/s, we find c0 	 5 nF/cm2. Therefore, tailoring
the classical capacitance of the junction cC�, so that cC� �
cQ, in principle, enables the detection of the underlying
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FIG. 2. (a) Schematic illustration of the model adopted for an armchair graphene nanoribbon (GNR). We consider nonuniform strain which
renders the x component of the pseudo-vector potential nonzero and increasing with increasing y, as indicated by the thickness of the green
and purple lines. (b) Electronic band structure of (a) as a function of the conserved wave number kx . First, we numerically obtain the spectrum
for an armchair graphene GNR of width W = 601 × √

3a0, where a0 is the carbon-carbon distance, and ωB 	 0.045. Subsequently, we add
a conventional superconducting gap � = 0.02. pLLs emerge in the interval −W/2�2

B � kx � +W/2�2
B of the first Brillouin zone where a0 is

set to unity for convenience. (c) and (d) show numerical results for the interband and total superfluid stiffness components as functions of an
inplane Zeeman field B for the same values discussed in (b). The dashed vertical red lines indicate the energies for the pLLs in the presence of
the nonzero �. From(c) we verify that Dinter ≈ 2�

π
for B = 0. Across B/� = 1, the total superfluid stiffness drops by approximately 2�/π as

shown in (d). All energies are expressed in units of t , i.e., the nearest-neighbor hopping in the absence of strain. Finally, for the numerics we
have replaced the delta function entering in Eq. (20) by a Lorentzian with width � = 0.001.

properties of the Dirac points. This may be possible by observ-
ing Coulomb-blockade-induced charging effects, which can
be controlled by means of strain [44] and Zeeman field [29]
engineering.

We conclude by discussing broader implications of the
topological quantization of D and cQ demonstrated here. First
of all, the invariance of the two response coefficients for
weak strains implies that flat band SCs which are dictated by
a solely geometric quantized stiffness, can be adiabatically
mapped to SDSs and the arising quantization linked to the
quantum metric can be understood via topological constraints
on the total SDS superfluid stiffness. Even more, based on the
observation that moiré twisting can be effectively viewed as
the application of strain [61], we infer that the nonstandard
topological properties proposed here for strained SDSs can be
also applicable to their moiré-twisted counterparts.

In this spirit, we expect that the geometric superfluid stiff-
ness of MATBG [10–15] can be possibly attributed to the
topological superfluid stiffness of untwisted bilayer graphene.
Although we leave the verification of the above conjecture for
a future work [62], we here stress that such a scenario is in-
deed plausible because the total superfluid stiffness of a num-
ber of s uncoupled graphene layers, or more general of a num-
ber of s uncoupled Dirac cones, satisfies the quantization law
D(s) = |s|Dcone [29]. Therefore, the here-proposed connection
between Dirac cones and flat band systems opens the door to
predicting and linking distinct quantum materials and devices
which yet share the same topological superfluid responses.

Aside from the above concept, the nonuniversal topological
quantization for D(s) further implies the universal quantization

of the admittance modulus Ymod of the SDS for ω = 2�, i.e.,
at the absorption edge. This relies on the fact that for 0 <ω �
2� and at zero temperature, a fully gapped nondisordered SC
behaves as a perfect inductor with Ymod = D/ω [63]. Thus, in
our case we find

Y (s)
mod(μ = 0, 0 <ω � 2�) = |s|e2

h

2�

h̄ω
, (23)

where the quantum of conductance e2/h appeared after restor-
ing e and h̄. From the above, we confirm that a quantum
admittance effect (QAE) emerges for h̄ω = 2�.

Currently, however, it is challenging to experimentally
observe the above QAE in graphene-SC hybrids, since the
chemical potential can be only reduced down to ∼1 meV [64].
This sets existing platforms in the antipodal regime |μ| � �,
thus, raising the question of how does the stiffness and the
admittance behave in this limit. Re-evaluating the stiffness for
μ �= 0 yields that a higher-order Dirac cone with vorticity s
carries a stiffness D(s)(|μ| � �) ≈ |s||μ|/2π [44]. In fact, for
such a higher-order SDS, the stiffness is proportional to |s| for
all μ [29]. Since a gate potential Vg modifies μ according to
μ + Vg, we propose to experimentally measure dD(s)/dVg ≈
|s|/2π which, while it is not a topological invariant, it is still
approximately universally quantized.
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