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Electronic bonding transitions in oxide glass above two megabar pressures
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Inelastic x-ray scattering (IXS) of B2O3 glass up to ∼2.2 Mbar reveals electronic bonding transitions in oxide
glasses. B K-edge IXS identifies the high-energy feature above ∼1.4 Mbar and a gradual increase in its intensity
toward ∼2.2 Mbar, indicating the formation of hypervalent boron via electron polarization to oxygen atoms. The
pressure-driven high energy shifts in O K-edge IXS indicate pronounced electronic dispersion that increases upon
densification of amorphous oxides above ∼2 Mbar. The extent of the energy shifts and enhanced polarization
correlate with increasing atomic radius of cation in oxide glass, establishing the role of cation radius in electronic
structures of amorphous oxides under compression. The results elucidate the electronic mechanisms behind
the delayed structural transformation in low-Z oxide glasses, where transitions to highly coordinated cations
are hindered well above 1 Mbar, providing the origin of incompressibility of low-Z amorphous oxide under
multi-Mbar compression.

DOI: 10.1103/PhysRevResearch.6.L022051

Compounds consisting of elements with low atomic num-
bers (i.e., low-Z elements; B, C, etc.) exhibit diverse electronic
bonding natures, from the weakest interactions for molecular
solids to the strongest covalent bonds for diamonds. Extreme
compression of low-Z compounds at several Mbar (i.e., >100
GPa) modifies the atomic and electronic structures, inducing
transitions in electronic bonds around low-Z element that are
known to be rigid [1,2]. The electronic structures [e.g., elec-
tronic density of states (DOS)] at high pressure account for the
pressure-driven changes in superionicity or superconductivity
[3–5]. Bonding transitions in low-Z oxides at multi-Mbar
provide insights into the behavior of light elements in oxide
melts, governing the transport properties and isotopic frac-
tionations in super-Earth’s interiors [6–8].

Particularly, boron has three valence electrons (2s2 2p1),
displaying complex electronic bonding configurations [9–11].
B2O3 is the most stable oxide of boron with a tendency to
form amorphous states. B2O3 glass (a-B2O3) comprises key
constituents of technologically important glass-forming liq-
uids. At 1 atm, a-B2O3 consists of the BO3 units, which form
the superstructural boroxol rings [12–14]. a-B2O3 undergoes
coordination transformation from [3]B to [4]B above ∼5 GPa,
forming amorphous networks with sp3 hybridization above
∼20 GPa [15–19]. [4]B prevails up to 1.2 Mbar, currently
the highest pressure achieved for a-B2O3 from experimental
studies [20]. The absence of the [5]B formation above Mbar
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pressures distinguishes the a-B2O3 from other high-Z oxide
glasses, such as SiO2, GeO2, and TeO2, where the formation
of [5,6]Si, [5,6,7]Ge, and [6]Te governs the glass densification
well below 1 Mbar [21–28]. Such delayed coordination trans-
formations in low-Z glasses beyond 1 Mbar remain a puzzle.

Theoretical calculations predicted the post-[4]B forma-
tion in crystalline and amorphous B2O3 toward multi-Mbar
[29–33] [see SM1 in the Supplemental Material (SM) [34]].
Formation of hypervalent environments (i.e., [5,6]B) may gov-
ern the glass densification at multi-Mbar [48–51]. Electronic
structures of a-B2O3 beyond Mbar could provide insight into
how light-element-bearing compounds modify the bonding
natures to afford the structural densification [1,52], unveiling
the origin of the delayed transitions in glasses. Despite the
fundamental importance, probing of atomic and electronic
structures for low-Z amorphous materials at multi-Mbar re-
mains a challenge, due to experimental difficulties in the
elastic x-ray scattering with small atomic scattering factors
and/or in the x-ray spectroscopic probes with limited penetra-
tion depth of soft x rays (see SM2 [34] for the experimental
challenges in probing the structure a-B2O3 and SM3 for the
demonstration of the limitations in Raman spectroscopy of
a-B2O3 above ∼1 Mbar). Inelastic x-ray scattering (IXS) can
uncover the electronic structures of low-Z elements above
megabar pressures [16,41,53–58] (see SM4). Whereas B K-
edge IXS has been the only successful probe in identifying
pressure-induced increases in boron coordination numbers
(CNB) for borate glasses above ∼50 GPa [16,20,59–61], pres-
sure conditions have been limited to 1.2 Mbar. In this study,
IXS with focused x rays and postcollimation optics [62] al-
lows us to reveal the electronic structures of a-B2O3 at 2.2
Mbar, further expanding the capability of IXS above 200 GPa.
The current results doubled the accessible pressure ranges
of electronic structures around B in low-Z oxides, offering
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FIG. 1. (a) B K-edge IXS spectra for a-B2O3 up to ∼220 GPa. The IXS spectra with black lines are from earlier studies [16,20]. (b) B
K-edge IXS spectra and (c) difference IXS spectra for a-B2O3 above ∼100 GPa. The difference spectra were calculated by subtracting the
IXS spectrum at high pressure relative to 100 GPa. Inset shows the increase in the relative intensities of high-energy features. (d) Calculated
l-resolved B PDOS for boron sites in B2O3 polymorphs. Crystal structures and boron environments are shown.

prospects for the explorations of electronic origins of high-Tc

superconductors, metallization of insulators, or formation of
electrides above Mbar conditions.

The in situ IXS spectra for a-B2O3 were collected at the
16-ID-D beamline of the Advanced Photon Source. The di-
amonds with culet diameters of 90–100 µm were used for
pressure generation. The Raman signal of culet was used to
estimate pressure conditions [63]. The monochromatic x rays
were produced by Si(111) double crystals. IXS signals were
collected with a polycapillary postsample collimator at the
scattering angle of 25° [62], and analyzed with a spherical
Si(555) crystal operating at 9.9067 keV. The IXS signals
were collected by varying energy losses (see SM5 for exper-
imental details). Ab initio calculations of the partial DOS for
B2O3 crystals [32] were performed on the WIEN2K [64]. The
Perdew-Burke-Ernzerhof functional was adopted for the ex-
change correlation [65]. The core-hole effects were addressed
by the final state approximation [36,66] (see SM6 for compu-
tational details).

The B K-edge IXS spectra for a-B2O3 reveal the evolution
of boron environments toward 2.2 Mbar [Fig. 1(a)]. At 1 atm,
the IXS spectrum shows two features at ∼194 and ∼203 eV,
corresponding to the excitation of B 1s electrons to π* and
σ* antibonding orbitals of [3]B, respectively [16,67,68]. While
the descriptions of IXS spectra and densification mechanisms
below ∼1.2 Mbar are available [16,20], briefly, the feature
at ∼198 eV emerges upon compression, corresponding to
[4]B [67,68]. With a further compression toward ∼1.2 Mbar,
pressure-induced shifts of the main feature indicate the B-O
bond length (dB−O) reduction of ∼0.05–0.08 Å [20]. Except
for the shifts, no significant change in spectral shapes was ob-
served, indicating the dominance of [4]B up to 119.4 GPa [20].
Extended stability of [4]B is contrast to other glass-forming

oxides (e.g., SiO2) with dramatic coordination transforma-
tions below Mbar [22–24].

Above 120 GPa, IXS spectra reveal the emergence of a
spectral feature around ∼200–204 eV. The feature remains
prominent up to 220 GPa, and its intensity gradually builds
up with increasing pressures [Figs. 1(b) and 1(c)]. The B
K-edge spectrum broadens upon compression, partly because
of a dispersion of electronic states above 1.4 Mbar. The
spectral changes for B2O3 glass above ∼1.4 Mbar are rather
gradual and continuous; the IXS patterns suggest the grad-
ual structural modification around the boron, such as CNB

and/or dB−O, which is characteristic to the densification of
amorphous oxides under compression. Earlier theoretical sim-
ulations predicted the [5]B formation above ∼140 GPa [29,33]
(SM1). The high-energy features at ∼200–204 eV may, thus,
arise from an increase in the [5]B fraction; other structural
densifications, such as changes in the atomic configurations
beyond the nearest neighbors can also affect the B K-edge
features.

The B partial DOS (PDOS) for crystalline B2O3 up to
179 GPa was calculated to explore the origin of electronic
transitions in a-B2O3 above ∼1.4 Mbar [Fig. 1(d); see SM7
for the structure of B2O3 polymorphs]. Calculated results for
B2O3-I to B2O3-III reproduce the PDOS characteristic to [3]B
and [4]B. Above 133 and 179 GPa, the B2O3 crystals transform
into B2O3-IV and B2O3-V phases with [4]B and [6]B (with
relative fractions of 3:1 and 1:1) [32]. The results for [4]B
reveal a major feature at ∼6 eV [blue arrows, Fig. 1(d)] with a
shoulder at higher energy, due to a broadening of the p states
around [4]B. Electronic repulsions due to dB−O reduction for
[4]B (i.e., from ∼1.44 Å at 46 GPa to ∼1.37 Å at 179 GPa) and
close packing of BOX polyhedra account for the pronounced
delocalization of the p states. The spectral features for [6]B at
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∼7 eV [red arrows, Fig. 1(d)] get rather sharp, indicating that
an electronic dispersion is less prominent due to an elongation
of dB−O (e.g., ∼1.39 Å and ∼1.56 Å at 133 GPa for [4]B
and [6]B, respectively). Notably, calculated B PDOS for B2O3

reveals a negligible contribution from d states, in contrast to
SiO2 at high pressures [25,35]. Formation of six B-O bonds
in B2O3 crystals at Mbar violates the conventional octet rule,
making [6]B the hypervalent species [50]. One way to address
the hypervalent [6]B is the polarization of B-O bonds toward
ionic, to alleviate the coordination constraints from the octet
rule. Alternatively, multicenter bonds (i.e., electrons are de-
localized over multiple atoms) facilitate the formation of [6]B
[1,2]; note that both models make use of electron transfer from
boron to oxygen to describe the polarization (see O PDOS
below for further discussion). This could result in a relatively
narrow B PDOS patterns for [6]B in crystalline borates. The s
states also exhibit the distinct patterns for [4,6]B (SM8).

B K-edge IXS features for a-B2O3 above 140 GPa
[Figs. 1(a) and 1(c)] revealed the formation of high-energy
feature at ∼201 eV, with gradual increases in the relative
intensities to ∼15% at 2.2 Mbar [inset in Fig. 1(c)]. While
the B K-edge IXS may not fully constrain the fraction of
[5]B (SM9), earlier theoretical simulations showed the [5]B
formation above ∼1.4 Mbar with [5]B fraction of ∼10–25%
at ∼2 Mbar (SM1 and Fig. S1) [29–31,33]. The overall sim-
ilarities in the pressure ranges and relative intensities of the
high-energy feature may indicate that this feature can be at-
tributed to [5]B. Furthermore, the calculated B PDOS (i.e., p
states) for B2O3 crystals showed the features at slightly higher
energies for [6]B, suggesting that high-energy IXS features
could originate from an increase in CNB. The increase in
the intensity of high-energy feature [Fig. 1(c)] toward ∼2.2
Mbar, thus, suggests the increase in the fraction of highly
coordinated B by the partial transformation of [4]B to [5]B.
Note that B2O3 crystals undergo post-[4]B phase transforma-
tions at 1.33 Mbar (with average CNB of ∼4.5 above 133
GPa and ∼5.0 above 179 GPa) [32]. The caution needs to
be taken to infer the coordination environments of amorphous
oxides from their crystalline counterparts, because crystalline
B2O3 bypasses the formation of [5]B [31]. Nevertheless, to-
gether with inputs from the earlier computational studies
[29,33], the observed spectral patterns support the [5]B for-
mation in a-B2O3 above ∼1.4 Mbar. The broadening of B
K-edge features above ∼2 Mbar, therefore, indicates the elec-
tronic delocalization around the compressed [5]B. Note that
the collective structural evolutions in borate networks (e.g.,
topological contraction involving the formation of pressure-
driven dense atomic configurations both in short-range scale
and beyond the nearest neighbors [20,35], accompanied by
the [5]B formation) should contribute to the spectral patterns
above ∼1.4 Mbar (see SM9 for the uncertainties in the struc-
tural interpretation of IXS patterns) and, thus, further studies
are necessary to precisely constrain the atomic and electronic
structures of [5]B in a-B2O3. Finally, narrow B PDOS patterns
for [6]B [Fig. 1(d)] have been attributed to the polarization of
electrons towards the oxygens and relaxation of on-site elec-
tronic repulsions (SM9); however, further theoretical studies
are essential to establish the correlation of valence elec-
tron distributions and/or structural rearrangements with PDOS
patterns.

Oxide densification involves the compact packing of oxy-
gen, associated with an increase in the oxygen coordination
number (CNO) and a reduction in the O-O distances (dO−O)
[25]. The evolutions of oxygen environments upon the phase
transformations of B2O3 crystals [Fig. 2(a), SM7] are man-
ifested in the O PDOS [Fig. 2(b)]. The O PDOS of B2O3-I
exhibits the sharp π* feature at ∼6 eV and broad σ* feature
at ∼14 eV, characteristic to [3]B −[2] O −[3] B. The O PDOS
patterns of B2O3-II, with an oxygen tricluster ([3]O1) and
a bridging oxygen ([2]O2), show substantially distinct elec-
tronic structures; the π* feature vanishes in both [2]O and
[3]O, indicating the removal of planar [3]B and formation of
[4]B. The σ* feature, observed around ∼14 eV for B2O3-I,
shifts toward ∼10 eV for B2O3-II. In B2O3-III, PDOS features
exhibit substantial broadening, corresponding to a reduction
in the B-[2]O-B angle and dO−O. Note that O PDOS shows the
contributions from both B-O bonds and nonbonding electrons
(i.e., lone-pair electrons) (SM10), where the annihilation of
lone-pair electrons accounts for the transformation of [3]B to
[4]B [69,70]. The B2O3-IV phase consists of four [3]O sites
with corner- and edge-sharing morphologies of [4]B and [6]B.
For B2O3-V, an increase in the [6]B fraction leads to the for-
mation of oxygen quadclusters ([4]O) with an average CNO of
∼3.33. The PDOS patterns for B2O3-IV and -V phases show
a broad distribution of electronic states, indicating the disper-
sion of electrons under elevated pressures. The formation of
[6]B further reduces dO−O by decreasing the O-B-O angles,
enhancing the spatial proximities and interactions among the
oxygens [35,71].

The O PDOS for the crystalline B2O3 reveals a control
of local oxygen environments [O-B bond lengths (dO−B),
dO−O, and CNO] on the bonding natures [Figs. 2(c) and
2(d)]. The spectral average (Ec; energy loss at the spec-
tral center of gravity, see [35,36] for further details on the
spectral quantifications and physical meaning of the Ec,
and also see [20,25,26,37] for the spectral quantification of
the experimental IXS features) was used to quantify the
overall variation in the O PDOS of diverse crystalline and
amorphous oxides [25,26,35]. Figure 2(c) shows that Ec de-
creases with increasing dO−B for each oxygen environment,
whereas the correlation does not hold when all coordina-
tion environments are taken into consideration. Figure 2(d)
shows that Ec decreases with increasing dO−O, consistent
with our earlier studies on diverse oxides (e.g., SiO2, GeO2)
[25,26,35,37].

The O K-edge IXS reveals the pressure-induced evolution
of oxygen environments in a-B2O3 [Fig. 3(a)]. The IXS spec-
trum at 1 atm shows π* and σ* features at 536 and 545
eV, respectively, corresponding to [3]B −[2]O −[3]B [Fig. 3(b)]
[16]. The K-edge feature gradually transforms into the broad
σ* peak at 543 eV above ∼22.5 GPa, forming [3]O [16,20].
At ∼101.6 GPa, the IXS spectrum shifts to ∼545 eV with a
noticeable broadening of the K-edge feature, increasing the
spectral intensity at ∼547 eV [red vertical zone in Fig. 3(a)]
[16,20]. Above ∼140 GPa, O K-edge IXS spectra show a fur-
ther increase in the spectral intensity above ∼550 eV [around
∼555 eV; blue vertical zone in Fig. 3(a)]. The increase in the
dispersion of PDOS for a-B2O3 above ∼140 GPa arises from
electron transfer from [5]B to oxygens, which may increase the
effective charges of oxygen and electronic interactions among
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FIG. 2. (a) Local oxygen environments in B2O3 polymorphs at high pressure. (b) Calculated l-resolved O PDOS for each oxygen crystalline
morphology. The Ec for B2O3 crystals with varying (c) dB−O and (d) dO−O. Blue, red, and black triangles show Ec for [2]O, [3]O, and [4]O,
respectively.

oxygens to broaden the O K-edge IXS features. Such pressure-
driven broadening also indicates an increase in B-O-B bond
angle variations and dO−O distributions, which is prevalent
in oxide glasses at high pressure [20,25,72–77]. Based on
the correlation between Ec and dO−O [Fig. 2(d)], the ob-
served shifts in Ec up to 220 GPa indicate the dO−O reduction
of ∼0.6–0.7 Å.

The Ec for crystalline oxides shows a linear correlation
with dO−O [Fig. 4(a)], consistent with earlier reports for SiO2

and GeO2 at high pressure [25,26,35–37]: Ec = −11.1 ×
dO−O + 569.48. While correlations may vary with composi-
tion and types of oxides (e.g., Ec = −12.9 × dO−O + 574.9
for SiO2 [35] and Ec = −9.6 × dO−O + 565.5 for GeO2 [26]),
a current linear trend could be useful to predict the pressure-
induced changes in dO−O for diverse oxide crystals well above
2 Mbar (R2 = 0.95). Figure 4(b) shows that Ec for amorphous
oxides shifts toward the higher energies upon compression,
due to the dO−O reduction at high pressures (SM11). At 1
atm, Ec ranges from ∼537.4 eV for GeO2 to ∼542.4 eV
for B2O3, due to the ∼0.45 Å shorter average dO−O for
B2O3, consistent with earlier experimental results (i.e., dO−O

of ∼2.40 Å and ∼2.83 Å for B2O3 [78] and GeO2 [79],

respectively). Figure 4(c) shows pressure-driven shifts in Ec

(�Ec = Ec,P − Ec,1 atm) of oxide glasses at high pressure. At
a given pressure, �Ec for a-B2O3 are smaller than others,
indicating the less efficient dO−O reduction for a-B2O3 at high
pressure (SM11); the �Ec for a-B2O3 at ∼1.5 Mbar is ∼4.7
eV (�dO−O of ∼0.42 Å), while the �Ec for GeO2 is ∼5.6 eV
(�dO−O of ∼0.51 Å) at ∼1.5 Mbar. Notably, �Ec for oxide
glass at given pressure condition increases with increasing
atomic radii of cations (i.e., ∼0.85 Å, ∼1.10 Å, ∼1.25 Å
for B, Si, Ge at 1 atm, respectively). The results show the
pivotal role of atomic radius of a cation on the spectral PDOS
patterns and densification of oxides above multi-Mbar. The
absence of d states in the a-B2O3 further hinders the structural
rearrangements upon densification, because the d states in
SiO2, GeO2, and TeO2 glasses can promote the more sub-
stantial pressure-induced changes in dO−O by forming highly
coordinated [5,6]Si, [5,6,7]Ge, and [6]Te via sp3 d2 hybridization
[28,80]. Such electronic contributions to the structural hin-
drance may account for the increase in the pressure conditions
to the coordination transformation in low-Z oxide glass [20].

Bonding transitions in a-B2O3 under extreme pressures
indicate the prevalence of highly coordinated B in melts in
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FIG. 3. (a) O K-edge IXS spectra for a-B2O3 up to ∼220 GPa. The IXS spectra below ∼100 GPa were reported in our earlier studies
[16,20]. Red and blue vertical zones highlight the increase in the spectral intensity at ∼547 eV and ∼555 eV above ∼100 GPa and ∼140
GPa, respectively. (b) O K-edge IXS spectra for crystalline and a-B2O3 at high pressure. The spectra for B2O3 polymorphs were calculated by
averaging the O PDOS of oxygen sites in crystals.

planetary interior under multi-Mbar pressure [6,7,81,82]. The
chemical behavior of boron (i.e., isotope fractionation) in
melts has been a proxy to the recycling of subducting slabs
and magmatism in Earth [83,84]. Enrichment of 10B in melts
arises from the preferential incorporation of 10B into [4]B,
where an increase in the [4]B fraction at high pressure reduces

the 11B/10B ratios of magma at depth [85,86]. Prevalence of
[4]B up to ∼1.2 Mbar suggests the 10B enrichment in Earth’s
lower mantle melts [20]. The formation of [5,6]B at multi-Mbar
further promotes the tendency to enrich 10B for oxide melts,
making the isotope signals of super-Earth’s mantle melts to be
largely different from those of Earth’s.

FIG. 4. (a) Ec for crystalline oxides with varying dO−O. (b) Ec and (c) shifts in the Ec (�Ec) for amorphous oxides with increasing pressures.
The Ec for B2O3, SiO2, GeO2, and MgSiO3 are shown with red, blue, green, and black symbols. The Ec values for SiO2, GeO2, and MgSiO3

crystals and glasses are retrieved from our earlier studies [20,26,35–37].
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Finally, the electronic structures of oxides are essential
to unveil the origin of glass densification. Current study
reports the first electronic DOS of oxide glass above ∼2
Mbar. Whereas the prevalence of [4]B in a-B2O3 up to
∼1.2 Mbar remains a puzzle, the B K-edge IXS above
∼1.4 Mbar demonstrates the evolution of boron PDOS upon
the formation of hypervalent B, where electron transfer from
boron to oxygen may account for the formation of highly
coordinated B. O PDOS reveals the dispersion of electronic
state in both crystalline and a-B2O3 above ∼1.4 Mbar. The
electron transfer and an increase in effective charge around
oxygen accompanied by the hypervalent B can account for
the observed electronic dispersion. This enhanced polariza-
tion is expected to be a common feature for other low-Z
(e.g., second-row elements) glasses or crystals under extreme
pressure, elucidating the mechanisms behind delayed transfor-
mation and densification paths under multi-Mbar conditions.
The O K-edge IXS spectra for a-B2O3 further corroborate
the effect of dO−O on Ec above 2 Mbar. The �Ec for oxide
glasses increases with increasing atomic radius of cations; the
�Ec for a-B2O3, low-Z oxides, is smaller than other oxides.
The DOS-based densification model opens a window to pre-
dict the transition path in various condensed matters under
pressure. As a low-Z material under compression is much
less compressible, the systematic �Ec differences in diverse

oxide glasses account for why low-Z glass exhibits greater
incompressibility compared to high-Z glass. Our IXS study
exceeds the highest pressure conditions for glasses using elas-
tic x ray. Considering several orders of magnitude weaker IXS
signal than elastic x-ray signal, current progress constitutes
major experimental advancements. IXS gains widespread use
in upgraded and newly constructed synchrotron sources. The
IXS results with the electronic DOS up to ∼2.2 Mbar, thus,
sheds light on extensive pursuits of novel electronic behaviors
of materials under multi-Mbar compression.
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