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Deep neural networks are widely used prediction algorithms whose performance often improves as the number
of weights increases, leading to over-parametrization. We consider a two-layered neural network whose first layer
is frozen while the last layer is trainable, known as the random feature model. We study over-parametrization in
the context of a student-teacher framework by deriving a set of differential equations for the learning dynamics.
For any finite ratio of hidden layer size and input dimension, the student cannot generalize perfectly, and we
compute the non-zero asymptotic generalization error. Only when the student’s hidden layer size is exponentially
larger than the input dimension, an approach to perfect generalization is possible.
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Deep neural networks are very versatile, with applications
extending beyond typical areas like image classification and
speech recognition into the domain of physics [1–5]. A capti-
vating observation is that the performance of these networks
often improves with an increasing number of weights. This
results in networks with many free parameters, which notably
surpass the available training data, thus unveiling intriguing
properties [6–10]. When weights are initialized independently
with zero mean and variance inversely proportional to the net-
work width, the output in the infinite width limit is described
by a Gaussian process, primarily defined by its covariance
matrix [11–15].

The ultrawide limit, where the network size tends towards
infinity, has emerged as a suitable starting point to study
the intricacies of weight dynamics during training and their
implication on the prediction performance. If the network
output is scaled by the inverse square root of its width, then
for training with gradient flow the network is in the neu-
ral tangent kernel (NTK) limit [16,17], known colloquially
as the “lazy training” regime. A generalized NTK descrip-
tion is possible for training with noisy stochastic gradient
descent with weight decay [18,19]. In the NTK limit, the
weights remain close to their initial values throughout the
learning, rendering weight dynamics akin to a linearized net-
work [20–22]. This phenomenon offers a promising avenue
for the exploration of generalization capabilities and con-
vergence characteristics of highly over-parametrized neural
networks.

This Letter aims to analytically describe the behavior of
strongly lazy two-layer neural networks. Here, we keep the
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first layer weights constant, effectively mimicking their lazy
nature, while focusing on training the weights from the hid-
den layer to the output. Such an architecture is known as
random feature model [23]. Using statistical mechanics, we
study the learning dynamics of highly over-parametrized ran-
dom feature models, endowed with large hidden and input
layers. Training occurs via one-pass stochastic gradient de-
scent, which defines the system dynamics. We contextualize
over-parametrization through the student-teacher framework,
where the student learns from the teacher’s outputs [24]. In
this framework, the number of student hidden nodes, denoted
as K , surpasses the number of teacher hidden nodes, M.
Given the many degrees of freedom in these networks, sta-
tistical mechanics becomes essential in deriving macroscopic
observables from the interplay of network weights [25–29].
Historically, this approach has proven fruitful across diverse
network architectures [19,30–42].

Earlier studies have highlighted that the random feature
model struggles to accurately predict the output of a rectified
linear unit (ReLU) perceptron unless the hidden layer size K
grows exponentially with the input dimension N [43]. Here,
we report similar behavior for an error function activation
through direct calculations of the asymptotic generalization
error as a function of K/N . In Ref. [44], the generalization
error for random feature models was analyzed in detail, re-
lating it to the projection of the target function onto the
span of kernel eigenfunctions, which remains unexplored in
the context of a finite K/N ratio. In this work, we present
an explicit formula that shows how the generalization error
depends on K/N specifically for error function and ReLU ac-
tivation. Importantly, we establish that the student’s learning
behavior is mainly determined by its initial weight configura-
tions, achieving optimal performance only when the random
features perfectly match the teacher’s features. Other perti-
nent research indicates that when K scales linearly with N ,
the student is restricted to learning solely a linear approx-
imation of the teacher [45,46]. Such findings emphasize a
discernible performance disparity between the random feature
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model and fully trained over-parametrized neural networks.
Furthermore, we present a framework using ordinary differ-
ential equations to track the learning path of the student under
infinitely large input and hidden layers, employing either a
ReLU or error activation function. Our analysis reveals that
the generalization error as a function of the number of training
examples saturates at a certain plateau value as long as K/N
remains finite. We determine the dependence of these plateaus
on K/N for different activation functions, eliminating the need
for error bounds.

For our setup, the student and teacher are presented in-
put samples ξμ ∈ RN once and in a sequential order, where
each component is generated by the normal distribution ξ

μ
i ∈

N (0, 1) with μ ∈ {1, ..., p}. The student has K hidden neu-
rons and the connection between the input layer with the
ith hidden node is expressed in terms of the student vectors
Ji ∈ RN . The outputs of the hidden nodes are modulated by
a continuous activation function g. The overall output of the
network is a linear combination of the outputs of the hidden
units

σ (J, ξ) =
K∑

i=1

cig(xi ), (1)

with xi = Ji ·ξ√
N

and ci being the hidden-to-output weights.

Note that the rescaling factor 1√
N

guarantees preactivations of
O(1). The teacher has M hidden neurons characterized by the
teacher vectors Bn ∈ RN and provides the output ζ (B, ξ) =

1√
M

∑M
n=1 g(yn) with yn = Bn·ξ√

N
. However, as shown in the

Supplemental Material [47], it turns out that increasing the
teacher size M does not influence the learning process since
scaling of the teacher output with 1/

√
M leads to consistent

statistical characteristics of the generalization error. We there-
fore consider a teacher perceptron with M = 1.

We choose the student and teacher vectors from the uni-
form distribution over the N sphere and initialize the output
weights of the student by the normal distribution with ci ∈
N (0, 1

K ). In order to express the similarity of the student and
teacher vectors, we introduce the correlation matrices Rin =
Ji ·Bn

N , Qi j = Ji·J j

N , and set Bn·Bm
N = δnm. For the case K < N ,

one refers to these parameters as order parameters and makes
the transition from a microscopic to a macroscopic description
of the system. However, in our setup such an interpretation
is no longer true as we are mainly interested in the relation
K > N . In this case, the number of potential order parameters
is of order O(K2) and surpasses the number of degrees of
freedom in the system, which is of order O(KN ). This con-
tradicts the purpose of order parameters, which is to reduce
the system’s complexity.

The performance of the student with respect to the teacher
is measured by the loss function ε = 1

2 [ζ − σ ]2 known as the
mean-squared error. As the distribution of the input patterns
is accessible, we can take the expectation value of the loss
function and define the generalization error εg = 〈ε(ci, ξ)〉ξ
depending on the correlation matrices (cf. Supplemental
Material). This makes it possible to analyze the typical error
of the student evaluated on unseen test data. During the learn-
ing process, we update the student weights ci via stochastic
gradient descent after each representation of a specific input

example

cμ+1
i − cμ

i = − η

K
∇ciε

(
cμ

i , ξμ
)
, (2)

with η denoting the learning rate which controls the step size
in the weight space, and μ being a discrete time index for
the input pattern in step μ. Commonly, one would rescale
the learning rate by 1

N in order to study the dynamics of
the learning process [28,32,33,48]. Since in our case the first
layer is fixed and the K output weights are trained, we scale
the learning rate by 1

K in Eq. (2) in order to guarantee small
fluctuations for a large hidden layer size [49]. In the ultrawide
limit, the parameters N , K , and p all tend to infinity, but with
a finite ratio p

K = α. We then find a Langevin equation for the
student weights

dc
dα

= −η∇εg + η√
K

γ , (3)

where γ is a random vector with 〈γ〉 = 0, 〈γi(α)γ j (α′)〉 =

i jδ(α − α′) and covariance matrix � = 〈(∇ε − ∇εg)(∇ε −
∇εg)T 〉. In order to make further assertions about the large-K
limit, on the right-hand side of Eq. (3), we need to take a
closer look at the variance of the trajectory. As the system
size increases, one can replace the above stochastic Langevin
equation by its mean trajectory leading to a deterministic dif-
ferential equation if the fluctuations get negligible [50]. As a
measure for the fluctuations, we consider the relative variance
of the stochastic trajectory and find for its scaling〈(

dc
dα

)2〉 − 〈
dc
dα

〉2
〈

dc
dα

〉2 ∝ N

K
, (4)

directly related to the fluctuations of the loss function as
shown in the Supplemental Material. Thus, for small ratios
N
K , the relative variance of the loss function becomes small
and we approximate the stochastic Langevin equation with its
mean. In statistical mechanics, such a scaling relation for the
variance of a system’s property is known as a self-averaging
character. A rigorous treatment for the relationship between
the Langevin equation and the stochastic gradient descent can
be found in Ref. [49].

However, from Fig. 1 one sees that the generalization er-
ror is self-averaging already for K/N = O(1). This can be
explained by the fact that εg is a weighted sum over terms
that individually fluctuate, due to their dependency on ci, Qi j ,
and Ri. The self-averaging nature of the generalization error
is due to the scaling of its variance with the inverse system
size, combined with a non-zero expectation value as shown
in the Supplemental Material. Hence, we obtain for the mean
evolution of weights〈

dc
dα

〉
= −η[Q̃c − R̃], (5)

with Q̃i j = 〈g(xi )g(x j )〉ξ and R̃i = 〈g(xi )g(y)〉ξ depending on
the choice of the activation function. Thus, we obtain a set
of deterministic differential equations by Eq. (5) characteriz-
ing the dynamical behavior of the learning process valid for
arbitrary ratios K

N . The fixed point of Eq. (5) determines the

asymptotic solution for the weights c∗ = Q̃
−1

R̃, and allows
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FIG. 1. Generalization error as a function of α for an error
function activation g(x) = erf ( x√

2
) (top) and ReLU activation (bot-

tom) for N = 100. The numerical solutions of the differential
equations (solid lines) fit well to the simulations. We use for the sim-
ulations ηsimulation = 0.1

K (dashed lines) corresponding to the rescaling
of the learning rate in Eq. (2), and for the solutions of the differential
equations given by Eq. (5) η = 0.1. For both methods, we set the
same values for R, Q and use the same initial values of c0 ∈ N (0, 1

K ).

obtaining the generalization error as

ε∗
g = 〈ζ (B, ξ)2〉ξ

2
− 1

2
R̃

T
Q̃

−1
R̃ . (6)

As one can show, the asymptotic solution corresponds to the
minimal generalization error, implying that the error will be
minimized after a long training period. Figure 1 compares the
generalization error of the random feature model for simula-
tions according to the update rule given by Eq. (2) with the
solutions of Eq. (5). We find excellent agreement between the
two.

In order to analyze how the asymptotic generalization error
depends on the student size K , we consider a finite hidden-
to-input layer size ratio K = βN with β ∈ (1,∞). In the
ultrawide limit, we can linearize Q̃ and R̃ to first order in
Ri and Qi j since large overlaps are small for a finite β. This
assumption is based on the curse of dimensionality where we
consider K random N-dimensional student vectors leading to
small overlaps of O(1/

√
N ). Furthermore, the generalization

error depends on the distribution of the student and teacher
vectors and we therefore analyze the dynamics of the typical

asymptotic generalization by taking the expectation value of
Eq. (6) in this linearized regime.

First, we use an error function activation g(x) = erf ( x√
2

)

and discuss the asymptotic generalization error ε∗
erf = 1

2π
( π

3 −
RT S−1R) in the linearized regime, where Sii = π

3 and Si j =
Qi j . Thus, we take the expectation value of Eq. (6) in the
linearized regime and obtain for its random part

〈RT S−1R〉J,B = 1

N

K∑
i

〈
λi

π
3 − 1 + λi

〉
λ

, (7)

with λi as the ith eigenvalue of Q. Thereby, we have exploited
〈BaBb〉 = δab. Since J is a K × N random matrix whose en-
tries have zero mean and bounded variance, the eigenvalues of
the correlation matrix for N → ∞ are distributed according to
the Marčenko-Pastur distribution [51]. For ratios K

N > 1, the
Marčenko-Pastur distribution consists of two parts: the first
K − N eigenvalues are zero and just N eigenvalues contribute
to the sum in Eq. (7). After evaluating the expectation value
over the eigenvalue distribution for the remaining sum, we
obtain

lim
K,N→∞
N
K =const.

1

N

K∑
i

〈
λi

π
3 − 1 + λi

〉

= 1

2

⎡
⎣K

N
+ π

3
−

√(
π − 3

3
+

(
K

N
+ 1

))2

− 4K

N

⎤
⎦. (8)

For large ratios, we find that lim K
N →∞〈RT S−1R〉 = 1 leading

to a limiting value of the asymptotic generalization error
in the linearized regime lim N

K →0 limK,N→∞〈ε∗
gerf

〉 = 1
2π

( π
3 −

1) ≈ 0.007512.
Second, we evaluate the asymptotic generalization error

Eq. (6) for the ReLU activation function in the linearized
regime and obtain ε∗

ReLU = 1
4 − 1

2 R̂
T

Q̂
−1

R̂ with Q̂ii = 1
2 ,

Q̂i j = Qi j

4 + 1
2π

and R̂i = 1
4 Ri + 1

2π
. Similar to the case of the

error function, we take the expectation value of its random
part

〈R̂T
Q̂

−1
R̂〉 = 1

16
〈RT Q̂

−1
R〉

+ 1

8π
[〈RT T 〉 + 〈T T R〉]

+ 1

4π2

∑
i j

(Q̂
−1

)i j, (9)

where T T is a vector containing the sum of the columns of
Q̂

−1
, i.e. Ti = ∑

j (Q̂
−1

)i j . In the Supplemental Material, we
use estimates for large systems and find

lim
K,N→∞
N
K =const.

〈R̂T
Q̂

−1
R̂〉 = 1

2π
+ 1

8

⎡
⎣K

N
+ 2(π − 1)

π

−
√(

π − 2

π
+

(
K

N
+ 1

))2

− 4K

N

⎤
⎦.

(10)
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FIG. 2. Asymptotic generalization error ε∗
g as a function of K

for M = 1 and N = 200 for an error function as the activation (top)
and ReLU activation (bottom). The numerical solution of Eq. (6) is
obtained from ten initializations of random matrices R and Q under
the linearized setup. The error bars show the standard deviation of
these averages. The analytical solution is based on Equation (8) for
the error function and on Eq. (10) for the ReLU activation.

For the corresponding asymptotic generalization error for
large ratios K

N , we obtain lim N
K →0 limK,N→∞〈ε∗

g 〉ReLU =
1
4 ( 1

2 − 1
π

) ≈ 0.0454. Figure 2 shows the asymptotic gener-
alization error evaluated using Eqs. (8) and (10) together
with the corresponding numerical solution of Eq. (6) in the
linearized setting.

Figure 3 displays the numerical solution of Eq. (6) for both
activation functions not restricted to the linearized setting and
shows how the linearized plateau is reached as a function of
the ratio K

N for different input dimensions N . All curves are
monotonically decreasing with K

N . For small N , the general-
ization error stays near the plateau value only for a limited
range of K

N , while for larger N the generalization error is close
to the plateau value even for large values of K/N .

A more detailed numerical investigation of Eq. (6) for
K, N → ∞ while maintaining a fixed N

K ratio, reveals that the
leading finite-N correction to the asymptotic generalization
has the form

ε∗
g = ε∞

g + b

N
. (11)

Here, ε∞
g signifies the asymptotic value of the generalization

error as N approaches infinity, and b is a regression param-
eter. Furthermore, if we plot ε∞

g against N
K , we obtain again

FIG. 3. Asymptotic generalization error as a function of K
N for an

error function activation g(x) = erf ( x√
2

) (top) and ReLU (bottom).
Here, we evaluate Eq. (6) numerically and compute the expectation
value of the generalization error for a given K

N . The error bars show
the standard deviation of the average over 100 initializations for N =
10 and 10 initializations for N > 10.

a linear dependence as shown in Fig. 4, in agreement with
our analytical solution Eq. (8). These linear dependencies are
validated through finite size scaling for different N

K ratios as
presented in the Supplemental Material. After extracting these
asymptotic values ε∞

g , we study the limit where N
K approaches

zero for large K, N and extrapolate ε∞
g for N

K → 0. Our nu-
merical analysis yields lim N

K →0 ε∞
erf = 0.007512 ± 2 × 10−6

and lim N
K →0 ε∞

ReLU = 0.0453 ± 2 × 10−4 for the error func-
tion and ReLU activation, respectively. Thus, our numerical
results evaluated outside the linearized regime for K

N → ∞
and then N

K → 0 are in excellent agreement with our analytical
predictions found within the linearized regime for N

K → 0.
Figure 3 shows that for small N the asymptotic general-

ization error decreases below the plateau value towards zero
as a function of K/N . The reason for this behavior lies in
the probability distribution of the overlaps Ri. As K increases
with fixed N , the probability of selecting a student vector
closely aligned with the teacher vector grows and the re-
maining problem is to determine the scaling of K with N to
obtain a small asymptotic generalization error. Moreover, the
more student vectors are approximately in the direction of the
teacher vector, the lower the generalization error, making a
linearization of R̃ and Q̃ infeasible. If even one student vector
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FIG. 4. Extrapolated asymptotic generalization error ε∞
g as a

function of N
K for error function (top) and ReLU activation (bottom).

For each N
K ratio, we use at least 100 random matrix initializations

and utilize Eq. (11) for a numerical evaluation, determining ε∞
g . Error

bars in the graph represent the uncertainties calculated through error
propagation in linear regression for N → ∞. For the error function
the error bars are smaller than the symbols. The red curve shows a
weighted least squares (WLS) on ε∞

g in order to perform a second
extrapolation for N

K → 0 (orange) and compare it with the analytical
prediction (green).

has a high overlap, the generalization error already decreases
towards zero as Ri → 1, cf. Fig. 5.

Therefore, we ask for the probability of finding at least
one large overlap max{Ri} > R∗ after the initialization of K
student vectors for a given N and threshold R∗. We use the
relation

P(max{Ri} > R∗; N, K ) = 1 − F (R∗; N )K
, (12)

where F (R∗; N ) = Pr(R � R∗; N ) = ∫ R∗

0 dRiρ(Ri ) is the cu-
mulative probability to find R � R∗ after randomly drawing
a student vector, obtained by integrating over a density
function ρ(R). Since the student and teacher vectors are
drawn from a uniform distribution over the N sphere,
the shifted overlaps Ri+1

2 are generated by the beta dis-
tribution. For the error function activation, we obtain the
density ρ(y) = | cos(y)|β( 2 sin(y)+1

2 ; a, b), where β(t ; a, b) =
1

B(a,b) t
a−1(1 − t )b−1 is the beta density function with normal-

ization constant B(a, b) = ∫ 1
0 t a−1(1 − t )b−1dt and a = b =

N−1
2 . We can now perform the integration for R∗ > R, thus

obtaining the probability for large overlaps between student

FIG. 5. Asymptotic generalization error as a function of Rmax =
max1�i�K R ∈ {Ri} for K = 7, M = 1, N = 5 and η = 0.1

K for an error
function as the activation g(x) = erf ( x√

2
). We initialize the student

and set the teacher in such a way that the first component of R is the
largest one and the others are small and of similar size. The blue
curve shows the corresponding simulation. The orange and green
curves show the solution of Eq. (6) for a perceptron and a linearized
perceptron, respectively. For the simulation, we averaged the gener-
alization error over a predefined interval to get its asymptotic value.
The error bars are smaller than the symbol sizes.

and teacher vectors

F (R∗; N ) = 1 −
∫ π

6

arcsin ( R∗
2 )

ρ(y) dy

= B
(

R∗+1
2 , a, a

)
B(a, a)

= Iz(a, a) . (13)

Here, B(z, α, β ) = ∫ z
0 tα−1(1 − t )β−1dt is the incomplete beta

function with z = R∗+1
2 for the case above and Iz(a, b) is

the regularized incomplete beta function. Therefore, our
cumulative distribution function is related to the Bino-
mial cumulative distribution function via the regularized
incomplete beta function 1 − F (R∗; N ) = FBinomial( N−1

2 ; N −
2, R∗+1

2 ). For the case R∗ � 1, one can estimate the
tail of the Binomial distribution function by the Cher-
noff bound FBinomial( N−1

2 ; N − 2, R∗+1
2 ) � 1√

2N−4
exp[−(N −

2)D( N−3
2N−4‖R∗+1

2 )] with the Kullback-Leibler divergence
D(P‖Q) = P ln( P

Q ) + (1 − P) log( 1−P
1−Q ) [52].

Furthermore, we demand P(max{Ri} > R∗; N, K ) > P∗,
where P∗ is a probability threshold or confidence and insert
this condition in Eq. (12) which yields K = ln(1−P∗ )

ln(F (R∗;N )) . Finally,
we obtain

K >
√

2N − 4 e
N
2 ln

(
1

1−R∗2

)
| ln (1 − P∗)|. (14)

Therefore, the student size K has to increase exponentially
fast with the input-layer size N for a fixed R∗ and P∗ leading
to exponential long training times if one wants to keep a small
generalization error below the threshold of the linearized
regime. This result is consistent with the conclusions in [43].

In conclusion, we have studied the learning dynamics of
the random feature model trained by the stochastic gradient

L022049-5
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descent embedded in the student-teacher framework. We ob-
tained asymptotic solutions of the generalization error out of
a set of coupled differential equations describing the weight
dynamics. For a regime with a finite ratio of hidden layer
width and input dimension, we computed the asymptotic gen-
eralization error and found that it stays finite for two choices

of activation functions. In the second part of this work, we
found by a simple ansatz that the generalization error can
become arbitrarily small under an exponential increase of the
student size in relation to the input dimension.

This work was supported by the IMPRS MiS Leipzig.
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