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Epithelial monolayers are a central building block of complex organisms. Topological defects have emerged
as important elements for single cell behavior in flat epithelia. Here we theoretically study such defects in a
three-dimensional vertex model for spherical epithelia like cysts or intestinal organoids. We find that they lead to
the same generic morphological instability to an icosahedral shape as it is known from spherical elastic shells like
virus capsids, polymerized vesicles, or buckyballs. We derive analytical expressions for the effective stretching
and bending moduli as a function of the parameters of the vertex model, in excellent agreement with computer
simulations. These equations accurately predict both the buckling of a flat epithelial monolayer under uniaxial
compression and the faceting transition around the topological defects in spherical epithelia. We further show
that localized apico-basal tension asymmetries allow them to reduce the transition threshold to small system
sizes.
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Introduction. Epithelial monolayers are a central element
of the architecture of complex organisms. They separate dif-
ferent compartments, can form highly convoluted shapes, and
have exceptional mechanical properties [1,2]. In particular,
they can quickly undergo transitions between fluidlike and
elastic properties, driven, e.g., by cell density or the aspect ra-
tios of single cells. In general, the properties of the single cells
are essential to understand the physical properties of epithelial
monolayers. Topological defects defined by the neighborhood
relations of the single cells have emerged as especially im-
portant elements for transformations in epithelial monolayers
[3]. For example, it has been found that single cells tend to
be extruded at such topological defects [4]. While topological
defects are a natural ingredient of hydrodynamic theories [5],
it is challenging to include them in elastic descriptions of
monolayers [6–8].

Here we show that spherical epithelia like cysts or intesti-
nal organoids are a natural starting point to study the global
effects of topological defects in epithelial monolayers. They
are experimentally very accessible and of large biomedical
relevance [9]. Due to Euler’s polyhedron theorem, they nec-
essarily have to include twelve pentagons in the close-packed
tiling of the spherical surface [10]. In order to combine these
topological defects with the typical mechanical properties of
epithelial monolayers, we employ a three-dimensional (3D)
vertex model (VM), in which cells are described as polyhedra
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with a fixed volume and with polygonal faces contributing
to the total energy through surface tensions [11]. The 3D
VM has been used before for modeling spherical epithelia
[6,12–15], but coarse-graining procedures have not been able
to fully address the role of topological defects in such a set-
ting.

By simulating the 3D VM for complete spherical epithe-
lial shells, we discovered an icosahedral faceting instability.
While small shells with few cells have a spherical shape
[Fig. 1(a)], larger icosahedral shells experience conical in-
stabilities at the pentagonal defects [Fig. 1(b)] [16]. This
transition is well known for two-dimensional elastic crystals
[10,17], including virus capsids [10,18], polymerized vesicles
[19,20], and buckyballs [21], but has not been described well
for spherical epithelia. Our numerical results suggest that a
continuum limit exists for the 3D VM that like thin elastic
shells contains both stretching and bending energies. Here we
show how such a coarse-graining procedure can be performed
and that it explains the morphological instability. We further
show that the threshold for this instability can be actively
controlled by epithelia through apico-basal polarity.

Continuum model. We start with the Hamiltonian of a 3D
VM with apical, basal, and lateral faces,

EVM =
∑
cells

(
�aAa + �bAb + 1

2

∑
lateral faces

�lAl

)
, (1)

with surface tensions �i and areas Ai for apical, basal, and
lateral faces, respectively (i = a, b, l). The factor 1/2 avoids
membrane double counting. Assuming volume V being con-
served, we nondimensionalize energy with �l and length with
V 1/3.

To derive a thin-plate theory from the 3D VM, we con-
sider the nonlinear theory of moderately bent plates, where
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FIG. 1. Spherical epithelia described by a 3D vertex model ex-
perience an icosahedral instability that is well known for spherical
elastic shells like virus capsids, polymerized vesicles, or buckyballs.
(a) A small epithelial shell stays spherical. (b) A large epithelial shell
becomes faceted with icosahedral symmetry. Cells are arbitrarily
colored in gray and pentagonal cells, which are topological defects,
are shown in red.

the total energy is given by stretching and bending energy
contributions [22]. For the in-plane stretching energy we as-
sume the usual energy density

estretch = 1
2

(
2με2

i j + λε2
kk

)
, (2)

with two-dimensional strain tensor ε and Lamé coefficients μ

and λ. We determine the Lamé coefficients in a flat config-
uration in a mean-field fashion, following ideas from earlier
work on 2D VMs [23–25]. We consider a constant strain
tensor for an individual cell, i.e., we assume strain to vary
on a larger length scale than cell size. We assume a regular
n-gonal lattice structure, which we will take to be a hexagonal
lattice with n = 6. We then determine the energy density for
a given strain. The equilibrium height can be obtained via
minimization of Eq. (1) at constant volume. For the lateral
faces we employ an angular averaging method (described
in detail in the Supplemental Material [26]). In addition we
consider nonaffine deformations, as previously described for
2D models [25,27]. Nonaffine relaxations correspond to addi-
tional relative deformations of the two sublattices that make
up the hexagonal lattice and can be included by allowing
for an additional degree of freedom in the midplane shape,
which allows for force balance at triple membrane junctions
via angular relaxation. Note that the π/3 rotational symmetry
implies that our 2D continuum model has only two elastic
constants, exactly like an isotropic 2D material.

Considering the deformed areas and Taylor expanding
in the principal strains, we find 2μ = λ = �a + �b, or,
equivalently,

Y = 4μ(μ + λ)

2μ + λ
= 3

2
(�a + �b), ν = λ

2μ + λ
= 1

2
, (3)

for the two-dimensional Young’s modulus and Poisson ratio,
respectively. The Young’s modulus does not depend on the
lateral tension �l, because both �a/b and Y are in units of �l.
The reason is that changes in �l will affect height and edge
length in such a manner that the energy density stays the same.
A 2D Poisson ratio of 1/2 means that the sheet is compress-
ible (incompressible materials in 2D have ν = 1), because it
can exchange material between the in-plane and out-of-plane
dimensions. In addition, we formulated the stretching energy
in the fully nonlinear setting (see the Supplemental Material
[26]). The resulting energy density does not match standard
hyperelastic models [28]. Thus, in the following we restrict
ourselves to the first (cubic) correction to the linear theory
as obtained by a Taylor expansion. This yields Ynl = ( 3

2 −
7
4εxx )(�a + �b) and Bnl = ( 3

2 − εxx )(�a + �b) for the Young’s
modulus and bulk modulus in uniaxial and isotropic stretch-
ing, respectively.

For the bending energy density we assume the Helfrich
form

ebending = κ

2
(H − c0)2 + κGK, (4)

with bending rigidity κ , mean total curvature H = c + c′
with the principal curvatures c and c′, spontaneous curvature
c0, saddle splay modulus κG, and Gauss curvature K = cc′.
Rozman et al. [12] have proposed a method to determine
these quantities for the 3D VM using quadratic lattices. We
generalized this to hexagonal lattices and adapted it such that
we can formulate a theory for moderate bending.

Consider a cell which is bent with principal curvatures c
and c′ and with unchanged center height. Volume conserva-
tion and curvatures determine the apical, basal, and lateral
face areas after deformation. Normalizing to the undeformed
midplane area (for consistency and different from Ref. [12])
and Taylor expanding with respect to ch and c′h yields the
bending energy density (see the Supplemental Material for
the full derivation [26]). Like for the stretching part, we also
consider nonaffine deformations, which leads to a correction
factor kc. For n = 6 we find

κ = 9

8

kc

21/3 34/3
(�a + �b)1/3,

κG =
[

(�a + �b)2

2
+ 3

2
− 9

4
kc

]
(�a + �b)1/3

21/334/3
,

c0 = 4

3
22/3 31/6 (�a + �b)1/3 (�b − �a ). (5)

Bending with c �= c′ is accompanied by nonisotropic stretch-
ing in the apical and basal planes and angular relaxation,
similarly as in nonisotropic stretching of the midplane. For
c = c′, such nonaffine relaxations do not occur since lateral
membrane angles do not change. In this case the energy is
identical to the case of kc = 1, but otherwise kc is a numerical
factor that we obtain from fitting to the simulation results for
cylindrical surfaces.

The results from Eq. (5) differ in several essential ways
from the known formulas for thin elastic plates. For a thin
elastic plate the bending rigidity would scale like κ ∝ Y h2

(with 2D Young’s modulus Y = Y3Dh). With our result for
Y and the reference height h ∝ (�a + �b)2/3 (compare the
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FIG. 2. Stretching of a rectangular 3D VM monolayer. (a) Depic-
tion of the simulated monolayer with arbitrary coloring of individual
cells. (b) Bulk modulus B for isotropic stretching with strain εxx .
(c) Young’s modulus Y and (d) Poisson ratio ν for uniaxial stretch-
ing with strain εxx . Colors indicate different surface tensions �

and symbols different plate sizes (nx, ny ). Dashed and solid lines
are the predictions from nonlinear and linear continuum theories,
respectively.

Supplemental Material [26]), this would lead to κ ∝ (�a +
�b)7/3. As seen in Eq. (5), the bending rigidity depends more
weakly on the tensions, because we do not have to consider
the area changes along the entire height. In fact, compression
on one of the sides will lower the energy instead of increasing
it, as it is the case in 3D elastic plates. The dependence is
much stronger, however, for the saddle-splay modulus, as we
cannot compensate for area changes of the polygonal faces
via shape changes (e.g., from rectangles to trapezoids) when
both curvatures do not vanish. We have the same leading
order scaling as we would have for elastic plates because
here the apical and basal area changes for a given curvature
also enter quadratically in the cell height. The spontaneous
curvature depends on the apico-basal tension asymmetry, as
this introduces a preferred curvature to minimize the energies.
For �a = �b it vanishes as expected.

Like for a thin plate, the full deformation energy can now
be calculated as

E =
∫

(estretch + ebending) dS. (6)

For moderately bent plates there is an additional cou-
pling between the two terms. A midplane deflection f (x, y)
will contribute to the strain tensor as εi j = (∂iu j + ∂ jui +
∂i f ∂ j f )/2, with deformation ui in the i direction.

Stretching and bending of a flat sheet. To test the continuum
theory by computer simulations, we have implemented the 3D
VM, Eq. (1), as a module in the software suite Chaste [29],
similarly to Ref. [11] (details in the Supplemental Material
[26]). For stretching we implemented a finite-size rectangular
plate of hexagonal cells. The monolayer consists of nx and
ny cells in the x and y directions, respectively [Fig. 2(a)].

FIG. 3. Bending of a rectangular 3D VM monolayer. (a) Bend-
ing rigidity κ as determined from a cylindrically bent monolayer.
(b) Saddle splay modulus κG as determined from a spherically bent
monolayer.

For now we assume �a = �b = �, i.e., we do not consider
a spontaneous curvature c0 from apico-basal polarity.

First we considered isotropic stretching with edge stresses
σxx = σyy and measured the effective bulk modulus as B =
λ + μ = εxx/2σxx. Then we considered uniaxial stretching
with edge stresses σyy = 0 and measured Young’s modulus as
Y = σxx/εxx and Poisson ratio as ν = −εyy/εxx. Figures 2(b)
and (c) demonstrate excellent agreement between the simula-
tions results (symbols) and the nonlinear continuum theory
(dashed lines). Moreover the elastic moduli B and Y from
Eq. (3) (solid lines) correspond exactly to the limiting cases
of vanishing strain. The Poisson ratio ν is close to 1/2 as pre-
dicted by Eq. (3). In the following, we will mainly discuss the
case of linear elasticity, but will come back to our nonlinear
results when needed.

Next we simulated bending of cylindrical and spherical
surfaces. Figure 3(a) shows the resulting bending rigidity κ

as a function of curvature c = 1/R of a cylinder segment with
midplane radius R. For � = 1, we determine the nonaffinity
correction factor by a fit as kc ≈ 1.26 and show that it is
caused by nonaffine apical and basal deformations (compare
the Supplemental Material [26]). Our simulation results (sym-
bols) agree well with the prediction from continuum theory,
Eq. (5) (solid lines). Figure 3(b) shows the results for the
saddle splay modulus κG. For this, stretching contributions,
arising from the nondevelopable spherical deformation, were
determined via finite element simulations, implemented with
FEniCS [26,30]. Again we find good agreement with the theo-
retical prediction from Eq. (5) (solid lines) for small curvature.
The deviations at larger curvature are related to finite-size
effects, including overestimation of the stretching energy for
differently sized plates.

Buckling of a compressed sheet. Our continuum theory
effectively describes the epithelial monolayer as a moderately
bent plate. A classical application of such a theory is plate
buckling upon in-plane compression, which has also been
demonstrated experimentally for epithelial monolayers [31],
depending on both stretching and bending.

Figure. 4(a) shows the amplitudes of a simply supported
rectangular plate, compressed along the edges parallel to the
y direction with compressive stress σxx. We assumed straight
(but movable) edges, as if the plate was situated in a mov-
able rigid frame, and found a bifurcation toward a bent state
with one half-wave along both axes. The critical stress in the
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FIG. 4. Buckling instability in a simply supported 3D VM sheet
of size (27,31) under uniaxial compression. (a) Buckling bifurcations
in amplitude with the total compressive stress σxx as the control
parameter for different tensions �. The solid lines are the continuum
mechanics results for plate buckling, the dashed line is the unstable
unbuckled state, the dotted line is the critical buckling stress, and the
symbols are 3D VM simulations. (b) 3D VM simulation of deflected
monolayer for � = 0.7 and σxx = 0.03, indicated in (a) as diamond
marker. Below the 3D image a cross-sectional view is shown. Color
indicates the midplane deflection of cell.

3D VM is slightly smaller than the continuum expectation,
which can be explained by the nonlinearities, which we have
neglected in the mean-field model, and by finite-size effects of
the plate. The post-buckling amplitude for straight edges can
be approximated within thin-plate theory [32] and is shown
with solid lines. For this, the leading-order Fourier modes
are considered and the energy is minimized for these modes
(compare the Supplemental Material [26]). We do see good
agreement between this approximation and the 3D VM simu-
lation results. In Fig. 4(b) the mid-plane deflection is shown.
For large deflections we see a flattening of the profile with
stronger deviations from a sinusoidal leading-order approxi-
mation, consistent with real thin elastic plates [33].

Topological defects and icosahedral instability. The elastic
framework derived above for epithelial monolayers suggests
to study the effect of topological defects on spherical shells
in the same manner as usually done for 2D elastic crystals.
In our context, the disclinations are the pentagonal cells in
the hexagonal monolayer. For such a defect with disclinic-
ity s = 2π/6, the in-plane azimuthal stretching energy of a
disk scales quadratically with the radius. This deformation
will become unstable toward a conical bending deformation
with a logarithmic scaling in the energies for large radii
[10,17]. Thus, elastic shells of sufficient size, like large virus
capsids or buckyballs, undergo a shape instability, in which
each of the 12 pentagonal defects becomes the corner of an
icosahedron.

As already shown in Fig. 1, our computer simulations
of the 3D VM demonstrate exactly this scenario. To pro-
vide more details, Fig. 5(a) shows the asphericity α = 〈(R −
〈R〉)2〉/〈R2〉 of the cell centers as a function of the rescaled
quadratic radius. It is well known that the transition depends
on the ratio of bending rigidity and Young’s modulus, which
sets the relevant length scale

√
κ/Y [17]. In addition, we intro-

duce a nonlinearity correction kico. For a s = 2π/6 disclinicity
the azimuthal strain is as large as 0.2 and we are in the strongly
nonlinear regime, cf. Fig. 2(c). We find that a correction fac-
tor of kico ≈ 1/2 is necessary to account for this. With this
scaling all curves in Fig. 5(a) collapse onto the continuum

FIG. 5. Icosahedral instability of 3D VM shells. (a) Asphericity
α = 〈(R − 〈R〉)2〉/〈R2〉 of the shells for different apical/basal surface
tensions � as a function of the average cell radius. The radii are
scaled by the ratio of the Young’s modulus Y and bending rigidity κ

with a nonlinearity correction kico. The solid curve is the continuum
prediction [10]. (b) A cut-out of the icosahedral tip for Caspar-Klug
indices (23,0) [16] shows a conical deformation. (c) For large ten-
sions the cell height increases and for large radii the inner membrane
collapses at the defect. (d) Apico-basal tension asymmetry �� in the
defects and their nearest neighbors lowers the buckling threshold.
Cells with �� �= 0 are shaded in dark [size (5,0), � = 1.1].

limit (solid line taken from the literature [10]) except for small
radii. This deviation can be understood to be a finite size
effect as small radii correspond to few cells and large lattice
constants compared to the radius. Notice that we indeed find
a conical deformation at the pentagonal tips of the icosahe-
dron [Fig. 5(b)], where the inner membrane can even collapse
for large � and thus large heights [Fig. 5(c)]. Experiments
suggest Y = 200 kPa µm and V 1/3 ≈ 10 µm [34], resulting
in κ ≈ 2200 kPa µm3 for the VM with � = 1. The buckling
threshold is known to be kicoY R2

crit/κ ≈ 154 [10]. The critical
radius is thus Rcrit ≈ 60 µm, which is roughly the size at which
intestinal organoids undergo budding [15,35].

In passive elastic shells, topological defects tend to form
additional structures such as defect scars, which screen the
effect of the single defects [36,37]. For flat epithelial mono-
layers it has already been established that active processes
modulate their elastic behavior [11], thus also affecting the
role of defects. For spherical epithelia active, apico-basally
polarized forces become essential for structure formation,
as observed experimentally. For example, in cell extrusion,
cells are pushed outward through contraction [38,39], and
in budding organoids luminal (apical) contraction in buds
facilitates curvature generation [15]. To study such processes
in our context, we add polarity in the pentagonal defect
cells and their nearest neighbors, by using finite values for
�� = �a − �b. Figure 5(d) shows that such concentration of
curvature generation around the topological defects facilitates
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buckling at smaller radii, allowing for active control of the
instability threshold. Thus, the instability can already occur
in a neighbourhood of a few hexagonal cells, with poten-
tial implications for organoid formation and cell extrusion in
less structured epithelia. Indeed, such hexagonal regions have
been observed experimentally for epithelia with and without
curvature [40,41].

In summary, here we have shown with computer simu-
lations and analytical calculations that with growing size,
spherical epithelia should undergo the same morphological
instability at topological defects that is known also for elastic
shells such as virus capsids. Our theory applies as long as
the system is sufficiently regular and does not become too
heterogeneous (e.g., by cell differentiation) before the thresh-
old is reached. Therefore, we expect that experimentally it
might be observed best for highly regular epithelia, such as
the retinal pigmented epithelium. Indeed, our theory might
explain the formation of drusen, which are spherical or coni-
cal out-of-plane deformations in the retina linked to makular
degeneration [42–44].

In the future, it has to be seen how the elastic effects
described here will be modulated by the dynamics of epithe-
lial monolayers, both on the level of single cells [45] and
on the tissue level [46,47]. At any rate, however, our theory
demonstrates that topological defects are not only important
for single cell behavior, but have a strong effect on the global
properties of epithelial monolayers and thus could mediate
long-ranged effects.
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