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Some phenotypic properties in bacteria exhibit universal statistics, with distributions collapsing under scaling.
The extent and origins of such universality are not well understood. Using phenomenological modeling of growth
and division, we identify compound “shape factors” that describe the distributions throughout a large set of
single-cell data. We find that the emergence of universal distributions is associated with the robustness of shape
factors across conditions, explaining the universality of cell size and highly expressed protein content and the
nonuniversality of times between consecutive divisions. A wide range of experimental data sets support our
theory quantitatively.
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Introduction. Bacterial growth and division have fascinated
scientists and have been studied for decades. Mathematical
models to account for the variability in cell size and in-
terdivision times across time and among individuals were
developed early on [1–4], but the comparison to data at
the time was limited. More recent single-cell imaging and
microfluidics technology yields high-quality data with large
statistical power [5–12], enabling to test quantitative models
of growth and division and the relation between temporal
dynamics and statistical properties.

Previous works have reported that the distributions of cell
size and highly expressed proteins are non-Gaussian, skewed
and well approximated by a log-normal form [7,13–16]. These
distributions have a universal shape, as manifested by their
collapse under scaling [17,18]. In physics, such distribution
collapse is associated with the insensitivity of macroscopic
properties to underlying microscopic ones [19]. In biological
systems, analogous collapse appears in different contexts, but
its origin and extent are still not well understood [20–22]

The distribution of times between divisions has also been
extensively studied, but here the emerging picture is less con-
clusive. Some experiments report a Gaussian-like distribution
of division times [8,9,18,23], while others find more skewed
distributions [1,2,12,24–26]. Some of these report a universal
shape for division times [18,27]. Modeling work assuming
a small-noise approximation has concluded that times be-
tween divisions are distributed approximately Gaussian [15].
In contrast, “sloppy size control” models [28] as well as other
modeling approaches [29–31] find skewed distributions. Thus,
a unifying framework that can explain the observed diversity
and apparent disagreement in division time distribution shapes
is lacking.
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Here, we compute the division time distribution using
stochastic threshold crossing techniques in a phenomenolog-
ical coarse-grained model of growth and division. We find
that the ratio between two stochastic parameters—variability
in exponential growth rate and in threshold—defines a di-
mensionless “shape factor” that governs the distribution shape
beyond shift and scale transformations. Analyzing a large set
of single-cell data from microfluidic experiments, we find that
division time distributions span a range of diverse behaviors,
from almost Gaussian to very skewed. Our theoretical predic-
tions, based on direct estimation of dynamic parameters, agree
with the data throughout this range of behaviors. Combining
these observations with known properties of cell size and
highly expressed protein content, we address the question of
universality. By observing the spread of data points in the
landscape of shape factors, we find that for cell size and pro-
tein, the data adhere near a manifold of constant shape factor,
while for division times they scatter through multiple contour
lines. This finding sheds light on the universality of size and
protein distributions, and likewise on the nonuniversality (or
shape diversity) of division time distributions. It highlights
the emergence of compound parameter combinations, whose
sensitivity is key to understanding the system’s behavior.

Model definition. High-resolution single-cell measure-
ments have revealed that in several bacterial species, cell
size and content of highly expressed protein grow smoothly
and exponentially across each cycle [8,25,26]; division oc-
curs abruptly—consistent with the idea of triggering by some
threshold event [Fig. 1(a)]. The growth dynamics during the
nth cycle can thus be approximated as

xn(t ) = xb
n eαnt = xb

n eφn(t ), 0 < t < Tn. (1)

Here xn is the cell size (or highly expressed protein), with
xb

n the value at birth. αn the effective growth rate, and φn(t )
the Logarithmic Fold Change (LFC). The cycle ends at time
t = Tn with symmetric division of both biomass and protein
content. We formulate a generalized stochastic threshold-
crossing model of division that unifies different previously
studied models as special cases.
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FIG. 1. Coarse-grained model of growth and based on statistical phenomenology. (a)–(d): Data from [26], where E. coli were grown in
a microfluidic device. (a) Single E. coli bacteria grow exponentially; Logarithmic fold change (LFC) in cell size is linear within each cycle,
φ(t ) = αt . (b) At division, LFC reaches a stochastic threshold φc, with distribution P(φc ) approximately Gaussian (μφ ≈ ln 2, σφ = 0.17).
(c) Across consecutive cycles, φc are approximately independent. Correlation coefficient ≈ −0.02. (d) The threshold φc is negatively correlated
with normalized birth size x̃b with best-fit slope β = 0.65. (e)–(g) Scatter plots from simulations of the phenomenological model, Eqs. (1) and
(2). Division size (e), added size (f), and cycle time (g) vs normalized initial size. The independence of these variables on initial condition is
often interpreted as indicating a control mechanism where they are kept constant. By tuning the homeostasis parameter β, the model reduces
to previously studied modes of division control: (e) sizer (β = 0.9), (f) adder (β = 0.5), and (g) approximate timer (β = 0.2) as special cases.
104 generations were simulated with α = 0.023 min−1 and ξ = N (0, 0.15). See [32] for more details.

The LFC along the nth cycle is by definition zero at
birth φn(0)=0, and at division reaches a fluctuating value
φcn [Fig. 1(a)]. These fluctuations are well described by a
Gaussian distribution around ln 2 [Fig. 1(b)], approximately
independent across cycles [Fig. 1(c)] and negatively corre-
lated with the value at birth [Fig. 1(d)]. These statistical
properties are well captured by the following phenomenolog-
ical expression [25]

φcn = ln 2 − β ln
(
x̃b

n

) + ξn. (2)

Here ξn is a Gaussian white noise with zero mean, x̃b
n the

birth size normalized by its mean, and 0 < β � 1 the slope
of Fig. 1(d). Due to the log-normal distribution of size, φc is
a sum of two Gaussian variables, and therefore also Gaussian.
The negative correlation induces a stable size distribution
over multiple generations, interpolating between previously
described division models [15,16,25,33,34]. To demonstrate
this, we simulate the model in Eqs. (1) and (2) and present
the resulting scatterplots of different variables vs initial cell
size in Figs. 1(e)–1(g). Such plots have been extensively
used to identify modes of division control. For example in
Fig. 1(f), added size is independent of the birth size, a corre-
lation known as the “adder” mode of division control. Sizer
and timerlike correlations are found for other values of β

in Figs. 1(e) and 1(g). The mathematical mapping between
the current and previously formulated models is elaborated in
[32].

Model solution. Equations (1) and (2) together constitute a
phenomenological model that was successfully solved for cell
size and protein distributions [15,16], and will be analyzed
below in terms of division time statistics. We assume that cell
division occurs when the LFC crosses a fluctuating threshold;
this does not necessarily imply a mechanistic interpretation,
but rather a tool for calculation. Using the threshold cross-
ing formalism [35,36], we assume that cell division occurs
when the stochastic process P(φc) = N (ln 2, σφ ) crosses the
absorbing boundary φ(t )=αt [37]. The survival probability—
the probability that the cell has not divided till time t—can
then be expressed as

S(t ) =
∫ ∞

φ(t )
P(φc)dφc = 1

2

⎡
⎢⎣1 − erf

⎛
⎜⎝φ(t ) − ln 2√

2σ 2
φ

⎞
⎟⎠

⎤
⎥⎦. (3)

For a fixed growth rate α, the probability density of S(t ) will
be

P(T |α) = α√
2πσ 2

φ

exp

[
− (αT − ln 2)2

2σ 2
φ

]
. (4)

To incorporate the variability in growth rate across cycles,
P(α)=N (μα, σα ) [Fig. 2(a)], we integrate Eq. (4) with P(α),
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FIG. 2. Experimental division time distributions are predicted across a range of shape factors. (a) Growth rates αn, obtained from the
slope of φn(t ) [Fig. 1(a)] follow a Gaussian distribution, P(α) = N (μα, σα ). In this experiment (data from [26]), χα = σα/μα = 0.27. Other
experiments show similarly Gaussian growth rate distributions, but with different σα . (b)–(d) Division time distributions from different
experiments (bars), corresponding to different shape factors 	T =χα/σφ , are well predicted by theoretical result Eq. (5) (solid lines). The
shape factors are (b) 	T = 0.64 ([8], glucose medium), (c) 	T = 1.3 ([11], arginine medium), and (d) 	T = 1.8 ([25], LAC-M9 medium). In
all experiments, E. coli bacteria were grown in mother machines; see details in [32].

yielding to the division time distribution [32]

P(T ) =
∫

P(T |α)P(α)dα =
(
μασ 2

φ + σ 2
α T ln 2

)
√

2π
(
σ 2

φ + (σαT )2
)3/2 exp

[
− (μαT − ln 2)2

2
(
σ 2

φ + (T σα )2
)
]
. (5)

Transforming this expression to dimensionless time [32],
we find that it contains two dimensionless parameters: σφ , a
measure of threshold fluctuations, and χα =σα/μα , a mea-
sure of growth-rate fluctuations. The shape of the distribution
is strongly influenced by the ratio of these two parameters,
which reflects the relative strength of the two noise sources in
the model: 	T =χα/σφ . We term this ratio the shape factor;
it defines regions where the distribution resembles a Gaussian
shape when 	T <1, and a skewed heavy-tailed shape when
	T >1.

Figures 2(b)–2(d) show a few examples taken from
different experiments, illustrating a range of shape factors
from 	T = 0.64, an almost Gaussian shape, to a larger value
of 	T = 1.8, where the shape is skewed. The experimental
data (bars) are well described by Eq. (5) (lines) throughout
this range of behaviors. A larger collection of division time
distributions can be seen in [32], all in good agreement with
the theory. To quantify the alignment of our theoretical model
with single-cell data, we conducted a Kolmogorov-Smirnov
(KS) test, the results of which are detailed in Table II of the
Supplemental Material [32]. Note that we have not employed
a fitting procedure; to obtain the theoretical lines, we estimate
stochastic variables μα , σα , and σφ directly from dynamic
trajectories such as those in Fig. 1(a). These are then inserted
into Eq. (5).

Universal and nonuniversal distributions. The stochas-
tic LFC threshold model was used in previous work to
predict a log-normal distribution of cell size and protein
content; its shape depends on the compound shape factor
	x =σφ/

√
β(2 − β ), which in turn depends on the thresh-

old standard deviation σφ and the homeostasis parameter
β [15,16]. Here we identified the compound parameter
	T =σφ/χα as determining the shape of the division time dis-
tribution. In contrast to the broad range of distribution shapes
found for division time, cell size and highly expressed pro-
tein content were consistently reported to exhibit a universal

distribution shape [14,15,17,18,27]. We next investigate prop-
erties of the shape factors to shed light on the origins of
universal distribution collapse.

In Figs. 3(a) and 3(b) we assemble data from a large set of
single-cell experiments in the planes of stochastic parameters
(χα, σφ ) and (β, σφ ), respectively. Each point represents one
experiment, where single-cell traces were pooled for estima-
tion. In all cases, bacteria were grown in mother machines, but
relevant conditions such as medium or temperature, as well
as bacterial strain, vary among experiments (see Table 1 in
[32]). In these parameter planes, the shape factor for division
time (a) and cell size (b) are depicted as gray contour lines of
constant values. Examining the embedding of data across the
shape landscape reveals an important difference between the
two phenotypes.

In (a), the data scatter across many contour lines, spanning
a broad range of shape-factor values (	T ∼ 0.1 to 3). Con-
tributing to this variability is the broad range of growth rate
noise χα (x axis; 0.05 to 0.5), to which the shape factor is in-
versely proportional. This is consistent with the broad range of
behaviors we observed for division time distributions across
data sets. Two examples of scaled distributions are shown in
panel (c). In (b), in marked contrast, the data are concentrated
in a small region around a single contour line, maintaining a
constrained shape factor for cell size (	X ≈ 0.2). The shape
of the log-normal distribution is very weakly sensitive to
the shape-parameter value in this regime [16]; together these
properties lead to the collapse of these distributions upon
scaling [panel (d)].

Discussion. We examined single-cell statistical properties
using a phenomenological growth and division model. This
model relies on several key assumptions: exponential growth
during the cell cycle, variable exponential rates in successive
cycles, and symmetric division triggered by a noisy thresh-
old in log fold change of cell size—negatively correlated
with birth size. This approach had been validated in previous
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FIG. 3. (a) Plot of χα vs σφ , estimated from experimental data (colored symbols), span a broad range of shape factors 	T (gray contours).
(b) Plot of σφ vs β, estimated for the same data, cluster around a small range of shape factor for cell size or protein 	X (gray contours). (c) The
scaled distribution of cell division times is nonuniversal, showing a Gaussian-like distribution for 	T < 1 (green squares, [8]) and a skewed
shape for 	T > 1 (blue triangles, [26]). The black curves are obtained from our theory Eq. (5). (d) The scaled distribution of cell size and
protein number collapse under two-parameter scaling, and agree well with the theoretically predicted log-normal distribution (black curve).
Data are taken from [7–12,23,25,26,38], see Table I of [32].

studies and encompasses various homeostasis modes, includ-
ing adder, sizer, and timer scenarios as specific instances. Such
a coarse-grained modeling approach, with few microscopic
assumptions, allows us to explore general questions inspired
by statistical physics—namely, universality of distributions
and scaling phenomena. While such an approach has been
used extensively, other more microscopic models have also
been developed [39].

By employing a stochastic threshold crossing framework,
we computed the distribution of division times. The ap-
proximations made in obtaining this result do not hinge
on a small-noise approximation in growth rate across cell
cycles (see [32]). In the data we analyzed, encompassing
a wide spectrum of experiments in microfluidic traps, the
small-noise limit only applies to a minority of experiments.
The range of observed behaviors—from very narrow to very
broad growth rate distribution—served as a central moti-
vation for extending the phenomenological theory in our
present study.

The resulting distribution has strictly no finite moments,
but a limited range of data allows for a good comparison
with an appropriate cutoff. Notably, this result accurately
predicts the relationships between data moments and model
parameters, as shown in [32]. The long tails of the dis-
tribution result from the Gaussian assumption for growth
rates, tending to a reciprocal-Gaussian in the limit. Alter-
native assumptions, such as a Gamma distribution, yield
empirically similar distributions [32], but do not provide
an analytic expression that allows for identifying parameter
dependencies and a clearly understandable shape factor.

Interestingly, the reciprocal-Gaussian distribution for genera-
tion times was tested as an empirical fit to division time statis-
tics, and was found to be more suitable than the log-normal
distribution [29].

The shape factor 	T governs the distribution shape beyond
shift and scale, eliminated by two-parameter scaling. An anal-
ogous factor had previously been found for cell size, but its
empirical values and significance for distribution scaling were
not studied. By comparing the two shape factors we were
able to illuminate the sources of distribution universality, as
stemming from the robustness of these parameter combina-
tions as experimental conditions are varied. This explanation
remains phenomenological and does not clarify the source
of difference in robustness. In particular, the reasons behind
different levels of variability in single-cell growth rates among
experimental conditions remain to be understood. It can be
speculated that the sensitivity of growth rates to their envi-
ronment and their strong correlation with division times over
long timescales [38] make them effective control variables
that allow flexibility for compensation. On the other hand, cell
size does not partake in long-term homeostatic correlations;
stable growth can occur at various cell sizes, rendering it an
“irrelevant variable” in the sense of statistical mechanics with
a universal distribution. These hypotheses warrant further
investigation.

The description of cell size and highly expressed pro-
teins has converged to a similar modeling framework. Both
quantities adhere to the fundamental model assumptions
outlined above; their dynamic variables (e.g., αn), which fluc-
tuate across cycles, are strongly correlated with one another
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on a cycle-by-cycle basis [7,25,26]. Consequently, in Fig. 3
we found that they share the same universal distribution
shape. Intriguingly, the statistics of division time can be
predicted based on the dynamics of either cell size or
any highly expressed protein, with similar predictive suc-
cess [32]. Thus, while cell division is likely triggered by
multiple events, their tight interconnection reduces the com-
plexity of the problem, allowing several options to predict
statistical properties effectively. This aligns with previous
observations of balanced exponential growth as a dynamic
attractor characterized by robust relationships among con-
stituents [31]. Understanding such reduction of effective
dimensionality in high-dimensional yet highly correlated

systems like the biological cell remains an important open
question.
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Salman, and D. L. Stein, Universal protein distributions in a
model of cell growth and division, Phys. Rev. E 92, 042713
(2015).

[17] H. Salman, N. Brenner, C. K. Tung, N. Elyahu, E. Stolovicki,
L. Moore, A. Libchaber, and E. Braun, Universal protein fluctu-
ations in populations of microorganisms, Phys. Rev. Lett. 108,
238105 (2012).

[18] S. Iyer-Biswas, C. S. Wright, J. T. Henry, K. Lo, S. Burov, Y.
Lin, G. E. Crooks, S. Crosson, A. R. Dinner, and N. F. Scherer,
Scaling laws governing stochastic growth and division of single
bacterial cells, Proc. Natl. Acad. Sci. USA 111, 15912 (2014).

[19] A. Cohen, Y. Roth, and B. Shapiro, Universal distributions and
scaling in disordered systems, Phys. Rev. B 38, 12125 (1988).

[20] L.-h. So, A. Ghosh, C. Zong, L. A. Sepúlveda, R. Segev, and
I. Golding, General properties of transcriptional time series in
escherichia coli, Nat. Genet. 43, 554 (2011).

[21] H.-Y. Shih, H. Mickalide, D. T. Fraebel, N. Goldenfeld, and
S. Kuehn, Biophysical constraints determine the selection of
phenotypic fluctuations during directed evolution, Phys. Biol.
15, 065003 (2018).

[22] O. Agam and E. Braun, Universal calcium fluctuations in hydra
morphogenesis, Phys. Biol. 20, 066002 (2023).

[23] N. Nordholt, J. H. van Heerden, and F. J. Bruggeman, Biphasic
cell-size and growth-rate homeostasis by single bacillus subtilis
cells, Curr. Biol. 30, 2238 (2020).

[24] J. L. Lebowitz and S. Rubinow, A theory for the age and
generation time distribution of a microbial population, J. Math.
Biol. 1, 17 (1974).

[25] L. Susman, M. Kohram, H. Vashistha, J. T. Nechleba, H.
Salman, and N. Brenner, Individuality and slow dynamics in
bacterial growth homeostasis, Proc. Natl. Acad. Sci. USA 115,
E5679 (2018).

[26] A. S. Sassi, M. Garcia-Alcala, M. Aldana, and Y. Tu, Pro-
tein concentration fluctuations in the high expression regime:
Taylor’s law and its mechanistic origin, Phys. Rev. X 12,
011051 (2022).

[27] A. S. Kennard, M. Osella, A. Javer, J. Grilli, P. Nghe, S. J.
Tans, P. Cicuta, and M. Cosentino Lagomarsino, Individuality
and universality in the growth-division laws of single E. coli
cells, Phys. Rev. E 93, 012408 (2016).

[28] J. J. Tyson and O. Diekmann, Sloppy size control of the cell
division cycle, J. Theor. Biol. 118, 405 (1986).

L022043-5

https://doi.org/10.1099/00221287-29-3-435
https://doi.org/10.1099/00221287-31-2-315
https://doi.org/10.1128/jb.91.6.2388-2389.1966
https://doi.org/10.1007/s002030050539
https://doi.org/10.1039/C5CS00514K
https://doi.org/10.1016/j.cub.2010.04.045
https://doi.org/10.1140/epje/i2015-15102-8
https://doi.org/10.1016/j.cub.2014.12.009
https://doi.org/10.1038/nature14562
https://doi.org/10.3389/fmicb.2018.00871
https://doi.org/10.1016/j.cub.2019.04.062
https://doi.org/10.1016/j.celrep.2022.110539
https://doi.org/10.2142/biophysics.1.25
https://doi.org/10.1103/PhysRevE.83.031118
https://doi.org/10.1103/PhysRevLett.112.208102
https://doi.org/10.1103/PhysRevE.92.042713
https://doi.org/10.1103/PhysRevLett.108.238105
https://doi.org/10.1073/pnas.1403232111
https://doi.org/10.1103/PhysRevB.38.12125
https://doi.org/10.1038/ng.821
https://doi.org/10.1088/1478-3975/aac4e6
https://doi.org/10.1088/1478-3975/acf8a4
https://doi.org/10.1016/j.cub.2020.04.030
https://doi.org/10.1007/BF02339486
https://doi.org/10.1073/pnas.1615526115
https://doi.org/10.1103/PhysRevX.12.011051
https://doi.org/10.1103/PhysRevE.93.012408
https://doi.org/10.1016/S0022-5193(86)80162-X


KUHELI BISWAS AND NAAMA BRENNER PHYSICAL REVIEW RESEARCH 6, L022043 (2024)

[29] H. Kubitschek, The distribution of cell generation times, Cell
Proliferation 4, 113 (1971).

[30] R. Pugatch, Greedy scheduling of cellular self-replication leads
to optimal doubling times with a log-frechet distribution, Proc.
Natl. Acad. Sci. USA 112, 2611 (2015).

[31] P. P. Pandey, H. Singh, and S. Jain, Exponential trajectories, cell
size fluctuations, and the adder property in bacteria follow from
simple chemical dynamics and division control, Phys. Rev. E
101, 062406 (2020).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.L022043 for contains details of
the model, the analytic calculations and approximations in-
volved, information on the data used for analysis and more
extended analyses of these data.

[33] D. A. Kessler and S. Burov, Effective potential for cellular size
control, arXiv:1701.01725.

[34] P.-Y. Ho, J. Lin, and A. Amir, Modeling cell size regula-
tion: From single-cell-level statistics to molecular mechanisms
and population-level effects, Annu. Rev. Biophys. 47, 251
(2018).

[35] C. W. Gardiner, Handbook of Stochastic Methods (Springer,
Berlin, 1985), Vol. 3.

[36] H. Risken, Fokker-planck equation, The Fokker-Planck Equa-
tion (Springer, 1996) pp. 63–95.

[37] L. Luo, Y. Bai, and X. Fu, Stochastic threshold in cell size
control, Phys. Rev. Res. 5, 013173 (2023).

[38] A. Stawsky, H. Vashistha, H. Salman, and N. Brenner, Mul-
tiple timescales in bacterial growth homeostasis, iScience 25,
103678 (2022).

[39] C. Jia, A. Singh, and R. Grima, Cell size distribution of lin-
eage data: analytic results and parameter inference, iscience 24,
102220 (2021).

L022043-6

https://doi.org/10.1111/j.1365-2184.1971.tb01522.x
https://doi.org/10.1073/pnas.1418738112
https://doi.org/10.1103/PhysRevE.101.062406
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.L022043
https://arxiv.org/abs/1701.01725
https://doi.org/10.1146/annurev-biophys-070317-032955
https://doi.org/10.1103/PhysRevResearch.5.013173
https://doi.org/10.1016/j.isci.2021.103678
https://doi.org/10.1016/j.isci.2021.102220

