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Quadratic acceleration of multistep probabilistic algorithms for state preparation
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Quantum state preparation is a fundamental building block for various problems on a quantum computer. A
nonunitary operator is typically designed to decay unwanted states contained in an initial state using ancilla
qubits and a probabilistically action. In this Letter, we clarify that this probabilistic nature is a drag for quantum
advantages: The probabilistic algorithms do not accelerate the computational process compared to classical
ones. Combining quantum amplitude amplification (QAA) with multistep probabilistic algorithms is proposed to
address this drawback, achieving quadratic acceleration and quantum advantages. We also find that the multistep
probabilistic method with QAA exhibits advantages over quantum phase estimation in terms of infidelity. We
also demonstrate it to confirm the quadratic acceleration, using a probabilistic imaginary-time evolution method
as an example.
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Introduction. The accurate and efficient calculation of
ground states is of considerable importance in the field of
quantum physics because it provides key insights into the
properties and behavior of diverse quantum systems. Quantum
phase estimation (QPE) [1–4] is a promising quantum algo-
rithm that estimates the eigenvalues of input eigenvectors of
a Hamiltonian more efficiently than classical computers. De-
spite the advantages of QPE, the preparation of an input state
as close as possible to the ground state remains a problem. If
the input state of the QPE contains only a small portion of
the ground state, the probability of obtaining the ground-state
energy decreases, as indicated by the scaling O(|c1|2), where
|c1|2 denotes the weight of the ground state in the input state.
Thus, significant research has been conducted on quantum
algorithms for ground-state preparation [5–18].

State-preparation schemes based on nonunitary operations
have been proposed to obtain the ground state [12–18]. Pre-
vious studies have realized imaginary-time evolution (ITE)
operators [13,14,17,18], cosine functions [12,15], and shifted
step functions [10,11] on quantum computers using an-
cilla qubits and a probabilistic method, both of which rely
on forward- and backward-controlled real-time evolution
(CRTE) operators. The implementation of real-time evolution
(RTE) operators on quantum computers has been well estab-
lished in the context of Hamiltonian simulations based on
the Trotter decomposition [19–23], Taylor series [24,25], and
qubitization [26–29]. Thus, any sophisticated implementation
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of RTE operators can be incorporated into state-preparation
schemes using nonunitary quantum circuits.

The computational costs of quantum algorithms that im-
plement nonunitary operators probabilistically have also been
estimated for the cosine function [9,12,15] and ITE operators
[30]. These quantum algorithms incur O(|c1|−2) computa-
tional costs to obtain the ground state. In particular, if |c1| =
1/

√
N , where N = 2n and n denotes the number of qubits,

i.e., in a scenario where even the approximate ground state
is not known, at least O(N ) computational cost is incurred.
This implies that quantum acceleration is not realized. The
complexity class of ground-state preparation is known to be
quantum Merlin-Arthur [31–33]. This fact means that polyno-
mial acceleration for ground-state preparation is the limit for
quantum computers. The development of quantum algorithms
that exhibit polynomial acceleration is an important research
topic. In this Letter, we propose a multistep quantum algo-
rithm that achieves quadratic acceleration of the probabilistic
state preparation scheme. The proposed quantum algorithm
utilizes quantum amplitude amplification (QAA), which en-
hances the probability of obtaining a desired state based on
repeated operations. First, we summarize quantum algorithms
for probabilistic formalisms to implement nonunitary opera-
tors and estimate their computational costs. We highlight that
existing probabilistic algorithms have a computational scaling
of order O(|c1|−2) for state preparation, which compromises
quantum advantages. Subsequently, we propose quantum al-
gorithms to achieve quadratic acceleration.

Ground-state preparation. Let us consider a nonunitary op-
erator f (H), where H is an n-qubit system Hamiltonian. f (H)
is embedded in the extended unitary matrix by introducing an
ancilla qubit as follows,

U ≡
(

f (H)
√

1 − f 2(H)√
1 − f 2(H) − f (H)

)
, (1)
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FIG. 1. Quantum circuit of probabilistic algorithm for ground-
state preparation. The circuit is composed of a single ancilla qubit
and forward and backward CRTE gates. URTE ≡ URTE(�τ ) = e−i�τH

is used in this figure.

comprising submatrices coupled with the ancillary |0〉 and |1〉
states. The desired state is obtained when the ancilla is |0〉,
whereas a state coupled to |1〉 is undesirable. In particular, the
action of the unitary matrix U on the input state leads to

f (H)|ψ〉 ⊗ |0〉 +
√

1 − f 2(H)|ψ〉 ⊗ |1〉. (2)

Any unitary matrix U can be decomposed into at least the
first order of H [see details in Supplemental Material (SM)
[34]] and implemented using forward and backward CRTE
operations and single-qubit gates (Fig. 1).

During repeated operation, U involves certain parameters,
such as the real time-step size �τ depicted in Fig. 1, which
can be selected freely at each step. The unitary matrix U at
the kth step is denoted by Uk . When K ancilla qubits are used,
with a different one used for each Uk without measuring them,
the actions of {Uk} on the input state with the initialized ancilla
qubits yield

FK (H)|ψ〉 ⊗ |0〉⊗K + (other states), (3)

where FK (H) ≡ ∏K
k=1 fk (H). The use of only one ancilla

qubit is permitted if we reuse it based on the previous step
after measuring and initializing it. fk (H) was used as an
approximate ITE operator e−�τkH in Ref. [14] and a cosine
function cos(tkH) in Ref. [12]. Specific quantum circuits are
summarized in SM [34]. Repeated operations of fk (H) decay
undesirable states, such as excited states. Quantum signal
processing is another approach to design such decay functions
[27], where the shifted step function is approximated using a
Chebyshev polynomial and implemented using a single an-
cilla qubit [10,11].

Observing all ancilla qubits in |0〉 state leads to the collapse
of the entangled wave function to

|�K〉 = 1√
PK

FK (H)|ψ〉, (4)

where PK denotes the total probability of all steps being
successful. The input state is expanded as follows, |ψ〉 =∑N

i=1 ci|λi〉, where |λi〉 denotes the ith eigenstate of the
Hamiltonian H and ci denotes the expansion coefficient. For
simplicity, we assume a nondegenerate and ascending order of
eigenvalues; however, the generalization is straightforward. If
FK (H) is well designed to decay the undesired state, then the
total success probability becomes

PK = 1

1 − δK
|c1|2, (5)

where δK denotes the infidelity, defined as δK ≡ 1 − FK ,
with fidelity FK ≡ |〈λ1|�K〉|2 (for further details, see SM
[34]). Here, we assume FK (λ1) = 1, which is realized by

a constant energy shift in the probabilistic imaginary-time
evolution (PITE) [30]. Every quantum algorithm that decays
the undesirable state to achieve a small value of δK using
a nonunitary operation exhibits O(|c1|2) scaling of the total
success probability. Importantly, this implies that the scal-
ing of the total success probability is independent of the
type of nonunitary operator fk (H), the number of ancilla
qubits, or the circuit implementation method for fk (H). If the
approximate ground state is not known, e.g., |ci|2 = 1/N for
each i, the computational cost of at least one success scale
is of the order O(N ). No quantum acceleration is observed
in these algorithms. In contrast, CRTE gates are efficiently
implemented at polynomial cost [19–29]. For example, the
circuit depth for CRTE for an ne-electron system based on
the first quantization Hamiltonian scales with the order of
dCRTE = O{rn2

e poly[log(n1/3
e /�x)]}, where �x represents the

grid spacing of the discretized space, and r denotes the Trotter
number dividing the imaginary-time step size [14,21]. Then,
the computational cost is given by

dCRTEK

PK
= O

[
dCRTE

|c1|2 ln

(
(1 − δK )(1 − |c1|2)

δK |c1|2
)]

(6)

(for details, see SM [34]).
Quantum amplitude amplification. Quantum acceleration

of ground-state preparation may also be realized using prob-
abilistic algorithms by introducing a multistep scheme and
combining it with QAA [29,35–37]. We consider a K-step
probabilistic quantum circuit with K ancilla qubits. Each an-
cilla qubit corresponds to a step of the probabilistic algorithm,
and all ancilla qubits are measured after the final step. The
output state immediately preceding the measurement is of the
form

|�̃〉 = a|�good〉 + √
1 − a|�bad〉, (7)

where

|�good〉 = 1√
PK

Fk (H)|ψ〉 ⊗ |0〉⊗K (8)

is the desired state with weight a and |�bad〉 denotes the
orthogonal state of |�good〉. Owing to introducing the delayed
measurement, QAA enhances the coefficients of the |�good〉
state by the m-times action

∏m
i=1 Q(φ2i−1, φ2i ) of the follow-

ing amplitude amplification operator,

Q(φ2i−1, φ2i ) ≡ −U (K )
REFS(n+K )

0 (φ2i−1)
(
U (K )

REF

)†
Sχ (φ2i ),

where Sχ denotes an oracle, S0 denotes a zero reflection,
and U (K )

REF is defined as U (K )
REF|0〉⊗(n+K ) = |�̃〉. The rotation

angles {φi} are chosen as φi = ±π following the conven-
tional method [35,36]; however, recently, approaches have
been proposed to determine {φi} such that the increase in
success probability is an approximated sign function [29,37].
The zero reflection and oracle rotate the output state |�̃〉
in the effective two-dimensional space spanned by |�good〉
and |�bad〉, which are represented by S(n)

0 (φ) = eiφ|0〉〈0|⊗n
and

Sχ (φ) = I2n ⊗ S(K )
0 (φ), respectively. The circuit depth of the

zero-reflection scales at the order of O(n) with a single ancilla
qubit [38], and Maslov’s gate reduces the scaling preconstant
[39]. Figure 2 illustrates the amplitude amplification operator
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FIG. 2. Quantum circuit for the amplitude amplification operator of the probabilistic algorithm for ground-state preparation given by
Eq. (9) while ignoring the global phase. The forward and backward CRTE gates are combined and represented by the controlled-VRTE gate.
On the left, S0 represents S(K )

0 (φ2i ), while that on the right represents S(n+K )
0 (φ2i−1). Uref is defined as Uref |0〉⊗n ≡ |ψ〉, which is the input state

before the PITE circuit. In the red box on the right, VRTE = VRTE(t1), VRTE = VRTE(t2), . . . ,VRTE = VRTE(tK ) from the left, and U1 = U (1)
1 ,U1 =

U (2)
1 , . . . ,U1 = U (K )

1 from the top, where U (k)
1 is equal to U1 in the kth step. The same comments apply to U2.

Q for the probabilistic algorithm for state preparation in K
steps.

The optimal number of repetitions of QAA is derived as
follows:

m∗ =
⌊

(2n + 1)π

4 sin−1 a

⌋
. (9)

Thus, when the total success probability PK is low, we execute
a first-order Taylor expansion for sin−1 a and obtain the order
of optimal repetitions, m∗, as m∗ = O(1/|c1|). Accordingly,
the computational cost of PITE combined with QAA (hence-
forth referred to as multistep PITE) is estimated as follows,

dCRTEKm∗ = O

[
dCRTE

|c1| ln

(
(1 − δK )(1 − |c1|2)

δK |c1|2
)]

, (10)

where the QAA technique achieves a quadratic acceleration
by Eq. (6). We also discuss the combined technique compris-
ing PITE and QAA discussed in Ref. [40], where a short-depth
circuit is proposed for the first-step PITE and circuit con-
struction is designed for K steps using an ancilla qubit. The
multistep PITE method proposed in this Letter is a natural
extension of that in Ref. [40] and clearly achieves quadratic
acceleration for the whole PITE process.

Quantum phase estimation. QPE is a standard building
block, which not only estimates the ground-state energy but
also prepares the ground state. Before comparing multistep
PITE with QPE in terms of numerical results, we briefly
discuss QPE. QPE based on quantum Fourier transform (QFT)
achieves Heisenberg scaling. Although it typically requires
many ancilla qubits, reusing ancilla qubits after measurement
and executing subsequent operations depending on the ob-
servations enables the same estimation as that using a single
ancilla qubit [4,41–43]. For simplicity, standard QPE based
on QFT is considered here. After each execution of QPE,
one of the eigenenergies is loaded onto the ancilla qubits
in a binary representation. We assume the input state for
the QPE is |ψ〉 = ∑N

i=1 ci|λi〉 and K ancilla qubits are used.
Using QPE, all eigenvalues {λi}, which are assumed to be
in ascending order, are expressed by a binary representation
{ki}. In a realistic situation with a finite number of available

ancilla qubits, different eigenvalues {λi} that are energetically
close to each other and within an energy resolution 1/T can be
mapped to the same binary representation ki, where T ≡ 2K .
When we observe k as a binary representation of the estimated
eigenvalue, the input state collapses to

|�QFT〉 = 1√
Pk

N∑
i=1

ciαk|i|λi〉, (11)

where the state is normalized with probability Pk =∑N
i=1 |ci|2|αk|i|2 and periodic function αk|i is defined as αk|i ≡

(1/T )
∑T −1

τ=0 e2π iτ (λit0−k)/T . Here, t0 is a scaling parameter
used to increase or decrease the eigenvalues for precise
measurement. By T ≡ 2K , we conclude that the number of
ancilla qubits used is directly proportional to the fineness
of the resolution of the eigenvalues. Thus, we take t0 =
2K−NC , where NC = �log2(λN − λ1)	. Because the number of
queries to CRTE increases exponentially, the computational
cost for QPE to obtain the ground-state eigenvalue is given by
O[1/(

√
δK |c1|2)] [9,34]. By comparing it with Eq. (6), we em-

phasize that PITE improves computational cost exponentially
with respect to the infidelity δK over QPE.

Numerical results. The numerical simulation demonstrates
the strengths of the proposed method, which is implemented
using QISKIT, an open-source library for quantum simulations
[44]. The Heisenberg model is adopted as the computational
model,

H =
∑
〈 j,k〉


σ j · 
σk +
∑

j

h jσ j, (12)

where 
σ j = (σ x
j , σ

y
j , σ

z
j ) is the Pauli matrix acting on the

jth spin and 〈 j, k〉 represents the combination of the nearest
neighbors of the closed one-dimensional chain. h j represents
the strength of the magnetic field, which is randomly selected
from a uniform distribution hj ∈ [−1, 1]. The CRTE gate
is implemented using a fourth-order Trotter decomposition
[45] for even-odd groups of the Hamiltonian [22,23]. The
dependence of the accuracy and total computational complex-
ity on the order of the Trotter decomposition is numerically
demonstrated in SM [34]. The multistep PITE method is
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FIG. 3. Plots of the infidelity δK as a function of computational
cost for PITE, multistep PITE, and QPE, respectively. The results
are obtained using the one-dimensional Heisenberg chain with eight
spins.

adopted as the probabilistic algorithm while preparing the
ground state. The PITE method employs a constant energy
shift to increase the total success probability, and adopts com-
putationally efficient scheduling of the imaginary-time step
size [30].

Figure 3 illustrates the infidelity δK as a function of the
computational costs for QPE, PITE, and multistep PITE. The
initial state is selected as a uniform probability weight with
respect to each eigenvector, i.e., |ci|2 = 1/N . As the number
of steps in PITE or the number of digits, i.e., the resolution in
QPE increases, the infidelity decreases, whereas the computa-
tional cost increases. As the infidelity decreases, the success
probability decreases and approaches 1/N . This behavior is
common in PITE and QPE. PITE and QPE differ in the
number of queries in the CRTE block. In QPE, the number
of queries increases exponentially with the number of ancilla
qubits; thus, the computational cost increases linearly with
infidelity. However, in PITE, the number of queries increases
linearly with the step, implying that the scaling of the com-
putational cost is logarithmic with respect to infidelity. The
figure confirms that PITE is exponentially faster than QPE
with respect to infidelity δK , as given by Eq. (6). Further, in
the case of multistep PITE, we observe an increase in the com-
putational cost due to the quadratic acceleration with respect
to the success probability, despite the overhead incurred due
to zero reflections. We verify the method with different orders
and use a fourth-order Trotter, which yields results in good
agreement with the exact solution [34].

To demonstrate quadratic acceleration with respect to the
probability weight |c1|2 of the ground state clearly in the
case of multistep PITE, the dependence of computational cost
on |c1|2 is plotted in Fig. 4. The computational cost is esti-
mated when the infidelity is below δK = 10−4. The probability
weight of the initial state is determined using a Gaussian
distribution as a function of the eigenvalues corresponding
to the mean ground-state energy. The probability weights of
the ground states are increased by changing the variance of
the Gaussian distribution. The computational cost of PITE is
observed to be lower than that of QPE over the entire region,
owing to the exponential advantage of PITE in terms of the

FIG. 4. Plots of computational cost for PITE, multistep PITE,
and QPE as functions of the inverse probability weight of the ground
state in the input state.

infidelity, δK . Although the computational cost of multistep
PITE is higher than that of PITE without QAA at |c1| ≈ 1/2
because of the overhead induced by QAA, it decreases as
|c1|−1 increases when |c1| < 1/2. This confirms quadratic
acceleration induced by QAA. The crossing point of the com-
putational costs of PITE and multistep PITE is determined by
the relationship between the circuit depths of PITE and zero
reflection [34]. As the computational overhead induced by
zero reflection decreases, QAA increases the computational
cost over a wide range.

Conclusions. In this Letter, we propose a quantum algo-
rithm for ground-state preparation that offers several quantum
advantages. The recently proposed PITE method, compris-
ing a single ancilla qubit and forward and backward CRTE
operations, calculates the ground state nonvariationally on a
quantum computer. Although PITE exhibits an exponential
advantage over QPE in terms of the infidelity δ, its prob-
abilistic nature degrades the computational cost by a scale
of order O(|c1|−2 log δ−1), where |c1|2 denotes the probabil-
ity weight of the ground state in the initial state. Here, we
combine QAA with PITE, achieving quadratic acceleration
compared to the classical method, where delayed measure-
ment enables multistep amplitude amplification. Numerical
simulations emphasize the strengths of the proposed algo-
rithm, which is implemented on a fault-tolerant quantum
computer (FTQC). However, the development of quantum
algorithms for early FTQC and post-noisy intermediate-scale
quantum devices remains an important research topic. In this
context, reducing the number of ancilla qubits and the cir-
cuit depth of the proposed algorithm is a promising direction
for future research. Quantum acceleration beyond quadratic
acceleration is a challenging research subject. In addition,
preparing a good initial state using classical preprocessing
techniques is expected to contribute to fast quantum-state
preparation irrespective of the application of QAA. By com-
bining the proposed algorithm, various physical quantities
such as the one-body Green’s function [46], the linear re-
sponse function [47], and microcanonical and canonical
properties [48] can be calculated. This method is also ap-
plicable to various problems such as the optimization of the

L022041-4



QUADRATIC ACCELERATION OF MULTISTEP … PHYSICAL REVIEW RESEARCH 6, L022041 (2024)

structure geometry based on an exhaustive search [49] and
investigating an electron under a magnetic field [50]. Thus,
this study contributes to the gamut of numerical simulations
related to material sciences that are executable on quantum
computers.
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