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Quantum work: Reconciling quantum mechanics and thermodynamics
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It has been claimed that no protocol for measuring quantum work can satisfy standard physical principles,
casting doubts on the compatibility between quantum mechanics, thermodynamics, and the classical limit. In
this Letter, we present a solution for this incompatibility. We demonstrate that the standard formulation of these
principles fails to address the classical limit properly. By proposing changes in this direction, we prove that all
the essential principles can be satisfied when work is defined as a quantum observable, reconciling quantum
work statistics and thermodynamics.
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The concept of work lies at the heart of thermodynamics,
being crucial to determine the processes permissible under the
first and second laws [1–4]. Moreover, work’s statistical prop-
erties have paved the way for ground-breaking results, among
which the Jarzynski equality [5] and Crook’s fluctuation re-
lation [6] certainly stand out. These so-called fluctuation
theorems have unveiled the tight connection of work with
equilibrium free energy, the reversibility of thermodynamic
processes, and information theory [7–21].

In the quantum realm, the pursuit of a universal definition
of work resulted in multiple definitions [21–44], allowing
the thermodynamic analysis of various quantum systems
[22,45–47]. Nevertheless, the statistical characterization of
work continues to be the subject of intense debate [48–72].
For instance, in scenarios without heat flux, work aver-
age is expected to equal the variation of mean energy, a
feature not generally fulfilled by broadly used work measure-
ment schemes, such as the two-point-measurement (TPM)
[28,62,65,68], the Gaussian [28,72], and postselection [53]
schemes. Other significant discussions in the literature in-
clude the definition of work in scenarios encompassing the
energetic effects of measurements and quantum resources
[14,15,53,73–80]. Successfully overcoming these challenges
can propel advancements in quantum thermodynamics and the
design of efficient quantum devices [45–47,81–84].

To elucidate quantum work, it has been generally con-
sidered that its statistics should comply with the following
criteria, provided by the basic structure of quantum mechan-
ics and thermodynamics [68,69]: work statistics should (i)
be described by a positive operator-valued measure (POVM)
[85,86] independent of the system’s initial state, (ii) yield
an average work equal to the variation of energy over time
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for externally controlled systems not interacting with a heat
bath, and (iii) reproduce the classical limit. Surprisingly, it
was demonstrated that no protocol for raising work statis-
tics would comply simultaneously with criteria (i) and (ii)
and a condition inspired by (iii) [68]. These findings have
prompted the quest for new measurement protocols and a bet-
ter understanding of the statistics of work [48–53,63,64,69–
71]. Remarkably, there is still no statistical framework for de-
scribing work that aligns with criteria (i)–(iii), suggesting an
incompatibility between quantum mechanics, its convergence
to the classical limit, and thermodynamics.

In this Letter, we propose a solution to this challenge.
We demonstrate that there is at least one protocol for raising
work statistics in consonance with the basic criteria (i)–(iii).
To demonstrate our results, we adopt criteria (i) and (ii) in
a manner analogous to Ref. [68] while imposing necessary
conditions for the classical limit as stipulated by criterion
(iii). Specifically, we require that in the classical limit, the
average of general quantum observables approximates their
corresponding classical counterpart and that the commutation
of quantum observables is sufficiently small. Guided by these
conditions, we demonstrate that treating work as a two-time
quantum observable [87–89], criteria (i)–(iii) are satisfied.
Furthermore, we shed light on previous forms of imposing
criterion (iii), highlighting their reliance on the two-point-
measurement (TPM) methodology [21,67,72], which we show
neither guarantees the recovery of the classical limit nor repre-
sents the unique approach capable of achieving it. We expect
that our study showcases the feasibility of achieving a sat-
isfactory reconciliation between quantum and classical work
statistics and contributes to the ongoing quest for a unified
framework for quantum work statistics.

Requirements for consistent work statistics. We first present
criteria (i)–(iii) in detail. Our analysis consists of a closed
system whose initial state is described by ρ governed by an
externally controlled time-dependent Hamiltonian H (t ) with
eigenbasis {|e j (t )〉}. The system’s dynamics are dictated by
the evolution operator Ut , which satisfies the Schrödinger
equation ih̄∂tUt = H (t )Ut . Since the system is isolated, no
heat is exchanged, and work equals the system energy
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variation. We thus posit that there exists a general proto-
col for measuring work, such that for any process defined
by operators H (t ) and Ut , this protocol can describe the
probability P(w) of obtaining a value of work w. Follow-
ing the quantum mechanics paradigm [85,86], we require
that P(w) = Tr[M(w) ρ], where M(w) are the elements of a
POVM {M(w)}, i.e., a set of non-negative Hermitian opera-
tors M(w) satisfying the relation

∑
w M(w) = 1. Considering

this formalism, a work measurement scheme implemented by
{M(w)} should satisfy the following criteria:

(i) The operators M(w) may depend on H (t ) and Ut , but
are independent of ρ. With this criterion, we anticipate that the
measurement protocol must depend on the process described
by Ut and H (t ) but is independent of the initial state, as
one should not expect to adjust the measurement apparatus
to the system’s initial state [68]. Importantly, an equivalent
formulation of criterion (i) allows for state-dependent POVM,
as long as P(w) exhibits linear dependence on the state
[68,69].

(ii) For any state ρ, the work average equals the variation
in the average energy over time, i.e., 〈W 〉 = ∑

w w P(w) =
Tr[H (t )UtρU †

t ] − Tr[H (0) ρ] = 〈H (t )〉 − 〈H (0)〉. Consider-
ing the convention in which work is deemed positive when the
energy H (t ) increases, this statement aligns with the first law
of thermodynamics, as there is no heat flux for this nonau-
tonomous and closed quantum scenario.

(iii) In the classical limit, the statistics raised via the POVM
M(w) must approach the classical results. More precisely,
it is anticipated that as the system approaches the classical
limit, the quantum distribution P(w) obtained through M(w)
should exhibit the same statistics as the classical distribu-
tion associated with the classical limit. This criterion put
forward the expectation that the classical world can be re-
produced within quantum mechanics in semiclassical regimes
[78,90–94].

Criteria (i)–(iii) collectively provide a comprehensive
framework that aligns with the foundations of quantum
mechanics and thermodynamics and the convergence to
classical behavior. In fact, these have served as the basis
for many recent works (see [53,64,68–71] and references
therein).

We can straightforwardly examine how criteria (i) and
(ii) can constrain work POVMs considering two notable
examples that shall be treated frequently in this Letter.
On the one hand, we consider the two-point-measurement
(TPM) POVM, which is succinctly described as follows
[21,67,72]. At an initial time, the system is submitted to
a projective measurement of energy, collapsing to an H (0)
eigenstate |en(0)〉 with probability pn = 〈en(0)|ρ|en(0)〉. The
system then evolves unitarily until the instant τ , when a
second measurement is performed and a random eigen-
value em(τ ) of H (τ ) is obtained with probability pm|n =
| 〈em(τ )|Ut |en(0)〉 |2. The TPM work probability is thus
computed as [68,72] PTPM(w) = ∑

mn pm|n pn δ[w − (em(τ ) −
en(0))] = Tr[MTPM(w) ρ], where MTPM(w) = ∑

mn δ[w −
(em(τ ) − en(0))]pm|n |en(0)〉 〈en(0)| are the elements of the
TPM POVM and δ is the Dirac’s delta. Although TPM com-
plies with criterion (i), it generally does not satisfy criterion
(ii), as the first measurement destroys any coherence the initial
state may possess [64,68,69].

On the other hand, the observable (OBS) POVM is con-
nected with the two-time work observable [49,50,87–89]

W (τ, 0) = Hh(τ ) − H (0), (1)

where Hh(t ) = U †
t H (t )Ut represents the Hamiltonian in

the Heisenberg picture at time t . Notably, W (τ, 0) is
a Hermitian operator possessing a set of eigenvalues
w j (τ, 0) and corresponding eigenvectors {|w j (τ, 0)〉}, such
that W (τ, 0) = ∑

j w j (τ, 0) |w j (τ, 0)〉 〈w j (τ, 0)|. Accord-
ingly, the probability of finding a value w of work is defined
as POBS(w) = Tr[MOBS(w)ρ], where MOBS(w) = ∑

j δ(w −
w j (τ, 0)) |w j (τ, 0)〉 〈w j (τ, 0)|. As can be checked from the
discussion in [49], there always exists a corresponding
Schrödinger operator S diagonalized by the same basis as
{|w j (τ, 0)〉} for each arbitrary interval [0, τ ]. Therefore, by
measuring S at time 0 and collapsing the state to an eigenstate
|w j (τ, 0)〉, one is thus “preparing” a state whose amount of
work done on the system is known to be w j (τ, 0) during
[0, τ ]. By making several measurements of S at time 0, one
thus raises POBS(w).

We remark that criteria (i) and (ii) are fulfilled if and only
if M(w) are state-independent operators that satisfy the re-
lation

∑
w wM(w) = Hh(τ ) − H (0) [68,69]. Comparing this

equation with Eq. (1) and considering the explicit form of
MOBS(w), we readily confirm that the OBS POVM satisfies
criteria (i) and (ii).

TPM and the classicality criterion. Unlike criteria (i) and
(ii), verifying criterion (iii) for a specific POVM is challenging
due to the elusive nature of the classical limit in the quan-
tum realm—a topic that has been intensely debated since the
inception of quantum mechanics [95–100]. Still, there is no
unique form of characterizing the classical limit in the quan-
tum context [101–105]. Notwithstanding these difficulties,
Perarnau-Llobet et al. [68] boldly proposed what we refer to as
the classical stochastic (CS) hypothesis, aiming to implement
criterion (iii): for initial states with no quantum coherences in
the energy basis, the results of classical stochastic thermody-
namics should be recovered. More specifically, they suggested
that for incoherent initial states where [ρ, H (0)] = 0, the
work probability should be equal to the TPM probability,
i.e., [ρ, H (0)] = 0 ⇒ P(w) = PTPM(w). The CS hypothesis
was justified on the basis that the TPM scheme used for
incoherent states enabled classical stochastic thermodynamics
relations to be reproduced similarly in the quantum regime
[10–13,21,26,30,106] and because of its good convergence
in the classical limit [78,90–94]. Remarkably, the authors
demonstrated that no POVM could simultaneously satisfy
criteria (i) and (ii) along with the CS hypothesis. However,
even though the CS hypothesis has been considered in many
works aiming to recover the classical limit [53,64,69], we
present throughout this section three arguments showing that
demanding CS as a way of implementing criterion (iii) may
not be the most general or accurate approach.

(1) There is no fundamental principle dictating that
quantum processes beginning with initial incoherent states
should recover classical stochastic thermodynamic results
[49,63,65,78]. Because the Hamiltonian is time-dependent,
an initial incoherent state will not always time-evolve to an
incoherent state with respect to the instantaneous Hamiltonian
energy bases. The emergence of coherences throughout the
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process may result in a different amount of work exchange
relative to what is classically expected. Moreover, for inco-
herent states quantum corrections can still display significant
thermodynamics effects [107,108], as has been recognized
ever since Wigner’s seminal paper [109].

(2) TPM is not the unique approach successful in reproduc-
ing classical outcomes when coherences are absent. Indeed,
the agreement of TPM with the classical results in the semi-
classical regime [78,90–94] has served as a justification for its
selection in the CS hypothesis [68,69]. However, TPM is not
necessarily unique in this sense. To prove this statement, con-
sider a process described by H (t ) and Ut and a initial state ρ

taking place within the time interval [0, τ ]. Consider also that
the average of energy is bounded, i.e., 〈H (t )〉 < ∞, for any
t ∈ [0, τ ]. Let C(ρ(t )) be the 1-norm measure of coherences
[110] for the evolved state ρ(t ) = UtρU †

t :

C(ρ(t )) = ‖ρ(t ) − �H (t )(ρ(t ))‖1 =
∑
j �=k

|〈e j (t )|ρ(t )|ek (t )〉|,

(2)
where �H (t )(ρ(t )) = ∑

j |e j (t )〉 〈e j (t )| ρ(t ) |e j (t )〉 〈e j (t )| is
the dephasing map at time t , accounting for the incoherent
part of ρ(t ). Within this scenario, we prove the first result of
this Letter:

Result 1. If there is a real non-negative scalar ε1 in which
for any initial incoherent state ρ, C(ρ(t )) � ε1 during the
entire interval [0, τ ], then

∫ ∞
−∞ dw |PTPM(w) − POBS(w)| �

C1ε1, where C1 is a boundedreal positive scalar independent
of ε1. Therefore, limε1→0

∫ ∞
−∞ dw |PTPM(w) − POBS(w)| = 0.

Result 1 arises from the fact that processes with a small
amount of coherence require the Hamiltonians at different
times to almost commute. Otherwise, a large amount of co-
herences will emerge. The difference between TPM and OBS,
as well as the creation of coherences, stem from the lack of
Hamiltonian commutation and will be reduced as the Hamil-
tonians approach to a perfect commutation. Therefore, the
TPM protocol will approach the OBS scheme for processes
close to the classical limit where coherences are all the time
small. Consequently, justifying the preference for TPM over
OBS based on its convergence to classical results can be
misleading. We confirm this physical intuition by rigorously
showing that C1 is bounded and independent of ε1 (see the
Supplemental Material (SM) [111]). The case of zero coher-
ence, ε1 = 0, can be directly proved considering the results
presented in Ref. [67].

(3) The CS hypothesis lacks the necessary generality to
encompass a broader range of processes in the classical limit.
Consider, for instance, an oscillator with a time-dependent
frequency described by the Hamiltonian operator [90,91]

H (t ) = P2

2m
+ mω2(t )

2
X 2, (3)

where ω2(t ) = ω2
0 + (ω2

1 − ω2
0 ) t

τ
, and ω0,1 and τ are fixed

parameters. When initialized in a coherent state ρ = |α〉 〈α|,
defined as

|α〉 = e−|α|2/2
∑

n

αn

√
n!

|en(0)〉 , (4)

then, for a sufficiently large |α|, the center of the wave packet
exhibits classical particle-like behavior [112], following dy-

namics governed by a classical Hamiltonian analogous to
Eq. (3). On the one hand, following criterion (iii), if we
consider this scenario a classical limit, the quantum work
statistics should converge to its classical counterpart. Under
this perspective, this example extends beyond the scope of the
CS hypothesis, exposing its limited coverage of the classical
limit by associating it solely with incoherence in the energy
basis. On the other hand, despite the oscillator’s classical
behavior, one might expect that a large amount of coherence
could lead to work statistics diverging from the classical coun-
terpart. This example thus highlights the need to clarify the
classical limit beyond the CS hypothesis and when we expect
the quantum statistics to converge to it. We address this issue
in the next section and in [111], where we explicitly calculate
the work statistic for a coherent state, revealing that the OBS
protocol appropriately converges in the classical limit while
the TPM does not.

OBS protocol and the classical limit. As exemplified above,
formally characterizing criterion (iii) is daunting and the CS
hypothesis is not able to implement it. In order to circumvent
these difficulties and still obtain valuable results from criterion
(iii), we propose an alternative strategy. Here, we first identify
some necessary conditions for a quantum process to approach
the classical limit. Then, we show that these are enough to
obtain general results for quantum work statistics.

We consider again a process described by Ut and H (t ), but
now the Hamiltonian H (t ) depends on a Schrödinger coordi-
nate observable X and its conjugate momentum P ([X, P] =
ih̄1), and time t within the interval [0, τ ]. Consequently,
Ut and the Heisenberg version of the Hamiltonian Hh(t ) are
continuous functions of X , P, and t . We can identify Hh(t ) =
G(X, P, t ), where G is a smooth function that can be written
as powers of X , P, and t .

In order to establish the necessary conditions for the con-
vergence to the classical limit of an initial preparation ρ and
the quantum process described by Ut , Hh(t ), it is essential to
introduce the following quantities: the classical probability
distribution 
(�0), representing the likelihood of finding a
classical system at the phase points �0 = (x0, p0) at time 0;
and a classical Hamiltonian function Ht

CL(�t , t ), character-
izing the energy of the system at time t with respect to the
phase point �t = (xt , pt ). Importantly, within the Hamiltonian
formalism, the evolution of �t (�0, t ) = (xt (�0, t ), pt (�0, t ))
can be expressed in terms of �0 and t , allowing the Hamilto-
nian function to also be written as a function of �0 and t , so
that Ht

CL(�t , t ) = HCL(�0, t ). Here, HCL corresponds to the
energy at time t related to the system that was at �0 at time
0. With these definitions in place, the following conditions
are required for the convergence to the classical limit of the
process characterized by {X, P, ρ, Hh(t )}:

(A) There exists at least one classical distribution

(�0) along with a Hamiltonian function HCL(�0, t ), such
that

∣∣∣∣Tr[PmX nρ] −
∫

d�0 pm
0 xn

0 
(�0)

∣∣∣∣ � εA|Tr[PmX nρ]| (5)

for any integers m and n, and

HCL(�0, t ′) ≡ HCL(x0, p0, t ) = G(x0, p0, t ′), (6)
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where G(x0, p0, t ) has the same functional form as G(X, P, t ),
previously defined, t ′ can be either 0 or τ , and εA  1. Equa-
tion (5) asserts that there must be at least one classical scenario
whose averages approach the quantum ones at t = 0. Further-
more, Eq. (6) states that the quantum energy in the classical
limit should be described in terms of the same quantities that
define its classical version at t ′ = 0, τ .

(B) For any functions gl ≡ gl (X, P) and gr ≡ gr (X, P)
describing the product of powers of X and P, it follows
that

|Tr[gl [X, P] gr ρ]| � εB|Tr[gl XP gr ρ]| (7)

and

|Tr[gl [X, P] gr ρ]| � εB|Tr[gl PX gr ρ]|, (8)

where εB  1. This requirement resembles the usual classical
limit assumption h̄ → 0. In our formulation, however, we
allow the noncommutation to have a non-null yet significantly
small value compared to the system’s inherent scales.

It is important to emphasize that conditions (A) and (B)
alone are not sufficient to certify the classical limit. Specifi-
cally, they do not rule out the effects of quantum correlations,
measurement’s disturbance, or any other quantum phenom-
ena. In our framework, processes influenced by these quantum
effects may still adhere to conditions (A) and (B) with-
out truly approximating the classical limit. Conversely, these
conditions are necessary for the classical limit. Therefore,
we expect that any quantum scenario genuinely approach-
ing the classical limit rigorously satisfies conditions (A) and
(B). In these circumstances, the set {x0, p0, 
, HCL} describe
the classical scenario to which the process characterized by
{X, P, ρ, Hh(t )} converges. Interestingly, we demonstrated in
[111] that the system described in Eqs. (3) and (4) satisfies
conditions (A) and (B) for |α| → ∞.

Now, consider a scenario fulfilling conditions (A) and
(B) converging to the classical limit. Within this context, the
classical work is described as WCL(�0, τ, 0) = HCL(�0, τ ) −
HCL(�0, 0), with the associated classical distribution
defined as

PCL(w) =
∫

�0

d�0 
(�0) δ[w − WCL(�0, τ, 0)]. (9)

According to criterion (iii), a consistent approach to describ-
ing quantum work statistics should converge to the results
provided by PCL(w) in the classical limit. Following this rea-
soning, we derived the central result of this Letter.

Result 2. If conditions (A) and (B) are satisfied, then

lim
εmax→0

∫ ∞

−∞
dw|POBS(w) − PCL(w)| = 0 (10)

and ∫ ∞

−∞
|POBS(w) − PCL(w)|dw � Kεmax, (11)

where POBS(w) is the probability related to the OBS protocol,
PCL(w) is defined in Eq. (9), εmax is the maximal value of εA

and εB as defined in conditions (A) and (B), and K is a bounded
real positive scalar independent of εA and εB.

The OBS protocol, derived from classical work using stan-
dard quantization rules, reveals differences between classical
and quantum observables in scenarios with significant lack
of commutation. This suggests that the difference in quantum
and classical probabilities is tied to the lack of commutation,
approaching zero when commutation is negligible [condition
(B)], and the quantum scenario exhibits similar averages as a
classical counterpart [condition (A)]. This intuition supports
result 2, which we rigorously proved in [111], employing
the Cauchy-Hadamard formula [113,114] to demonstrate the
boundedness of K .

According to result 2, the OBS protocol will converge to
the description via Eq. (9) for any given quantum state ρ and
process {Ut , H (t )} that satisfies conditions (A) and (B). Since
these conditions are necessary for the classical limit, then we
can deduce that the statistics of work obtained through the
OBS protocol invariably replicate the classical work statis-
tics in the classical limit, thereby satisfying criterion (iii).
Furthermore, from the review conducted in Ref. [69], the
OBS protocol is the only well-known protocol that generally
adheres to (i) and (ii). As a consequence of the result 2 and
given our current understanding, we can also assert that OBS
is the only well-known protocol capable of meeting criteria
(i)–(iii) simultaneously.

Conclusions. Quantum work is a fundamental concept for
extending thermodynamics to general quantum scenarios. Its
statistical description, however, still presents intriguing chal-
lenges. Therefore, testing its consistency with criteria (i)–(iii),
expressing general features that any quantum work protocol
should possess, is a paramount goal. By adopting a novel
strategy to consider the classical limit, we demonstrated that
OBS is the only well-known scheme for quantum work mea-
surement that complies with all these criteria simultaneously.

Our results are entirely general concerning the internal
structure of the closed system. The latter may comprise multi-
ple subsystems, including scenarios where heat is transferred
among them. However, we did not address open quantum
scenarios with external sources transferring heat to the system
of interest. Although we showed that the OBS POVM is the
only well-known scheme capable of satisfying simultaneously
all the criteria (i)–(iii) in the closed-case scenario, it is not
necessarily expected that an observable precisely as it is de-
fined in Eq. (1) should be the correct observable describing
thermodynamics work in the open quantum case. This leads to
an intriguing question: Is there a broader, more encompassing
quantum work observable that not only adheres to criteria
(i)–(iii) in open quantum scenarios but also aligns with the
observable in Eq. (1) in the specific closed case? We believe
our current work lays the groundwork for addressing this
question, hopefully inspiring future research to expand and
refine our understanding of the concept of work.

Interestingly, our results pave the way for many re-
search opportunities exploring superposition, entanglement,
and other correlations regarding OBS statistics of work and
other two-time quantities [49]. Conditions (A) and (B) in-
troduced here could be used to study the classical limit
in diverse fields like quantum chaos [115], quantum optics
[103–105,116], and the semiclassical formalism. A promis-
ing avenue in these lines involves conducting a comparative
study between the results obtained in [78,90–94] and result 2.

L022036-4



QUANTUM WORK: RECONCILING QUANTUM MECHANICS … PHYSICAL REVIEW RESEARCH 6, L022036 (2024)

Moreover, our findings support the viewpoint that conven-
tional fluctuation theorems aimed at recovering classical
expressions necessitate a departure from their conventional
forms [117], revealing new connections between equilibrium
properties and information resources with quantum work
statistics. Furthermore, we hope our approach stimulates the
analysis of the relation between work and other quantum
thermodynamic facets, such as the lack of detailed balance at
equilibrium (nonreciprocity) and persistent quantum currents
[118,119]. These lines of research, we expect, will propel the
field of quantum thermodynamics to new frontiers.
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