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Efficient survival strategy for zooplankton in turbulence
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Zooplankton in a quiescent environment can detect predators by hydrodynamic sensing, triggering powerful
escape responses. Since turbulent strain tends to mask the hydrodynamic signal, the organisms should avoid such
regions, but it is not known how they accomplish this. We found a simple, robust, and highly efficient strategy
that relies on measuring the sign of gradients of squared strain. Plankton following this strategy show very strong
spatial clustering, and align against the local flow velocity, facilitating mate finding and feeding. The strategy
has the potential to reconcile competing fitness pressures.
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Introduction. Zooplankton form an essential part of marine
ecosystems, influencing both food webs and the climate [1].
Their presence is vital for many fish species and aquacul-
ture [2,3], their daily vertical migration influences the global
carbon cycle [1,4], and they affect the albedo of the ocean
[5]. Understanding plankton behavior is paramount for an-
ticipating variations in their abundance, and this, in turn,
requires insights into how plankton navigate within turbulent
environments.

Simple models are tremendously successful in explaining
behavior of swimming phytoplankton and bacteria in flows
[6,7]. For example, a model for gyrotactic microswimmers
[8] explains shear trapping in turbulence [9], inhomogeneous
spatial distribution [10], accumulation in down-welling [8,10]
or up-welling regions [11,12].

Unlike phytoplankton, zooplankton use setae on their bod-
ies and antennae [13] to measure flow disturbances [14,15].
This helps them detect and distinguish predators, mates, and
food [16]. Observations have revealed that many zooplankton
species navigate efficiently in moderately turbulent flow, by
adjusting their jump frequency and velocity [17], as well as
their swimming pattern [18] in response to local flow charac-
teristics, except under substantial turbulent fluctuations [19].
In laminar flows, the strain rate triggers escape reactions.
Experiments demonstrate that in turbulent environments com-
parable or even larger magnitudes of strain may be ignored
[20]. Moreover, copepods can exert control over their turbu-
lent diffusion by adjusting their jumping frequency, although
the jumps are uncorrelated with the local strain rate and its
history for at least two seconds [21]. Finally, copepods in
small-scale vortices respond to vorticity rather than strain
[22,23], despite vorticity being hard to measure in their frame
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of reference. These experimental observations indicate that
information beyond the local strain rate matters for navigation
in turbulence. However, little is in general known about which
signals and mechanisms are used for efficient navigation.

The perhaps most critical task for zooplankton is evad-
ing predators. Successful detection of the flow disturbance
ahead of an approaching predator swimming faster than flow-
dispersed chemical signals, offers an opportunity to escape
[24]. In laminar flow, escapes are triggered by the magnitude
of the strain rate tensor being above a critical threshold, vary-
ing by species from 0.4 s−1 to 6 s−1 [25–27]. Turbulent strain
is harmful because it impedes escape by masking the predator
signal [16]. Additionally, it can trigger false alarms, putting
the zooplankton at risk by revealing its location when jumping
in response to such signals [28]. Efficient predator evasion,
therefore, requires the plankton to find and remain in low-
strain regions. Certain species migrate to calmer layers when
faced with regions of high mean shear or turbulence intensity,
and thus, high-strain regions [29–31], while others stay, per-
haps to enhance prey contact [31]. However, it is not known
how zooplankton succeed in avoiding high-strain regions in
turbulent flow. Which are the most important hydromechan-
ical signals, and which are the most efficient strategies to
achieve this goal? Unveiling such strategies offers insight into
the intricate interplay between zooplankton behavior, predator
evasion, and turbulent flow dynamics. In order to answer these
questions, we formulate a model for cruising zooplankton
that can actively adapt swimming speed and orientation, in
response to flow signals. We identify key signals, and deter-
mine the optimal strategy that allows cruising zooplankton to
efficiently avoid high-strain regions across a wide range of tur-
bulent dissipation rates. Figure 1(a) illustrates the remarkable
success of this strategy.

Related navigation problems, where microswimmers in
complex flow target either an absolute point or direction,
have recently been addressed using analytical approaches
[32–36] or reinforcement learning [33,37–44]. Here, we in-
vestigate the vital task of how zooplankton can avoid local
high-strain regions fluctuating in space and time in turbulent
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FIG. 1. (a) Snapshot showing five spatial slices with positions of
swimmers (green points) following the optimal strategy (3) in the
stochastic model (see text). Flow strain S2 is color coded. (b) Zoom,
including flow streamlines and swimmer direction projected onto
the image plane. (c) Steady-state probability distributions of S2

evaluated along swimmer trajectories (green) and for tracer particles
(black). Parameters λ = 2, v(s) = 20 mm s−1, ω(s) = 5 rad s−1, ν =
1 mm2 s−1, and ε = 1 mm2 s−3 (urms = 10 mm s−1 and τη = 1 s).

flows, using realistic sensing abilities and characteristics of
the swimmer. In an earlier model for copepod clustering [45],
copepods jump upon encountering strain rates above a set
value. Although reducing time spent in high-strain zones, this
strategy is not optimal because the copepod moves through
the high-strain areas. Our strategy ensures zooplankton avoid
high-strain regions altogether.

Model. References [17–23] illustrate that zooplankton do
respond to stationary and turbulent flow. The problem is that
very little is known about which the most important signals
are and how these are used for navigation. We therefore ask
the question how zooplankton should behave in a flow to
solve the vital task of avoiding high-strain regions masking the
signal from approaching predators. The aim of our model is to
capture the essential dynamics of cruising zooplankton, allow-
ing us to explore mechanisms applicable to a broad range of
species. We consider a single organism and analyze how it can
navigate in response to hydromechanical signals. Assuming
the zooplankton can swim, steer, and sense its surroundings,
its velocity

v(t ) = u(x, t ) + v(s)(t )n̂(t ) (1a)

is composed of the flow u and active swimming with speed
v(s)(t ) in its direction n̂. This model is widely used to dis-
cuss all kinds of microorganisms swimming in the ocean
[8–12,35–37,39,40]. Angular velocity ω is influenced by fluid
vorticity 2� = ∇ × u, strain rate tensor S with components
Si j = (∂iu j + ∂ jui )/2, and active steering, ω(s)

p (t ) and ω(s)
q (t ),

around orthogonal axes p̂ and q̂ transversal to n̂ (steering
around n does not matter due to symmetries). Approximating
the shape by a spheroid with aspect ratio λ, the dynamics
becomes [46],

ω = �(x, t ) + λ2 − 1

λ2 + 1
n̂ × S(x, t )n̂ + ω(s)

p (t ) p̂ + ω(s)
q (t )q̂.

(1b)

The dynamics is controlled by choosing v(s)(t ), ω(s)
p (t ), and

ω(s)
q (t ) within maximal speed v(s) and angular speed ω(s).

Zooplankton that jump in response to strain signals to
escape predators vary greatly in size [25–27], from ciliates as
small as 20 µm to copepods with length L from 0.6 mm–5 mm
[47]. Since larger zooplankton in general swim faster, we ex-
pect them to avoid high-strain regions more easily. Swimming
speeds of copepods vary from 1 mm s−1–50 mm s−1 [47].
Our model assumes a slightly prolate shape (λ = 2), length
L = 2 mm, and swimming speed v(s) = 20 mm s−1. Cruising
copepods execute rapid turns [48,49], but references for typ-
ical values of ω(s) are lacking. We conservatively use ω(s) =
5 rad s−1, one-sixth of the diameter-to-swimming-speed ratio
estimated in Refs. [35,43]. In turbulence of moderate intensity,
the precise value of ω(s) does not matter much for our findings,
while a larger value of ω(s) is advantageous if the turbulence
intensity is very high.

In our simulations, we employ homogeneous and isotropic
turbulence, either from direct numerical simulations (DNS)
[43,50–52] or a stochastic model [53,54]. The latter has a sin-
gle spatial scale 	f . Exponential tails of fluid gradients model
non-Gaussian gradients in turbulence. Dynamics of swimmers
or inertial particles in this model qualitatively, and in many
cases quantitatively, matches results from DNS [53,54]. See
Appendix A for details on the flows.

Optimal strategy. The aim is to determine the most impor-
tant flow signals and how to exploit them to avoid high-strain
regions. To this end, we minimize the squared strain rate,
S (t )2 = tr[S(x(t ), t )2], along the trajectory of a swimmer
following the active part of its dynamics, by making an ex-
pansion in a short time interval δt to lowest contributing order
in δt v(s)(t ), δt ω(s)

p (t ), and δt ω(s)
q (t )

S (t + δt )2 =S (t )2 + δt[∂tS (t )2 + v(s)(t )n̂(t ) · ∇S (t )2]

+ 1
2δt2v(s)(t )

[
ω(s)

q (t ) p̂(t )−ω(s)
p (t )q̂(t )

]·∇S (t )2.

(2)

The term linear in δt is minimized by the control

v
(s)
opt (t ) =

{
v(s) if n̂ · ∇S (t )2 < 0
0 otherwise

, (3a)

and the δt2 term is minimized by the control

ω
(s)
p,opt (t ) = ω(s)sign[q̂ · ∇S (t )2], (3b)

ω
(s)
q,opt (t ) = −ω(s)sign[ p̂ · ∇S (t )2]. (3c)

We find that the most important signal for short-term strain
avoidance are the signs of projections of the squared strain
gradients on the swimming direction n̂, and the transversal
directions p̂ and q̂. The resulting strategy is to swim if the
strain decreases in the swimming direction, and steer such that
n rotates towards the direction of steepest strain descent. We
have performed reinforcement learning [55], with resulting
strategies indicating that Eq. (3) is also optimal in the long
run.

By superposing swimmers starting from different initial
conditions, Fig. 1(a) illustrates the spatial probability of a
single swimmer following the optimal strategy (3) in the
stochastic model with moderate turbulence. The swimmer
avoids high-strain regions, as desired, and accumulates in
regions of low strain. Figure 1(c) shows the probability of
strain along its trajectory (green line). Strain exceeding the
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FIG. 2. Probability distributions of (a) n̂∗ · n̂ and (b) û · n̂ for the
parameters in Fig. 1. (c) Example trajectory (green) with color-coded
û · n̂ (small markers) for duration

√
5τη. Large markers denote start

(blue), midpoint (pink), and end (orange). The black trajectory shows
the location of the only local strain minimum in the displayed region.

threshold for predator detection (∼1 s−2, dashed line) is far
rarer than for tracers (black line).

The mechanism for avoiding high-strain regions can be
understood as follows. First, a swimmer following Eq. (3a)
decreases its instantaneous value of S2 by only swimming if
the strain decreases ahead of it. Second, the angular dynamics
in Eqs. (3b), (3c) has fixed points when both p̂ and q̂ are
perpendicular to ∇S2, i.e., when the swimming direction n̂
is equal to either of ±∇S2/|∇S2|. The stable fixed point
n̂∗ = −∇S2/|∇S2| is the direction in which S2 decreases
most. Due to the turbulent fluctuations, n̂ does not follow n̂∗

perfectly. Figure 2(a) shows the distribution of n̂∗ · n̂. There
is a strong bias to align with n̂∗: 80% of the swimmers have
positive n̂∗ · n̂. But the alignment is not perfect, only 25%
have n̂∗ · n̂ > 0.8, belonging to the sharp peak at unity. Never-
theless, the alignment bias allows the swimmers to efficiently
avoid high strain.

The swimmers in Fig. 1(a) accumulate in low-strain re-
gions. This constrains the phase-space dynamics compared
to tracer particles, meaning that unexpected correlations may
emerge. One example is a tendency for the swimmers to swim
against the streamlines of the flow, see Fig. 1(b). Figure 2(b)
shows the distribution of the alignment between the direc-
tion of the swimmer, n̂, and the flow, û. The distribution
is strongly skewed towards antialignment, with an average
〈û · n̂〉 ≈ −0.5. This may be perceived as surprising: in mod-
els of phytoplankton, where v(s) is constant and ω(s) = 0, the
swimmer instead has a bias to align with the flow [56,57].

To explain the alignment against the flow, we consider
a simplified model in the limit ω(s) → ∞. Then swimmers
quickly align with the stable orientation n̂∗. The strategy (3)
approaches gradient descent of S2 subject to advection by the
flow. The velocity simplifies to

v = u(x, t ) − v(s)∇S2/|∇S2|. (4)

This effective velocity field has nonzero divergence, showing
that particles do not distribute uniformly in space. A flow
speed much larger than the swimming speed hinders efficient
strain avoidance. In the opposite limit, swimmers exactly fol-
low local minima of the strain. When both speeds are of the

same order, the swimmer circulates closely around the strain
minimum, but fails to reach it because of the flow. Since the
velocity is larger when swimming with the flow than against
it, the swimmer spends more time in flow regions where it
swims against the flow. This effect becomes more prominent
the closer the swimming speed is to the flow speed. The same
mechanisms applies for finite ω. One example trajectory is
shown in Fig. 2(c). The velocity is given by the displacement
between successive markers, color coded by the alignment
with the flow. The trajectory encircles the strain minimum,
moving slower when antialigned with the flow velocity. This
explains the alignment against the flow in Fig. 2(b). We re-
mark that the found mechanism is kinematic and unrelated
to the task of minimizing S2. It gives rise to countercurrent
swimming for swimmers tracking a generic point target in the
presence of turbulent fluctuations.

The results discussed so far assumes that the signs of
the gradients of squared strain in Eq. (3) can be measured
perfectly. However, mechanoreceptive zooplankton have a fi-
nite resolution in their measurements. To investigate when
they are able to follow the strategy, we estimate a sensitivity
threshold ∇S2

th of components of ∇S2. The setae of copepods
can measure velocity differences between their body and the
ambient fluid down to �uth ∼ 10 µm s−1 [13,58]. An estimate
of the lower limit of ∇S2

th is �u2
th/(L/2)3 ∼ 0.1 m−1 s−2 ,

for a swimmer of length L = 2 mm. Since zooplankton are
hardly able to measure all components with this precision
while cruising, we use a ten times larger threshold in our
simulations, ∇S2

th = 1 m−1s−2 . When the magnitude of com-
ponents of ∇S2 are below this threshold, we set ω(s)(t ) to 0,
and set v(s)(t ) randomly to either v(s) or 0, keeping this value
until the signal becomes larger than the threshold. Simulations
for moderate turbulence intensity show that the exact value
of ∇S2

th is not important [see Fig. 5(a) in Appendix B]. The
distribution with ∇S2

th = 1 m−1s−2 is identical to that ob-
tained without a threshold. Even a 100 times larger threshold
gives the same distribution. Larger thresholds reduce the per-
formance, but even for a threshold as large as 1000 m−1s−2 ,
there is a clear reduction in probability to sample very large
strain. In conclusion, the exact value of the threshold does
not matter for intermediate turbulent intensities. For larger
turbulence intensities, |∇S2| is typically larger, making the
dynamics even less sensitive to the threshold. For smaller
turbulence intensities, |∇S2| is smaller, making the value of
the threshold more important. However, for that case, strain is
anyway small, meaning that it is not as important to be able to
minimize it.

In the ocean, the energy dissipation rate per unit mass, ε,
spans from 10−4 mm2s−3 in the deep ocean to 100 mm2s−3 in
the upper ocean layer [59,60]. The root-mean-squared veloc-
ity urms = 〈u2〉1/2 ranges from 0.1 mm s−1–100 mm s−1 [59].
In our simulations, we use urms = 10

√
ε s1/2 fitted to the

data in Ref. [59], and a kinematic viscosity ν = 1 mm2 s−1.
The latter amounts to Kolmogorov times τη from 100 s down
to 0.1 s, Kolmogorov lengths η from 10 mm–0.3 mm, and
Taylor-scale Reynolds numbers from 1–1000. Typical re-
sponse times of copepods are a few milliseconds [25,61,62],
well below the Kolmogorov time. The zooplankton length,
L = 2 mm, is below the smooth length scale, ∼10η, where
the dissipation and inertial ranges cross [16,54].
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FIG. 3. Strain avoidance and counter-current alignment against
the turbulent dissipation rate ε. (a) Average strain 〈S2〉 in the stochas-
tic model (filled markers) and DNS with Reλ ≈ 60 (empty markers).
Solid line shows model results for the simplified dynamics (4). Hor-
izontal dashed line shows value for tracer particles. Vertical dashed
lines show where v(s)/urms = 1 and ∇S2

thurmsτ
3
η = 1. The dimension-

less rotational swimming speed is ω(s)τη = 2.5v(s)/urms. (b) Same as
(a), but for the average counter-current alignment, 〈û · n̂〉. Param-
eters λ = 2, v(s) = 20 mm s−1, ω(s) = 5 rad s−1, ∇S2

th = 1 m−1s−2 ,
and ν = 1 mm2 s−1.

Figure 3 shows averages of S2τ 2
η [Fig. 3(a)] and û · n

[Fig. 3(b)] against ε. First, solid lines show stochastic-model
results for the simplified model (4). In accordance with the
analysis below Eq. (4), the average strain in Fig. 3(a) is
exceptionally low due to tracking of strain minima when
v(s)/urms 
 1 (to the left of the vertical red dashed line),
becomes slightly higher due to circulation around minima
when v(s)/urms ∼ 1, and approaches the level of tracer par-
ticles when v(s)/urms � 1. The alignment against the flow
in Fig. 3(b) is strong when v(s) ∼ urms, consistent with the
mechanism for countercurrent swimming described above. In
contrast, for the case where v(s)/urms 
 1, the flow is too
weak to give a substantial effect and when v(s)/urms � 1 the
alignment is small because the swimmer fails to track the
strain minima.

Second, filled markers in Fig. 3 show stochastic-model
results for swimmers following the optimal strategy (3) with
a sensing threshold. The main differences to the simplified
model are that 〈S2〉 is much larger for the smallest ε and that
both 〈S2〉 and 〈û · n〉 are slightly larger for the largest ε. Sim-
ulations with the threshold set to zero (Fig. 6 in Appendix C)
reveal that the first difference is entirely due to the sensing
threshold, which becomes important for ∇S2

th larger than its
characteristic scale 1/(urmsτ

3
η ) (vertical blue dashed line). The

second difference entirely arises from the angular velocity
being finite, slightly reducing the performance compared to
the simplified model when flow gradients are vigorous.

Finally, results for the optimal strategy from DNS are plot-
ted as empty markers. Both 〈S2〉 and 〈û · n〉 show similar
trends as the stochastic model, with minima around v(s) =
urms. The degree of preferential sampling of strain is of the

same order, but the degree of alignment is weaker in the DNS.
The latter is expected because the DNS involves a range of
scales, in contrast to the single velocity scale in the stochastic
model. As a result, while the swimmer circulates around the
strain minimum, the chance of encountering an opposing flow
velocity that matches its swimming speed decreases.

Figure 3 shows that the optimal strategy (3) with sensing
thresholds is very efficient for avoiding high-strain regions for
a large range of dissipation rates ε that are not too extreme. To
explore the robustness of this strategy to the variety of flows
encountered in the ocean, we have confirmed its effectiveness
at different Reynolds numbers and with a mean flow pro-
file. Figure 4 shows strain-rate distributions akin to Fig. 1(c)
in DNS of turbulence with dissipation rate ε = 1 mm2 / s3

(see Appendix A for details on the flows). Figures 4(a), 4(b)
present results from DNS of homogeneous isotropic turbu-
lence with Taylor-scale Reynolds number [Fig. 4(a)] Reλ ≈
60 and [Fig. 4(b)] Reλ ≈ 418, the latter integrated using data
from Johns Hopkins University turbulence database [50,51].
We find that large strain gradients have orders of magnitude
lower probability compared to tracer particles, in qualitative
agreement with the stochastic model in Fig. 1(c). The re-
ported Reynolds number Reλ ≈ 130 of ocean turbulence with
ε = 1 mm2s−3 [59] lies in between, indicating that the strat-
egy is relevant for turbulent ocean conditions. Additionally,
Fig. 4(c) displays results from DNS of a turbulent channel
flow [52], demonstrating the effectiveness of the strategy in
nonhomogeneous flows typical of ocean turbulence. In con-
clusion, Figs. 3–5 show that the strategy is robust, performing
well in a wide range of flow configurations and swimmer
parameters.

Discussion. Our analysis shows that the sign of gradients
of squared strain are the most important signals for avoiding
high-strain regions. Gradients are important for optimizing
more general scalar quantities in microswimmer dynamics,
for example chemotaxis [63], light intensity [64], point-
to-point navigation [33,65], or vertical navigation [35,36].
However, the dynamics and strategy taken in response to
the gradients are different in each example. We remark that
chemotaxis can also be obtained by sampling the history of a
concentration signal [66]. In our analysis we did not include
history, but it is expected that the history of strain is correlated
to the strain gradients, meaning that measuring history, or
other quantities that are correlated to the strain gradients, may
be preferred for species unable to measure strain gradients. As
an illustration, assume that the swimmer uses the bending pat-
tern of its setae to measure spatial variations of the maximal
strain component S̃ (x, t ) = maxi, j |Si j (x, t )| in its local frame.
This signal is simpler than S because it only depends on the
maximal strain component and it is linear. Results obtained
by replacing ∇S in Eq. (3) by ∇S̃ shows that the perfor-
mance is almost as good for the simplified signal, see blue
curves in Fig. 4. Additionally, assuming that the swimmer
only performs rotational swimming around the q axis, i.e.,
ω

(s)
p,opt (t ) = 0, it only needs to measure the signs of n̂ · ∇S̃

and p̂ · ∇S̃ in Eq. (3). These are obtained by measuring S̃
at different locations in the n̂- p̂ (tail-antennae) plane, where it
has highest resolution. Figure 4 (magenta) shows that the strat-
egy is slightly worse, but still significantly better than tracer
particles.
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FIG. 4. Strain rate distributions for the optimal strategy (3) (green), the simplified signal S̃ (blue), the simplified signal with ω
(s)
p,opt (t ) put to

zero (magenta), and tracer particles (black) in DNS of homogeneous isotropic turbulence with (a) Reλ ≈ 60, and (b) Reλ ≈ 418, and channel
flow turbulence with friction Reynolds number Reτ = 180 (c). Parameters as in Fig. 1(c).

In regions far below the strain threshold level, it could be
beneficial to change strategy to achieve other goals. However,
supposing the zooplankton continues to follow the strategy
(3), they accumulate close to strain minima, which may be
beneficial for mate finding in the vast ocean. Moreover, as
they circulate around the strain minimum, they exhibit coun-
tercurrent swimming if either their swimming speed lies close
to that of the flow, or if they adjust it to that of the flow.
From simple geometrical arguments, countercurrent swim-
ming increases the rate of head-on encounters with prey or
food particles advected by the flow, and may facilitate de-
tection of chemical cues [67]. Consequently, the strategy we
have identified offers a potential solution to the significant
challenge of balancing competing fitness pressures, such as
maintaining a high feeding rate for growth and reproduction
while simultaneously minimizing the risk of predation [31].

Ocean flows are often stratified with anisotropic large-scale
structures. In our DNS of a turbulent channel flow, we found
that the strategy (3) performs well in this anisotropic shear
flow. Figure 4(c) shows that swimmers avoid high-strain re-
gions and accumulate near the channel center where strain is
minimal. More generally, we expect that this strategy helps
avoid long-lived large-scale structures in the ocean. While
occasional formation of short-lived local strain minima may
pose temporary obstacles, large-scale high-strain regions are
avoided in the long run if their strain gradients lie below
the sensing threshold, or if they exhibit a preference for
larger strain fluctuations compared to low-strain regions. It
remains an open question whether this mechanism contributes

to the migration from large-scale turbulent regions [29–31],
or for countercurrent swimming against large-scale currents
observed in various zooplankton species [68–70].

Because of the tremendous challenge to acquire simulta-
neous experimental data for both swimmers and flow, the
extent to which zooplankton actively avoid turbulent strain
at small scales remains an unanswered question. However,
recent development of imaging technologies such as high-
speed cameras [71], acoustic imaging [72], and holographic
microscopy [73] raises hope to answer this question in the
near future.
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Appendix A: Numerical simulations. Below, we outline
our simulations of various flow setups: the stochastic
turbulence model (see subsection “Stochastic flow model”,
Figs. 1–3, 5, and 6), DNS of homogeneous isotropic
turbulence with Reλ ≈ 60 (see subsection “Homogeneous
isotropic turbulence, Reλ ≈ 60”, Figs. 3 and 4), DNS of
homogeneous isotropic turbulence with Reλ ≈ 418 (see

FIG. 5. Distribution of S2 in the turbulence model for (a) different levels of the sensing threshold ∇S2
th, (b) swimming speed v(s), and

(c) angular swimming speed ω(s). Parameters λ = 2, ν = 1 mm2 s−1, and ε = 0.64 mm2 s−3. Unless otherwise stated, v(s) = 20 mm s−1, ω(s) =
5 rad s−1, ∇S2

th = 0.
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FIG. 6. Average strain 〈S2〉 against the turbulent dissipation rate
ε for the turbulence model with threshold ∇S2

th = 1 m−1s−2 (�,
green) and without threshold (◦, black). Lines and parameters are
same as in Fig. 3 of the main text.

subsection “Homogeneous isotropic turbulence, Reλ ≈ 418”,
Fig. 4), and turbulent channel flow (see subsection “DNS of
turbulent channel flow”, Fig. 4).

Stochastic flow model. We model turbulence using an in-
compressible random flow with homogeneous and isotropic
statistics in three spatial dimensions. It is a non-Gaussian
generalization of the Gaussian random flow reviewed in
Refs. [53,54]. The flow u(x, t ) is generated as a superposition
of M time-independent random velocity fields um(x)

u(x, t ) =
M∑

m=1

cm(t )um(x). (A1)

The coefficients cm(t ) follow independent Ornstein-
Uhlenbeck processes with time scale τf and variance M−1,
i.e., they have zero mean and correlation functions

〈cm(t )cn(t ′)〉 = 1

M
δmne|t−t ′|/τf . (A2)

The fields um(x) are generated through independent spatially
smooth Gaussian random vector potentials [53,54], defined as
um(x) = ∇ × �m(x). The components �m,i have zero mean
and correlation functions

〈�m,i(x)�n, j (x′)〉 = 1
6δmnδi ju

2
f 	

2
f e−|x′−x|2/(2	2

f ). (A3)

Here uf = urms = 〈u2〉1/2 is the root-mean-squared velocity,
	f is the characteristic length scale, and τf is the correlation
time of the flow.

If the flow decorrelates faster due to spatial displace-
ments than due to the Eulerian time scale τf , the dynamics
of swimmers or inertial particles agree well with results
from DNS [53,54]. This corresponds to large Kubo num-
bers, Ku = τf uf/	f 
 1, where 	f/uf is proportional to the
Lagrangian correlation time of the flow. This correlation time
is represented by the Kolmogorov time τη = 〈tr(ATA)〉−1/2 =
	f/(

√
5uf ), where the fluid gradient matrix A has components

Ai j = ∂ jui. In our simulations, we use Ku = 10 in keeping
with this limit.

Even though individual velocity fields um(x) are Gaussian
distributed, the superposition (A1) is non-Gaussian if M is
finite. The distributions of individual components of u and A

have Gaussian body and exponential tails. In our simulations,
we use a finite value, M = 10, to model non-Gaussian tails of
fluid gradients.

Homogeneous isotropic turbulence, Reλ ≈ 60. We use
in-house code [43] for DNS of a homogeneous isotropic
turbulent flow u, using a pseudospectral method to solve the
Navier-Stokes equations,

∂u
∂t

+ u · ∇u = − 1

ρ f
∇pf + ν∇2u + f , (A4a)

∇ · u = 0, (A4b)

where pf , ρf , and ν are the pressure, density, and the kinematic
viscosity of the fluid. To sustain turbulence by balancing vis-
cous dissipation, we apply an external force f at large scales
[74]. We use periodic boundary conditions on a cubic domain
with size (2π )3.

The Taylor-scale Reynolds number, defined as Reλ =
urmsLλ/(

√
3ν), is set to Reλ ≈ 60, with Taylor length scale

Lλ = urms

√
5νε−1. In order to resolve the velocity at the dissi-

pation scales, we use 96 grid points in each dimension. The
smallest resolved scale is 1.78 times smaller than the Kol-
mogorov length scale, which means that the finest turbulent
motion can be resolved [75]. The initial flow is random with
exponential energy spectrum. We use a second-order Adams-
Bashforth scheme for the time advancement of Eq. (A4)
with a time step approximately ten times smaller than the
Kolmogorov time scale.

Once the turbulence becomes fully developed, swimmers
are initialized with random positions and orientations. A
second-order Adams-Bashforth scheme is used to evolve the
dynamics of the swimmers in Eq. (1) with translational and
rotational swimming velocities according to Eq. (3). The fluid
velocity and its gradients at the swimmer position are interpo-
lated using a second-order Lagrangian interpolation method
from the values at Eulerian grid points.

Homogeneous isotropic turbulence, Reλ ≈ 418. We used
DNS data of forced homogeneous isotropic turbulence on a
10243 grid, with a Taylor-scale Reynolds number Reλ ≈ 418,
downloaded from the Johns Hopkins University turbulence
database [50,51]. The flow velocity, velocity gradients and
second-order gradients were downloaded at the stored time
intervals and interpolated linearly to intermediate times. We
integrated the swimmer dynamics using the second-order
Adams-Bashforth method with a time step much smaller than
the smallest time scale of the swimmer dynamics.

DNS of turbulent channel flow. We use in-house code for
direct numerical simulations of turbulent channel flow [52]
to solve Navier-Stokes equations (A4) in a three-dimensional
domain surrounded by two infinitely large parallel walls. A
mean pressure gradient is applied in the streamwise direction
to drive the flow. A nonslip boundary condition is applied
to the channel wall and periodic boundary conditions are
applied to the stream- and spanwise directions. The result-
ing flow is characterized by the friction Reynolds number,
Reτ = huτ /ν = 180, where 2h is the distance between the
walls, uτ = √

τwall/ρ f is the friction velocity, with τwall being
the mean shear stress on the wall. We consider a domain
of size 2πh × 2h × πh in the streamwise, wall-normal, and
spanwise direction, respectively with corresponding mesh size
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96 × 128 × 96. The mesh is uniform in the stream- and span-
wise directions, and denser close to the walls where the shear
is strongest. Collisions with the channel walls follow the law
of reflection: the components of velocity and orientation in
the wall-normal direction are reversed, while the components
in the stream- and spanwise directions are preserved. We use
a time step �tu2

τ /ν = 0.06, much smaller than the smallest
time scale of the swimmer dynamics. We use a psuedospec-
tral method to solve Eq. (A4) in the stream- and spanwise
directions, and a second-order finite-difference method in the
wall-normal direction. The second-order Adams-Bashforth
method is used for time advancement. Similar numerical ap-
proach is used in Ref. [52].

Appendix B: Robustness of strain avoidance strategy. Fig-
ure 5 shows the distribution of squared strain rate, S2,
similar to Fig. 1(c), but with a slightly smaller value of
ε. Colored lines show results for the optimal strategy and

black lines for tracer particles. The results illustrate the
robustness of the strategy: the swimmer efficiently avoids
high-strain regions for large variations of the parameters
values.

Appendix C: Comparison to case without thresholds. Fig-
ure 6 shows results for the stochastic turbulence model of
the average sampled strain 〈S2〉 against energy dissipation
rate ε for swimmers following the optimal policy (3) with
sensing threshold ∇S2

th = 1 m−1s−2 (green, square markers)
and zero threshold ∇S2

th = 0 (black, circular markers). The
results show that the threshold does not make much difference
for ε larger than the vertical dashed line, where ∇S2

thurmsτ
3
η <

1. For smaller ε, where ∇S2
thurmsτ

3
η > 1, swimmers with a

sensing threshold have similar performance as tracer particles
(horizontal dashed line), while swimmers without threshold
perform almost as well as the simplified model in Eq. (4)
(green curve).
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