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Uncovering the multifractality of Lagrangian pair dispersion in shock-dominated turbulence
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Lagrangian pair dispersion provides insights into mixing in turbulent flows. By direct numerical simulations
(DNSs) we show that the statistics of pair dispersion in the randomly forced two-dimensional Burgers equation,
which is a typical model of shock-dominated turbulence, is very different from its incompressible counterpart
because Lagrangian particles get trapped in shocks. We develop a heuristic theoretical framework that accounts
for this—a generalization of the multifractal model—whose prediction of the scaling of Lagrangian exit times
agrees well with our DNS.
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The statistics of the relative pair dispersion of Lagrangian
particles (tracers) in turbulent flows has numerous physical
applications [1–9]. Richardson’s law, a pioneering work in
this field, states that, in a turbulent fluid, the mean-squared
displacement between a pair of tracers, 〈R2(t )〉, at time t ,
scales as 〈R2(t )〉 ∼ t3 [10]. In other words, there is a dy-
namic exponent z = 3/2. Richardson’s law can be viewed as
a consequence of Kolmogorov’s 1941 (K41) scaling theory
of turbulence (see, e.g., Ref. [9]). It is now well established
that the K41 theory is incomplete because it does not ac-
count for intermittency, which arises predominantly because
of the most dissipative structures in the flow and leads to
multifractality [11]. In brief, intermittency and multifractality
in homogeneous and isotropic turbulence is characterized by
the nontrivial scaling properties of moments of velocity dif-
ferences, 〈δv(�)p〉, over length scales, �, i.e., 〈δv(�)p〉 ∼ �ζp ,
with the multiscaling exponent ζp a nonlinear function of
p (K41 yields simple scaling with ζp = p/3).1 Therefore, it
is natural to hypothesize that Richardson’s law must have
multiscaling corrections too. In particular, we expect dynamic
multiscaling [12–16], characterized by not one but an infinity
of dynamic exponents; specifically, different moments of R(t )
should scale with different powers of t . However, even the
most recent experimental [17–21] and numerical [5,19,22–
25] measurements of 〈R2〉 provide only limited support to
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Richardson’s law, because the power-law behavior is observed
over a range of scales that covers a decade or so. Hence, there
seems to be little hope of extracting the dynamic-multiscaling
behavior from experimental or numerical measurements of
moments of R(t ).

It turns out that the Lagrangian exit time, conventionally
defined as the time taken for the separation between a pair
of tracers (Lagrangian interval) to exceed a given threshold
(e.g., the doubling time) [26–29], provides a robust measure
for dynamic multiscaling. From the statistics of these exit
times it is possible to extract dynamic multiscaling exponents
that match the predictions from the multifractal model of
turbulence [11,30,31].

We have so far outlined Lagrangian pair dispersion in
incompressible turbulence. We turn now to shock-dominated
turbulence, which refers to highly compressible turbulence
wherein the total energy in the irrotational modes is compa-
rable [32] to or significantly larger than that in the solenoidal
modes [33,34] depending on the Mach number; this poses
formidable challenges that we must confront because such
flows are widely prevalent in many astrophysical systems
[35]. Over the last two decades, several groups have studied
the multifractal properties of compressible turbulence, rang-
ing from flows that are weakly compressible to those that
are shock dominated [36–43]. Additionally, the dynamics of
tracers and heavy inertial particles in such systems have also
been investigated [44–49]. Note that Refs. [46–48] deal with
surface flows which are typically weakly compressible and
differ considerably from shock-dominated turbulence. How-
ever, the possible multifractal generalization of Richardson’s
law and exit time statistics to compressible turbulence has not
been established yet.

We develop the theoretical framework that is required for
this generalization to shock-dominated turbulence. It rests
on the crucial observation that tracers strongly cluster at
the shocks, which comprise the most dissipative structures,
making Lagrangian pair dispersion in such flows quali-
tatively different from that in incompressible turbulence.
Consequently, we define two exit times, (i) the doubling
time and the (ii) halving time, as the times taken for a
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FIG. 1. (a) The NESS energy spectrum E (k) on a log-log scale displaying almost two decades of K41-type inertial range scaling, E (k) ∼
k−5/3. Inset: The scale-by-scale energy flux �(k) on a log-lin scale implies a direct cascade of energy; in the inertial range, �(k) ∼ log k, in
agreement with earlier theoretical predictions for hydrodynamic turbulence with a similar random forcing [65,69]. (b) Scaling exponents ζp of
equal-time structure functions Sp(r); the black lines represent the bifractal scaling (2). Inset: Log-log plots of Sp(r), vs r for different values
of p; the shaded region denotes the regime local slope analysis for calculating ζp. (c) The profile of ∇ · u of a part of the simulation domain
overlaid with the instantaneous tracer positions (red dots); the dark filaments of large negative ∇ · u are the shocks and the tracers cluster on
them.

Lagrangian interval to (a) go beyond twice and (b) shrink
below half its initial length, respectively. We carry out explicit
direct numerical simulations (DNSs) of a simplified model
of shock-dominated turbulence, namely, the randomly forced
two-dimensional (2D) Burgers equation, which is not only
rich enough to display the complexities of such turbulence
[36,50,51], but also simple enough for us to develop a heuris-
tic theory for our DNS results. We find that the statistics
of the doubling times agree with those that follow from the
conventional application of the multifractal model, but those
of halving times do not. We generalize this framework to
account for the clustering of tracers on shocks and obtain
therefrom the scaling exponents for the moments of the distri-
bution of halving times. The results from our heuristic theory
are in excellent agreement with those from our DNS. In a
similar vein, we define and investigate the scaling properties
of doubling and halving frequencies of Lagrangian intervals,
and try to understand them on the basis of the underlying flow
intermittency.

The randomly forced 2D Burgers equation is

∂t u + u · ∇u = ν∇2u + f (x, t ), ∇ × u = 0,

〈 f̂ (k, t ) · f̂ (k′, t ′)〉 ∼ |k|−2δ(k + k′)δ(t − t ′). (1)

u(x, t ) is the Eulerian velocity at position x and time t , and ν is
the coefficient of viscosity. f (x, t ) is a zero-mean, irrotational,
Gaussian, white-in-time random force whose Fourier com-
ponents f̂ (k, t ) (with k the wave vector) obey the constraint
given in (1). The equal-time and dynamic-scaling proper-
ties of the Burgers equation, which can be mapped to the
Kardar-Parisi-Zhang (KPZ) equation [52], have been studied
extensively, but, most often, in one dimension (1D) through
DNSs and renormalization-group (RG) methods [53–65]. We
perform high-resolution (40962) pseudospectral DNSs of (1)
on a biperiodic square domain with side L = 2π . We use two-
thirds dealiasing [66,67] and the second-order exponential
time-differencing Runge-Kutta scheme [68] for timestepping.
After the DNS reaches a nonequilibrium statistically station-
ary state (NESS), we calculate the shell-integrated energy
spectrum E (k) which shows a power-law regime that is

consistent with E (k) ∼ k−5/3, over more than one-and-half
decades [see Fig. 1(a)]. This is a well-established result in one
dimension, obtained first in Ref. [60], by using the dynamic
RG, and confirmed by DNS in Refs. [60,63–65], and it is
consistent with a straightforward scaling argument [63] that
can be generalized to any dimension d . We also calculate
the equal-time, longitudinal structure functions Sp and their
scaling exponents ζp:

Sp(r) ≡ 〈|δu‖(r)|p〉 ∼ rζp, (2a)

where

δu‖(r) ≡ [u(x + r) − u(x)] ·
(

r
r

)
. (2b)

Here, the symbol 〈·〉 denotes averaging over the NESS.
Equation (1) exhibits biscaling, given the type of forcing we
use [60,70], i.e., the scaling exponents

ζp =
{

p/3 for p < 3,

1 for p � 3.
(3)

Our DNS results largely agree with this [see Fig. 1(b)].2 In
the NESS, we seed the flow uniformly with tracers and track
their subsequent motion. We present a pseudograyscale plot
of ∇ · u in Fig. 1(c), in which shocks are visible as dark
filamentary structures. Tracers, shown in red, accumulate on
these shocks. Henceforth, we use LI and TL ≡ LI/urms, the
large-eddy-turnover time, as our characteristic length scales
and timescales, respectively, with urms the root-mean-square
velocity and LI the integral length scale (see Supplemental
Material [71] for details).

We find that there is a small scaling range with 〈R2(t )〉 ∼ tα

and α 	 1.3, when 〈R2〉 exceeds the square of the dissipa-
tion length scale, η (see the Supplemental Material [71]).

2The numerical values of ζp, measured from our DNS, deviate
slightly from (3) for p � 3, possibly because of certain numerical
artifacts identified in an earlier similar study in one dimension [65].
Whether this deviation is a numerical artefact or not in 2D is not our
main focus here.
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FIG. 2. Dynamic scaling exponents, of order p of the doubling
times (κD

p ) and halving times (κH
p ) of Lagrangian intervals. Clearly,

contrary to the naive expectation based on the conventional multi-
fractal model, κD

p 
= κH
p . κD

p agrees with its bridge relation prediction
(4b) (shaded region) where ζ−p is obtained from DNS. The dashed
line is our theoretical prediction (8), which agrees very well with the
numerical results.

Richardson’s law is clearly violated in this shock-dominated
turbulence; however, the scaling range is too small to extract
an accurate value for α. Thus, we need to study Lagrangian-
exit-time statistics. For a Lagrangian interval of initial length
R0, within the inertial range, applying the multifractal model
of turbulence, as done previously [26–28], yields the follow-
ing scaling exponents of the order-p moments of the doubling
times τD: 〈

τ
p
D(R0)

〉 ∼ R
κD

p

0 , (4a)

where

κD
p = ζ−p + p . (4b)

The second of these equations gives the bridge relation
between the dynamic exponent, κD

p , and the equal-time ex-
ponent, ζ−p. We probe the validity of this bridge relation only
for p < 1, because the structure functions of negative order,
S−p(r), exist only in this regime [72,73]. We calculate κD

p and
ζ−p, from our DNS and plot them versus p in Fig. 2. Clearly,
(4b) holds within error bars. By construction, the multifractal
model does not distinguish between the scaling behaviors of
doubling times and halving times, τH. This may lead us to
naively expect, for compressible turbulence, that the moments
of τH should have the same scaling as the moments of τD,

i.e., 〈τ p
H(R0)〉 ∼ R

κH
p

0 with κH
p = κD

p . Our DNS shows that this
naive expectation is false, because clearly κD

p 
= κH
p as shown

in Fig. 2.
We must therefore generalize the multifractal model in

order to construct a theory that yields the p dependence of
κH

p shown in Fig. 2. We first outline the standard argument
that is used to understand Richardson’s law [9]. A Lagrangian
interval of length R(t ) undergoes a Brownian motion (we
restrict ourselves to 2D) with a diffusivity K (R) that depends
on R itself, i.e., the probability distribution function (PDF) of

R, namely, W (R, t ), satisfies

∂tW = 1

R
∂R[RK (R)∂RW ]. (5)

The R dependence of K (R) is deduced from the following
dimensional arguments, K ∼ (δRV )2tcor, where δRV is the
typical velocity difference across the scale, R, and tcor is the
typical correlation time. If we now use the K41 forms, δRV ∼
R1/3 and tcor ∼ R/δRV ∼ R2/3, we get K ∼ R4/3 which, when
substituted in (5), yields Richardson’s law.3

To carry out a similar calculation for 2D Burgers turbu-
lence, we need an appropriate scaling form of K (R). The first,
straightforward, generalization is to replace the K41 result,
δRV ∼ R1/3, with δRV ∼ Rh, where h is the scaling exponent
of the velocity field. The second key idea is to recognize that,
when we consider a Lagrangian interval of length R here, we
must distinguish between the following three possibilities for
this interval:

Case (1) (interval along a shock): δRV ∼ Rh, but the typical
correlation time is determined by sweeping as both ends of the
interval are trapped in the same shock, so tcor ∼ R, whence
K ∼ R2h+1.

Case (2) (interval straddles a shock): δRV is a constant, in-
dependent of R, i.e., h = 0, and tcor ∼ R, consequently K ∼ R.

Case (3) (interval is away from shocks): The interval can
decrease in only one of the following two ways:

(a) Case (3A): Both ends of the interval get trapped, at a
later time, in the same shock, so the arguments used in case
(1) apply. Therefore, at late times, K ∼ R2h+1.

(b) Case (3B): The two ends of the interval get trapped in
two different shocks, which then approach each other. Hence,
δRV is then the velocity difference between the two shocks,
which does not depend on R. Since tcor ∼ R, this yields K ∼ R
at late times.

In all of these cases, the calculation of the PDF of halving
times is a first-passage problem for (5), with two absorbing
boundaries, one at R → ∞ and the other at R = R0/2, where
R0 ≡ R(t = 0). Given the forms of K (R) in cases (1)–(3), it is
sufficient to calculate the halving-time PDFs, P1 and P2, for
K ∼ R2h+1 and K ∼ R, respectively. We obtain [74]

P1(τH, R0) ∼ 1

R1−2h
0

exp

[
−A1

τH

R1−2h
0

]
(6a)

and

P2(τH, R0) ∼ 1

R0
exp

[
−A2

τH

R0

]
, (6b)

where A1 and A2 are numerical constants (see Supple-
mental Material [71] for details). By collecting all the cases
together, we find the overall PDF of τH, for large τH,

P (τH, R0) ∼ w1P1 + w2P2 + w3AP1 + w3BP2, (7)

where w1, w2, w3A, and w3B are the relative weights for the
cases discussed above. As the shocks are one-dimensional

3An alternative argument is as follows. By K41-type arguments,
the only two quantities than can appear in constructing K are ε

and R, where ε is the energy dissipation rate per unit mass. Hence
K ∼ ε1/3R4/3.
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structures, w1 is negligible, but the other weights are not;
and in the limit R0 → 0, w3AP1 is the dominant contribution.
Thereby, we obtain the following result for the moments of
the PDF of τH: 〈

τ
p
H

〉 ∼ Rp(1−2h)
0 ∼ Rp/3

0 . (8)

In the final step we substitute h = 1/3 [60,70]. Equation (8)
agrees well with our numerical results (see the dashed line in
Fig. 2).

Several important comments are now in order:
(a) We emphasize that, although the halving-time dynamic

exponent κH
p depends linearly on the order p, the statistics

of halving times is not Gaussian—the tail of the PDF of τH

is exponential [see (6) and (7)]. Furthermore, (8) does not
imply simple dynamic scaling because we have shown explic-
itly that differently defined timescales have different scaling
exponents.

(b) Although we discuss halving and doubling times, ex-
plicitly, our results apply to exit times in general.

(c) Our DNS study is limited to the randomly forced 2D
Burgers equation (1), which is curl free. In shock-dominated
turbulence, the compressive (curl-free) modes can have signif-
icantly larger energy [33,34] than the solenoidal modes or may
have comparable energy [32]. We expect our theoretical argu-
ments to be generalizable to the former in a straightforward
manner. A critical problem with the multifractal description
of the scaling of exit times is that the bridge relation (4),
requires the calculation of negative moments of δRV . One
way to avoid the calculation of such moments is to consider
the statistics of inverse exit times. In particular, we define
the halving and doubling frequencies to be ωH ≡ 1/τH and
ωD ≡ 1/τD, respectively. Thereby we define two new sets of
dynamic scaling exponents,〈

ω
p
H(R0)

〉 ∼ R
−χH

p

0 and
〈
ω

p
D(R0)

〉 ∼ R
−χD

p

0 . (9)

As we have discussed already, the multifractal model for in-
compressible turbulence does not distinguish between them
[26–28], so the naive expectation is χH

p = χD
p = p − ζp. On

the contrary, our DNS shows (within the error bars of Fig. 3)

χH
p = p − ζp and χD

p = 2p/3; (10)

clearly, χH
p 
= χD

p . Our extension of the multifractal model
predicts the correct exponents in the following manner. The
scaling of the moments of ωD and ωH, for p > 1, is deter-
mined primarily by the small-τD and small-τH behaviors of
their respective PDFs. The short-time growth of R0 can occur
only if the interval is away from the shocks [case (3), but at
short times]. Therefore, for all such intervals, K ∼ R4/3 and
consequently χD

p = 2p/3 for all p (dashed line in Fig. 3),
in agreement with the results of our DNS. As for χH

p , at
short times, even for incompressible turbulence, intervals can
decrease, hence the the prediction of the multifractal model
holds.

In an earlier paper [64] we have investigated dynamic mul-
tiscaling in the 1D stochastically forced Burgers equation by
using a slightly different formulation than we have used here.
Instead of halving times, we have considered interval-collapse
times, i.e., the time it takes for a Lagrangian interval to shrink
to a point. We have shown that, in 1D, the interval-collapse-

FIG. 3. Dynamic scaling exponents, of order p of the doubling
frequencies (χD

p ) and halving frequencies (χH
p ) of Lagrangian in-

tervals. Clearly, contrary to the naive expectation based on the
conventional multifractal model, χD

p 
= χH
p for p � 3, up to our nu-

merical error bars, and in agreement with our theory; χH
p agrees with

its bridge relation (10) (shaded region), where ζp is obtained from
DNS [Fig. 1(b)]; the dashed line is our prediction of χD

p .

time PDF has power-law tails. In contrast, we now find that,
in 2D, the PDF of halving times has exponential tails. In both
1D and 2D cases, the shocks play a key role in determining
the multiscaling properties.

In summary, we have shown how to generalize the mul-
tifractal model for incompressible-fluid turbulence to the
stochastically forced 2D Burgers equation, which is rich
enough to display the complexities of shock-dominated tur-
bulence. Our DNS demonstrates clearly that the statistics of
halving times deviate starkly from those of doubling times.
By generalizing the standard argument that is used to de-
rive Richardson’s law from K41 theory, we have developed
a theory that leads to a natural way of understanding the
statistics of halving and doubling times. The key idea in this
theory is that, when we consider a Lagrangian interval of
length R, we must distinguish between cases (1)–(3). Our
theoretical arguments can be generalized to shock-dominated
compressible turbulence, if the equal-time exponents ζp are
known.

We expect shock-dominated turbulence in astrophysical
systems at both high Mach and Reynolds numbers, e.g., in
the interstellar media and molecular clouds, where the tur-
bulence is driven by supernovae explosions. The dynamics
of Lagrangian intervals in such flows provides useful in-
sights into transport and mixing in these systems, which
influence chemical kinetics and the rates of formation of
stars and planetesimals [35]. We expect our generalization of
Richardson’s law to apply to such systems. For compressible
turbulence, where the irrotational and solenoidal components
of the flow have similar energies [32], our theory may require
further generalization. Our work brings out the importance of
calculating the statistics of both halving and doubling times
of Lagrangian intervals from DNSs of compressible turbulent
flows, for trans-sonic, supersonic, and hypersonic cases.
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